
HAL Id: hal-01328606
https://inria.hal.science/hal-01328606

Submitted on 8 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Performance Assessment of the Unified Model
Dale Roberts, Mark Cheeseman

To cite this version:
Dale Roberts, Mark Cheeseman. A Performance Assessment of the Unified Model. 11th International
Symposium on Environmental Software Systems (ISESS), Mar 2015, Melbourne, Australia. pp.552-
560, �10.1007/978-3-319-15994-2_56�. �hal-01328606�

https://inria.hal.science/hal-01328606
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Performance Assessment of the Unified Model

Dale Roberts and Mark Cheeseman

National Computational Infrastructure, Canberra, Australia
{ds.roberts,mark.cheeseman}@anu.edu.au

Abstract. The Unified Model (UM) is a model produced by the UK MetOffice
for Numerical Weather Prediction (NWP) and climate simulation. It is used ex-
tensively by various university, government and other research organizations on
the large supercomputer hosted at the National Computing Infrastructure (NCI).
A 3-year collaboration between NCI, the Australian Bureau of Meteorology and
Fujitsu is underway to address performance and scalability issues in the UM on
NCI’s supercomputer, Raijin.

IO performance in the UM is the most dominant factor in its overall perfor-
mance. The IO server approach employed is sophisticated and requires proper
calibration to achieve acceptable performance. Global synchronization and file
lock contention is a problem that can be remedied with simple MPI global col-
lective calls. Complimentary IO strategies, such as MPI-IO and directed IO, are
being investigated for implementation.

The OpenMP implementation employed in the UM is investigated, and is
found to have inefficiencies that are detrimental to the load balance of the mod-
el. Only loop-wise parallelism is employed. Due to the inherently imbalanced
nature of the model, a task-wise approach could yield improved threading effi-
ciency.

Keywords: unified model · numerical weather prediction · performance analy-
sis · high performance computing

1 Introduction

The Unified Model, produced by the UK MetOffice, is a model used for atmospheric
simulation over time scales ranging from a few hours for numerical weather predic-
tion (NWP) to decades for climate modeling. An overview of its development can be
found in [1]. It is used in the Australian Bureau of Meteorology’s (BoM) operational
NWP forecasts at both a global and regional resolution. It also serves as the atmos-
phere component of the Australian Community Climate and Earth System Simulator
(ACCESS) coupled climate model. Its complexity and scale demand the use of super-
computers. For this paper, we focus on a global configuration of the UM on the Na-
tional Computational Infrastructure’s supercomputer, Raijin. Raijin is a Fujitsu Pri-
mergy cluster consisting of 3592 nodes. Each node possesses two Intel Xeon E5-2670
8 core CPUs giving Raijin a total of 57,472 CPU cores and a theoretical peak perfor-
mance of 1.2 Petaflops. The nodes are connected by a fast Infiniband network, capa-

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

ble of 56GBit/s between any two nodes. Raijin also provides a fast lustre-based [2]
file system with approximately 10PB of storage capacity and a peak write perfor-
mance in excess of 150GB/s. For this paper Intel FORTRAN and C compilers are
used along with OpenMPI [3] for MPI (Message Passing Interface) support.

The UM configuration of interest for the presented performance assessment and
optimization work is the global N512L70 configuration. It possesses an approximate-
ly 25km horizontal resolution (making for a horizontal grid of dimensions 1024 by
769) at mid latitudes and contains 70 model vertical levels. Optimization of configu-
ration is important to BoM’s future operational weather forecasting suite, as it will
lead to greater accuracy in both weather and climate prediction. BoM has mandated a
strict performance target of 10 model days per wallclock hour if this global configura-
tion is to be included in its operational forecast suite. We suspect that performance
issues observed at N512L70 (such as I/O and efficient OpenMP use) may be more
severe at higher resolutions, such as N768L85, the global resolution of the next BoM
operational forecast suite. Thus any solutions implemented at the N512L70 configura-
tion should be applicable and valuable for them as well.

2 Initial Scaling Tests

Using version 8.4 of the Unified Model [4] a strong scaling analysis of the global
N512L70 configuration is performed. Each run lasts 24 model hours with a time step
of 10 minutes. The UM is capable of using a multi-threaded model, in that each MPI
task is able to spawn multiple OpenMP threads. When this multi-threaded mode is
enabled, the IO can be performed using the IO Server asynchronous dump feature. In
this feature a number of MPI tasks are set aside to perform the expensive process of
writing model output to disk as the remaining MPI tasks perform the normal computa-
tional work in the atmosphere model run. If this feature is not activated, all output is
passed to and written by a single MPI task while all other MPI tasks sit idle –thereby
interrupting the normal model calculations.

