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Abstract. This paper reports about a software package which has been devel-
oped to automatically partition hydrological networks (catchments) into clusters 
of similar size. Such clustering is useful for parallel simulation of catchments 
on distributed computing systems and is typically based on heuristic graph algo-
rithms. 

There have been a few approaches to automatically partition catchments, but 
literature research indicates that there seems to be no systematic investigation of 
the usefulness of different graph algorithms for catchment partitioning over a 
reasonable number of real world data sets. Our study aims at making a step in 
this direction. 

The paper describes the software package, which has been implemented in 
Java, its pluggable architecture, and initial experiments using the European 
catchment dataset ECRINS. The paper presents work in progress. 
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1 Introduction 

Some computational problems of river catchment simulations require large amounts 
of computing time. It is therefore just natural to aim at parallelizing such computa-
tions. At the core of any parallelization, the first question is whether an algorithm can 
be parallelized and how. As catchment simulations are dynamic flow problems, both 
spatial and temporal subdivision is an option. 

A look at the literature suggests that while there have been several proposed solu-
tion, a systematic study is lacking. The aim of the work presented in this paper is a 
long term one: to start with a systematic approach coping with the parallelization of 
the problem (which means the partitioning of the catchments here) and to end in com-
putational infrastructures for easy deployment of parallelized models. 

In order to approach the catchment partitioning problem systematically, we chose 
to apply a divide and conquer strategy, starting with the most simple problem setup. 
The experiments reported in this paper are based on the following preconditions: 

1. Precondition 1: the catchment is represented by a binary graph. 
2. Precondition 2: the algorithm to be parallelized is the same in every node. 
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It is clear that in reality other cases may occur: the graph may contain cycles and 
the algorithms may be different for different parts of the catchment, but many applica-
tions in the literature satisfy the above requirements anyway and binary graphs are 
common representations for catchments. 

For the purpose of this study we have also completely ignored the question when 
the parallelization of a problem will start to pay off, depending of the compute time 
per time step per node compared to the amount and latency of data transfer between 
computing nodes. We were only interested in the first step, the automatic partitioning. 

A binary graph is a special form of a directed acyclic graph (DAG). Each graph 
node has a maximum of two predecessor upstream nodes, and a maximum of one 
downstream node. The problem of our study is defined as follows: 

 
For a binary graph G, find a clustering 

 C = { Si, i = 1,n } (1) 

into n clusters, where Si are binary graphs and  

 ∪ Si, i=1,n = G (2) 

,which means that the clusters taken together represent the graph G. Let |G| be the 
graph norm (number of nodes) in a binary graph. An optimal clustering Copt is one 
which satisfies the following equation: 

 |Si| = |Sj|, for all i,j (3) 

Equation (3) means that for the purpose of parallel computing, it is desired that all 
clusters have equal size. This reflects precondition 2. 

2 Space and Time Parallelization 

A dynamic flow problem can be parallelized in space and time, as long as the flow is 
represented by a DAG in which downstream nodes only receive input from upstream 
nodes. There are two principle possibilities to use a distributed computing infrastruc-
ture for parallelization: a) a large catchment is split spatially into several catchments, 
which are computed in parallel, and b) for different time steps or time periods there is 
a different processor per node. Theoretically one could assign |G| * T (T being the 
number of time steps) processors to the computing problem, which would however 
result in unrealistically large hardware needs. In reality it makes sense to allocate one 
computing node for a clustering of nodes, to compute a time period of reasonable size 
and then to communicate a partial time series between the clusterings through con-
necting nodes, in order to balance the trade-off between using multiple processors 
(positive influence) and communication delays and latencies (negative influence). 

The long term interest of this study is to get a better understanding of the different 
trade-offs, based on a large number of real world datasets, and not based on very few 



(or only one) dataset or very small (or even toy) datasets. For this purpose it is neces-
sary 

1. to spatially cluster many different datasets, including large datasets with many 
nodes, in order to gain experience how good the spatial partitioning is in reality – 
for this step a concrete model is not needed,  

2. to actually run many model runs based on these clusterings in a distributed envi-
ronment  and measure their performance (which will be quite an effort and will re-
quire a lot of automation), or 

3. to try to build a theoretical model of the distributed computing system based on ex-
ecution per time step, average latencies and communication overhead, or 

4. to experiment with a dummy model on a real distributed computing system 
 
To this end we have started with the first step, and have implemented a software 

suite for spatial partitioning (or clustering). Along with the core software package, 
three published algorithms and one new algorithm have been implemented which we 
have used for the first batch of partitioning experiments.  

