
HAL Id: hal-01328593
https://inria.hal.science/hal-01328593

Submitted on 8 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Software Package for Automated Partitioning of
Catchments

Ralf Denzer, Tobias Kalmes, Udo Gauer

To cite this version:
Ralf Denzer, Tobias Kalmes, Udo Gauer. A Software Package for Automated Partitioning of Catch-
ments. 11th International Symposium on Environmental Software Systems (ISESS), Mar 2015, Mel-
bourne, Australia. pp.467-474, �10.1007/978-3-319-15994-2_47�. �hal-01328593�

https://inria.hal.science/hal-01328593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Software Package for Automated
Partitioning of Catchments

Ralf Denzer, Tobias Kalmes, Udo Gauer

Environmental Informatics Group (EIG), Saarbrücken, Germany
ralf.denzer@enviromatics.org

Abstract. This paper reports about a software package which has been devel-
oped to automatically partition hydrological networks (catchments) into clusters
of similar size. Such clustering is useful for parallel simulation of catchments
on distributed computing systems and is typically based on heuristic graph algo-
rithms.

There have been a few approaches to automatically partition catchments, but
literature research indicates that there seems to be no systematic investigation of
the usefulness of different graph algorithms for catchment partitioning over a
reasonable number of real world data sets. Our study aims at making a step in
this direction.

The paper describes the software package, which has been implemented in
Java, its pluggable architecture, and initial experiments using the European
catchment dataset ECRINS. The paper presents work in progress.

Keywords: parallel simulation · hydrological network · graph clustering

1 Introduction

Some computational problems of river catchment simulations require large amounts
of computing time. It is therefore just natural to aim at parallelizing such computa-
tions. At the core of any parallelization, the first question is whether an algorithm can
be parallelized and how. As catchment simulations are dynamic flow problems, both
spatial and temporal subdivision is an option.

A look at the literature suggests that while there have been several proposed solu-
tion, a systematic study is lacking. The aim of the work presented in this paper is a
long term one: to start with a systematic approach coping with the parallelization of
the problem (which means the partitioning of the catchments here) and to end in com-
putational infrastructures for easy deployment of parallelized models.

In order to approach the catchment partitioning problem systematically, we chose
to apply a divide and conquer strategy, starting with the most simple problem setup.
The experiments reported in this paper are based on the following preconditions:

1. Precondition 1: the catchment is represented by a binary graph.
2. Precondition 2: the algorithm to be parallelized is the same in every node.

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

mailto:ralf.denzer@enviromatics.org

It is clear that in reality other cases may occur: the graph may contain cycles and
the algorithms may be different for different parts of the catchment, but many applica-
tions in the literature satisfy the above requirements anyway and binary graphs are
common representations for catchments.

For the purpose of this study we have also completely ignored the question when
the parallelization of a problem will start to pay off, depending of the compute time
per time step per node compared to the amount and latency of data transfer between
computing nodes. We were only interested in the first step, the automatic partitioning.

A binary graph is a special form of a directed acyclic graph (DAG). Each graph
node has a maximum of two predecessor upstream nodes, and a maximum of one
downstream node. The problem of our study is defined as follows:

For a binary graph G, find a clustering

 C = { Si, i = 1,n } (1)

into n clusters, where Si are binary graphs and

 ∪ Si, i=1,n = G (2)

,which means that the clusters taken together represent the graph G. Let |G| be the
graph norm (number of nodes) in a binary graph. An optimal clustering Copt is one
which satisfies the following equation:

 |Si| = |Sj|, for all i,j (3)

Equation (3) means that for the purpose of parallel computing, it is desired that all
clusters have equal size. This reflects precondition 2.