Figure (1) shows observed strong scaling of the model with the IO Server feature
disabled and with all output switched off. It’s clear that the single task writing ap-
proach severely limits scalability. There is no observed benefit in using more than
512 CPU cores with output enabled in this case. With an averaged runtime of 984
seconds at 2048 CPU cores (over 5 runs), it will not be possible to meet BoM’s opera-
tional performance requirement with this configuration.

With the IO Server feature enabled, observed strong scaling improves substantially
as illustrated in Figure (2). The UM must be run in multithreaded mode here. (I.e. at
least 2 OpenMP threads need to be spawned and available to each MPI task). This
requirement comes from the IO Server design that uses two threads per IO Server
MPI task. Thus, the use of IO servers will be an integral part in meeting operational
performance requirement.

The two sets of points at 512 cores in Fig. (2) denote two different runs performed
on Raijin, one with 2 OpenMP threads per MPI task, and one with 4 OpenMP threads
per MPI task. It is clear that the best utilization of 512 cores is to have 256 MPI tasks

each with 2 OpenMP threads. This type of observation leads us to believe that im-
proved performance in the UM could be achieved through additional OpenMP opti-
mization. In spite of the IO now residing on separate MPI tasks, Figure (2) shows that
the performance with IO disabled altogether is still better than when IO is enabled on
the IO servers.

Fig. 1. Observed strong scaling of the global N512L70 configuration using the single MPI task
I/O approach. We define ‘Speedup’ as the ratio of the runtime at 256 cores compared to that at
larger stated core counts. Ideal scaling would see a job run on twice as many cores take half the

time, a speedup factor of 2.

It is possible for an IO server to possess more than 1 MPI task. For the ‘IO enabled’
runs shown in Figure (2), we used IO servers containing 8 MPI tasks each. Write
performance can be enhanced by fine-tuning the layout and structure of the IO servers
used –including the number of MPI tasks allocated to each. As an example, in Figure
(2), we display the difference in observed strong scaling at 4096 cores using 8 and 16
MPI tasks per IO Server (e.g. the green cross). While IO Server tuning does improve
observed runtimes, it is not enough to significantly change the overall scalability of
the global configuration.

1

2

4

8

256 512 1024 2048

Sp
ee

du
p

of CPU cores

N512L70 scaling, single threaded

Ideal Scaling

IO enabled

IO disabled

1

2

4

8

16

256 512 1024 2048 4096

Sp
ee

du
p

Cores

N512L70 scaling test, multi threaded
Ideal Scaling

IO disabled, 2 threads
per MPI task
IO enabled, 2 threads
per MPI task
4 threads per MPI
task
Alternate IO server
configuration

Fig. 2. Observed strong scaling of global N512L70 configuration with IO Servers enabled.

3 Threading Performance

Investigations showed that, while the UM can be run with up to 16 OpenMP threads
per MPI task on Raijin, performance decreases significantly when more than two
threads per MPI task are employed. A detailed analysis of the OpenMP performance
was completed using the Score-P [5] profiling and tracing tool, in conjunction with
the Vampir trace viewer [6]. For this particular analysis, the UM N512L70 configura-
tion was run in a 16×30 decomposition, with 4 IO servers, each comprising 8 tasks;
giving a total of 512 MPI tasks, each with 2 OpenMP threads. Score-P adds approxi-
mately 20% to the model run time for a full performance trace. Vampir categorizes all
function calls, and displays each category in with different colors according to the
legend in Figure (3).

Fig. 3. The function group legend used by Vampir. An ideal trace will spend the majority of its
time in the ‘Application’, ‘OMP_LOOP’ or ‘OMP_WORKSHARE’ states. These catego-
ries denote function calls in which useful computational work is occurring. Time spent in
‘OMP_SYNC’ and ‘MPI’ denotes points where one OpenMP thread is waiting for another to
compete a task, or waiting for data to be received from another process, and no useful computa-
tion is occurring.

Fig. (4) shows a selection of atmosphere tasks in the ‘Master Timeline’ view from
Vampir version 8.3.0. The view has been zoomed in on a single atmosphere time step,
without radiation calculations, that is performed every 6 time steps.

Fig. 4. The ‘Master Timeline’ view of 5 MPI processes performing a single UM atmosphere
step. Function groups are colored as per Fig. (3). Note the significant load imbalance in the
circled region.