It is our intention to carry on with the first step with as many datasets as we can get 
hold of and to implement more algorithms in the future. We also intend to conduct 
experiments according to step 4. We are also investigating how to move  the cluster-
ing into a cloud infrastructure in order to provide a dynamic and scalable clustering 
service. 

It should be noted though that this study is carried out with groups of Masters stu-
dents only, without any external funding sources and support. 

3 Related Work 

The literature base on partitioning of catchments is not large but very diverse, ap-
proaching the problem from different angles. A 2001 article by M. Grübsch and O. 
David [1] gives a good introduction into the problem, its computational complexity 
and graph properties which may be taken into account when developing partitioning 
algorithms. They also propose a heuristic algorithm as a solution. In [2], a generalised 
computational architecture is proposed which allocates computing nodes over a mas-
ter-slave pattern using load balancing, which is a standard approach in distributed 
computing. In [3], a SWAT model is parallelized but it remains unclear how the sub-
catchments have been partitioned. In [4] the authors state that a more generalized 
approach based on well understood software patterns would help practitioners devel-
op parallel simulation solutions. One commonality of published papers is that what-
ever is proposed, the examples included in published studies have been small sets of 
case studies. Our study intends to start a systematic investigation over large sets of 
cases, starting with the partitioning problem. 



4 The Software Package 

The software implementation uses a pluggable architecture. At the core is a class 
called ClusteringSuite which dynamically manages a clustering run (see fig. 1). 
It loads clustering algorithms and test criteria (algorithms computing some quality 
measure of the generated clusters). 

A new clustering algorithm or a new test criterion respectively only has to imple-
ment a simple interface and will be dynamically loaded based on entries in a property 
file denoting the algorithms and test criteria to be used. The suite dynamically loads 
algorithms via a method called addAlgorithm() add test criteria via a method called 
addTestCriterion(). 

 

class ClusteringSuite { 
 … 
 addAlgorithm() { load and add an algorithm } 
 addTestCriterion() { load and add a test criterion } 
 … 
 List<ExperimentBundle<String>> doCluster { 
 for all samples 
   for all algorithms 
    call clustering algorithm for sample 
      for all test criteria  
           calculate criterion 
    save clustering result in json file 
} 

Fig. 1. Parts of the clustering suite interface 

The current implementation provides the following test criteria as built-in ele-
ments: 

• AverageSize   gives the average size of the clusters 
• AboveAverageSize  counts how many clusters are above average 
• BelowAverageSize  counts how many clusters are below average 
• MedianSize   gives the median size of the clusters 
• AverageWeight  gives the average weight of the clusters 
• MedianWeight  gives the median weight of the clusters 
• DeltaMedianAverageSize gives the delta of average size and median size 
• Correctness   determines whether the algorithm is correct at all 

The package contains two different executable programs, one called Clusterer 
and one called ExperimentController. While the clusterer will cluster one set 
of samples given by the user (respectively passed to the program), the experiment 
controller will generate samples which cluster the same catchment into many different 
sizes. This is for automation of the clustering experiments. 



5 The Experiment 

5.1 The Catchment Dataset 

For the first study we have used the ECRINS1 dataset, which can be downloaded from 
the web site of the European Environment Agency2. The dataset contains amongst 
others a European-wide hydrological network with approximately 1.2 million river 
segments. The download section of the EEA site contains several datasets. In order to 
access the hydrological network data, the “EcrRiv” dataset is needed. The dataset is 
well documented in [5]. For the experiments we have chosen a variation of catchment 
size from 1500 nodes to nearly 1460000 nodes (see table 1). The river id is the col-
umn river_id in table c_tr of ECRINS and the end node is the draining node (column 
nodid in table c_node of ECRINS). This data was run against several algorithms. 
 