2 Space and Time Parallelization

A dynamic flow problem can be parallelized in space and time, as long as the flow is
represented by a DAG in which downstream nodes only receive input from upstream
nodes. There are two principle possibilities to use a distributed computing infrastruc-
ture for parallelization: a) a large catchment is split spatially into several catchments,
which are computed in parallel, and b) for different time steps or time periods there is
a different processor per node. Theoretically one could assign |G| * T (T being the
number of time steps) processors to the computing problem, which would however
result in unrealistically large hardware needs. In reality it makes sense to allocate one
computing node for a clustering of nodes, to compute a time period of reasonable size
and then to communicate a partial time series between the clusterings through con-
necting nodes, in order to balance the trade-off between using multiple processors
(positive influence) and communication delays and latencies (negative influence).

The long term interest of this study is to get a better understanding of the different
trade-offs, based on a large number of real world datasets, and not based on very few

(or only one) dataset or very small (or even toy) datasets. For this purpose it is neces-
sary

1. to spatially cluster many different datasets, including large datasets with many
nodes, in order to gain experience how good the spatial partitioning is in reality –
for this step a concrete model is not needed,

2. to actually run many model runs based on these clusterings in a distributed envi-
ronment and measure their performance (which will be quite an effort and will re-
quire a lot of automation), or

3. to try to build a theoretical model of the distributed computing system based on ex-
ecution per time step, average latencies and communication overhead, or

4. to experiment with a dummy model on a real distributed computing system

To this end we have started with the first step, and have implemented a software

suite for spatial partitioning (or clustering). Along with the core software package,
three published algorithms and one new algorithm have been implemented which we
have used for the first batch of partitioning experiments.

It is our intention to carry on with the first step with as many datasets as we can get
hold of and to implement more algorithms in the future. We also intend to conduct
experiments according to step 4. We are also investigating how to move the cluster-
ing into a cloud infrastructure in order to provide a dynamic and scalable clustering
service.

It should be noted though that this study is carried out with groups of Masters stu-
dents only, without any external funding sources and support.

3 Related Work

The literature base on partitioning of catchments is not large but very diverse, ap-
proaching the problem from different angles. A 2001 article by M. Grübsch and O.
David [1] gives a good introduction into the problem, its computational complexity
and graph properties which may be taken into account when developing partitioning
algorithms. They also propose a heuristic algorithm as a solution. In [2], a generalised
computational architecture is proposed which allocates computing nodes over a mas-
ter-slave pattern using load balancing, which is a standard approach in distributed
computing. In [3], a SWAT model is parallelized but it remains unclear how the sub-
catchments have been partitioned. In [4] the authors state that a more generalized
approach based on well understood software patterns would help practitioners devel-
op parallel simulation solutions. One commonality of published papers is that what-
ever is proposed, the examples included in published studies have been small sets of
case studies. Our study intends to start a systematic investigation over large sets of
cases, starting with the partitioning problem.

4 The Software Package

The software implementation uses a pluggable architecture. At the core is a class
called ClusteringSuite which dynamically manages a clustering run (see fig. 1).
It loads clustering algorithms and test criteria (algorithms computing some quality
measure of the generated clusters).

A new clustering algorithm or a new test criterion respectively only has to imple-
ment a simple interface and will be dynamically loaded based on entries in a property
file denoting the algorithms and test criteria to be used. The suite dynamically loads
algorithms via a method called addAlgorithm() add test criteria via a method called
addTestCriterion().

class ClusteringSuite {
 …
 addAlgorithm() { load and add an algorithm }
 addTestCriterion() { load and add a test criterion }
 …
 List<ExperimentBundle<String>> doCluster {
 for all samples
 for all algorithms
 call clustering algorithm for sample
 for all test criteria
 calculate criterion
 save clustering result in json file
}

Fig. 1. Parts of the clustering suite interface

The current implementation provides the following test criteria as built-in ele-
ments:

• AverageSize gives the average size of the clusters
• AboveAverageSize counts how many clusters are above average
• BelowAverageSize counts how many clusters are below average
• MedianSize gives the median size of the clusters
• AverageWeight gives the average weight of the clusters
• MedianWeight gives the median weight of the clusters
• DeltaMedianAverageSize gives the delta of average size and median size
• Correctness determines whether the algorithm is correct at all

The package contains two different executable programs, one called Clusterer
and one called ExperimentController. While the clusterer will cluster one set
of samples given by the user (respectively passed to the program), the experiment
controller will generate samples which cluster the same catchment into many different
sizes. This is for automation of the clustering experiments.

5 The Experiment

5.1 The Catchment Dataset

For the first study we have used the ECRINS1 dataset, which can be downloaded from
the web site of the European Environment Agency2. The dataset contains amongst
others a European-wide hydrological network with approximately 1.2 million river
segments. The download section of the EEA site contains several datasets. In order to
access the hydrological network data, the “EcrRiv” dataset is needed. The dataset is
well documented in [5]. For the experiments we have chosen a variation of catchment
size from 1500 nodes to nearly 1460000 nodes (see table 1). The river id is the col-
umn river_id in table c_tr of ECRINS and the end node is the draining node (column
nodid in table c_node of ECRINS). This data was run against several algorithms.

River River id End node Nodes
Volga Z_C0000603 Y000601274 146585
Danube Z_C0000897 Y000828008 114318
Kama Z_C0000605 Y000312116 64024
Dnieper Z_C0000089 Y000728340 42962
Don Z_C0000631 Y000640649 32398
Rhine Z_C0000823 Y000617080 25270
Po Z_C0000025 Y000962481 23074
Ural Z_C0000588 Y000537580 21391
Ebro Z_C0000053 Y001234399 15648
Douro Z_C0000049 Y001129129 12459
Drave Z_C0000933 Y000912526 11966
Loire Z_C0000067 Y000774881 9815
Adige Z_C0000088 Y000952540 7608
Isere Z_C0000750 Y000956258 6954
Adda Z_C0000020 Y000955093 3385
Moselle Z_C0000899 Y000660011 3054
Neckar Z_C0000896 Y000693135 1578

Table 1. Catchments used in initial experiments

1 http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network
2 http://www.eea.europa.eu/

5.2 Clustering Algorithms Used

After literature research, 3 algorithms were chosen for the implementation of the first
experiments. The choice of algorithms was not easy, as many proposed graph cluster-
ing algorithms cope with more general graphs, and the documentation is not always
clear and detailed enough to use it as a blueprint for implementation. As a start, we
decided to implement three algorithms: K-Means [6], RNSC [7] and Spectral Cluster-
ing [8]. During the course of the investigation, an idea lead to the implementation of a
new algorithm called Neighbourhood Clustering. This algorithm was also used in the
tests and may be published at a later stage after more experimentation.

5.3 Aims

If you want to distribute a catchment simulation over a distributed homogeneous
computing infrastructure, it is desirable that all clusters have the same size. Then dif-
ferent computing nodes would not have to wait for each other when they are passing
messages between clusters between time steps (or time periods) simulated. In reality
this is never achievable with cluster size greater than 1 (one computing node per
graph node), because the binary graphs representing real world catchments are highly
unbalanced. Real results have clusterings in which clusters are not of equal size.

It was our goal to achieve clusterings where the maximum cluster size and the min-
imum cluster size do differ only by a factor of 2 to 2.5. The rationale behind this aim
is that due to the asynchronous nature of operating systems, network communication,
latencies and so forth the overall runtime behaviour of a distributed simulation is not
predictable anyway, and this aim seemed reasonable, achievable and still practical for
distributed simulation. In order to make the results more visible we define the maxi-
mum spread as that factor (maximum spread := maxsize / minsize), and the spread
curve (figure 2) as a curve which shows the spread for all generated clusters, where
the clusters are ordered by size from left to right.