River River id End node Nodes 
Volga Z_C0000603 Y000601274 146585 
Danube Z_C0000897 Y000828008 114318 
Kama Z_C0000605 Y000312116 64024 
Dnieper Z_C0000089 Y000728340 42962 
Don Z_C0000631 Y000640649 32398 
Rhine Z_C0000823 Y000617080 25270 
Po Z_C0000025 Y000962481 23074 
Ural Z_C0000588 Y000537580 21391 
Ebro Z_C0000053 Y001234399 15648 
Douro Z_C0000049 Y001129129 12459 
Drave Z_C0000933 Y000912526 11966 
Loire Z_C0000067 Y000774881 9815 
Adige Z_C0000088 Y000952540 7608 
Isere Z_C0000750 Y000956258 6954 
Adda Z_C0000020 Y000955093 3385 
Moselle Z_C0000899 Y000660011 3054 
Neckar Z_C0000896 Y000693135 1578 

Table 1. Catchments used in initial experiments 

 

1  http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network 
2  http://www.eea.europa.eu/ 

                                                           



5.2 Clustering Algorithms Used 

After literature research, 3 algorithms were chosen for the implementation of the first 
experiments. The choice of algorithms was not easy, as many proposed graph cluster-
ing algorithms cope with more general graphs, and the documentation is not always 
clear and detailed enough to use it as a blueprint for implementation. As a start, we 
decided to implement three algorithms: K-Means [6], RNSC [7] and Spectral Cluster-
ing [8]. During the course of the investigation, an idea lead to the implementation of a 
new algorithm called Neighbourhood Clustering. This algorithm was also used in the 
tests and may be published at a later stage after more experimentation. 

5.3 Aims 

If you want to distribute a catchment simulation over a distributed homogeneous 
computing infrastructure, it is desirable that all clusters have the same size. Then dif-
ferent computing nodes would not have to wait for each other when they are passing 
messages between clusters between time steps (or time periods) simulated. In reality 
this is never achievable with cluster size greater than 1 (one computing node per 
graph node), because the binary graphs representing real world catchments are highly 
unbalanced. Real results have clusterings in which clusters are not of equal size. 

It was our goal to achieve clusterings where the maximum cluster size and the min-
imum cluster size do differ only by a factor of 2 to 2.5. The rationale behind this aim 
is that due to the asynchronous nature of operating systems, network communication, 
latencies and so forth the overall runtime behaviour of a distributed simulation is not 
predictable anyway, and this aim seemed reasonable, achievable and still practical for 
distributed simulation. In order to make the results more visible we define the maxi-
mum spread as that factor (maximum spread := maxsize / minsize), and the spread 
curve (figure 2) as a curve which shows the spread for all generated clusters, where 
the clusters are ordered by size from left to right. 

 

Fig. 2. Real vs. ideal spread curve (Neckar, 1500+ nodes, NH algorithm, 15 clusters) 



5.4 Experiment Setup 

In our initial experiments we ran all catchments against several algorithms where it 
was practical. Spectral clustering, for instance, was not used in all cases as it has con-
siderable runtime requirements. Also clustering the largest catchments is a problem of 
run-time om standard machines. For each catchment in the experiment, the desired 
cluster count was chosen, starting with approximately 1/100 of the catchment size and 
iterating to approximately 1/10 of the catchment size with different step sizes, de-
pending on the size of the catchment (for instance for river Neckar with 1578 nodes, 
an iteration was performed from desired cluster size 15 to 150, for each integer in 
between. These initial experiments were aimed at getting a first idea what might be 
achievable with the algorithms chosen. 

6 Discussion 

Our initial findings are that not all results are in the order of magnitude which we had 
hoped. Some clusterings have a very large variation in number of nodes. The best 
spreads are in the order of magnitude of 2.5, but particularly the very large catch-
ments seem to be difficult to cluster evenly. 

Some algorithms produce stray nodes, clusters of very small size – in some cases 
many of them. It is not clear yet whether those can be easily re-connected to other 
clusters (or to each other) in post-processing without unbalancing the quality of the 
solution again. 

We have also not quality-checked the implemented algorithms over a large number 
of experiments, and a real problem is that there are no datasets in the literature to 
which we could compare our results to. 

Also the choice of starting points influences the clustering, and some algorithms do 
have parameters which influence their behaviour. We have not yet done any variation 
over the automatically chosen starting points and over these parameters. 

The computation time for the clusterings is another problem. It is just not practical 
to run many clustering runs over reasonable size clusters on standard machines, as 
some algorithms (particularly Spectral Clustering) just need too long to compute one 
clustering. Therefore particularly the large catchment have not been run over all varia-
tions of algorithms and cluster sizes which we had initially planned. 

Therefore, in another project course in 2014/2015, we plan to extend our solution 
to a cloud infrastructure, in which we aim at running many more variations of exper-
iments in order to find better solutions. 
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