Fig. 2. Real vs. ideal spread curve (Neckar, 1500+ nodes, NH algorithm, 15 clusters)

5.4 Experiment Setup

In our initial experiments we ran all catchments against several algorithms where it
was practical. Spectral clustering, for instance, was not used in all cases as it has con-
siderable runtime requirements. Also clustering the largest catchments is a problem of
run-time om standard machines. For each catchment in the experiment, the desired
cluster count was chosen, starting with approximately 1/100 of the catchment size and
iterating to approximately 1/10 of the catchment size with different step sizes, de-
pending on the size of the catchment (for instance for river Neckar with 1578 nodes,
an iteration was performed from desired cluster size 15 to 150, for each integer in
between. These initial experiments were aimed at getting a first idea what might be
achievable with the algorithms chosen.

6 Discussion

Our initial findings are that not all results are in the order of magnitude which we had
hoped. Some clusterings have a very large variation in number of nodes. The best
spreads are in the order of magnitude of 2.5, but particularly the very large catch-
ments seem to be difficult to cluster evenly.

Some algorithms produce stray nodes, clusters of very small size – in some cases
many of them. It is not clear yet whether those can be easily re-connected to other
clusters (or to each other) in post-processing without unbalancing the quality of the
solution again.

We have also not quality-checked the implemented algorithms over a large number
of experiments, and a real problem is that there are no datasets in the literature to
which we could compare our results to.

Also the choice of starting points influences the clustering, and some algorithms do
have parameters which influence their behaviour. We have not yet done any variation
over the automatically chosen starting points and over these parameters.

The computation time for the clusterings is another problem. It is just not practical
to run many clustering runs over reasonable size clusters on standard machines, as
some algorithms (particularly Spectral Clustering) just need too long to compute one
clustering. Therefore particularly the large catchment have not been run over all varia-
tions of algorithms and cluster sizes which we had initially planned.

Therefore, in another project course in 2014/2015, we plan to extend our solution
to a cloud infrastructure, in which we aim at running many more variations of exper-
iments in order to find better solutions.

Acknowledgements

This experiment was carried out as part of a Master level project course in 2013/2014,
with a group of 6 students, of which 2 agreed to co-author this paper. The resulting
software was cleaned and refactored by the main author after the course had produced

the first results. It is our intention to continue these investigations and we welcome
collaboration with external partners.

References

1. M. Grübsch, O. David, How to Divide a Catchment to Conquer Its Parallel Processing, an
Efficient Algorithm for the Partitioning of Water Catchments, Mathematical and Computer
Modelling 33 (2001), 723-731

2. H. Wang et al., A common parallel computing framework for modeling hydrological pro-
cesses of river basins, Parallel Computing 37 (2011), 302–315

3. S. Yalew et al., Distributed computation of large scale SWAT models on the Grid, Envi-
ronmental Modelling & Software 41 (2013) 223-230

4. R. Denzer, P. Fitch, I. N. Athanasiadis, D. P. Ames, Parallel simulation of environmental
phenomena, International Congress on Environmental Modelling and Software 2014,
http://www.iemss.org/sites/iemss2014/proceedings.php, ISBN: 978-88-9035-744-2, 2014

5. EEA, EEA Catchments and Rivers Network System, ECRINS v1.1, EEA Technical report
No 7/2012, European Environment Agency, 2012, ISSN 1725-2237

6. Kanungo T., Mount D. M., Netanyahu N. S., Piatko C. D., Silverman R., Wu A. Y.: An effi-
cient k-means clustering algorithm: Analysis and implementation. In: IEEE Trans. Pattern
Analysis and Machine Intelligence. 24, 2002, S. 881–892.
doi:10.1109/TPAMI.2002.1017616. Abgerufen am 24. April 2009.

7. A. D. King, Graph Clustering with Restricted Neighbourhood Search, Thesis, http:// citese-
erx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.2497&rep=rep1&type=pdf, 2004

8. A. Y. Ng, M. I. Jordan und Y. Weiss, On spectral clustering: analysis and an algorithm,
http://snap.stanford.edu/class/cs224w-readings/ng01spectralcluster.pdf