The vast majority of time between the start of the atmosphere step and the first
‘MPI_WaitAll’ call (the circled section of the trace) is spent in the ‘OMP_SYNC’
category of calls. This category denotes every time an OpenMP thread needs to wait
for another thread to complete. In this case, the large scale precipitation calculation in
the microphysics section of the atmosphere step contains an !$OMP PARALLEL
declaration, which then proceeds to be executed in serial, whilst the newly created
OpenMP thread waits for the completion of the main thread. This section of the code
is potentially taking twice as long as necessary, thereby increasing the load imbalance
among the tasks. Load imbalance comes about when each MPI task performs a differ-
ent amount of work on the data it has. When this occurs, the tasks that complete that
section first need to wait for the final tasks to complete that section. This can be seen
in the circled region of Fig. (4). During this wait period, they will not be doing any
useful work, and are considered wasted. One of key activities in improving the per-
formance of this UM configuration will be eliminating this type of observed load
imbalance. Fig. (5) illustrates a similar scenario. Here we display the work done by
two OpenMP threads assigned to a single MPI task running an atmosphere step.

Fig. 5. Vampir’s view of the call stack of 2 OpenMP threads allocated to an MPI task running a
portion of one atmosphere step. Function groups are colored as per Fig (3).

For the entire atmosphere step, OMP thread 1 is active (i.e. the program is inside
an!$OMP PARALLEL region) for approximately one third of the time and spends
over a quarter of its time in in the OMP_SYNC category. Though we have selected an
arbitrary task for this comparison, this behavior is observed in all non-IO MPI tasks.

Consequently, one OpenMP thread on each atmosphere MPI task spends approxi-
mately 30% of its time in MPI_WaitAll calls. This load imbalance is further exac-
erbated as the halo exchange immediately follows, resulting in more idle CPU time as
neighbor tasks wait for threads to synchronize.

OpenMP use in the UM atmosphere code is overwhelmingly data-based parallel-
ization, in which separate iterations of a ‘DO’ loop are executed on individual
OpenMP threads. For a model as inherently load imbalanced as the UM, this may not
be sufficient. An alternative approach could be to employing work-share OpenMP
constructs where separate independent tasks are allocated to different OpenMP
threads. A potential target for this approach would be the convection control subrou-
tines. Every atmosphere tile may undergo one of deep, shallow or congestus convec-
tion, as well as mid-level convection. This routine is particularly load imbalanced, as
the entire model area on a particular MPI task may only undergo mid-level convec-
tion, whereas other MPI tasks may spend a significant amount of time in one of the
other convection routines as well as mid-level convection. One could separate the
deep, shallow and congestus convection routines on to different OpenMP tasks, such
that they are calculated simultaneously, and then revert to data-based parallelism for
the mid-level convection calculation.

4 IO Performance

Jobs ran at the global N512L70 configuration run for 1 model day and generate ap-
proximately 151GB of output data to disk. If one ignores the UM code completely
and just performs a single low-level sequential write to Raijin’s high-speed filesys-
tem, then it takes about 220 seconds to perform the write. BoM’s current operational
forecast suite requires the global UM configuration to run for 10 model days and gen-
erate an accordingly ten-fold increase in output. If one ignores the UM code and gain
just performs a single low-level sequential write, the time required for generating the
output jumps to approximately 36 minutes. BoM’s operational forecast suite cannot
last longer than one wallclock hour. Thus, one has (at best) 24 minutes to complete all
computations in a N521L70 run which is not feasible currently. (Both I/O approach-
es, IO Server and single MPI task output, use sequential writes for data output.)

In the IO server implementation, model output can be written concurrently with
normal atmospheric calculations. At each write, each MPI task performing atmos-
phere computations sends relevant output data to the nearest IO task (by MPI rank) of
each IO server. The first IO server to receive all necessary output data commences the
writing of the first output/dump file. The remaining IO servers will flush out all data
pertaining to that output file and focus on the next output file.

Fig. 6. Comparison of different IO server configurations with the same number of total MPI

tasks.

The 1 model-day runs of the N512L70 configuration produces fifteen dump files in
total. Testing showed that the optimal IO Server setting for this configuration varies
depending on the number of MPI tasks assigned to the atmosphere model. Fig. (6)
shows that for fewer than 1024 or fewer MPI tasks (2048 total cores), 8 MPI tasks per
IO server and up to 4 IO servers. Moving to 4096 total cores, gives 8 IO servers in
total, which is seen to harm performance. In the 8 IO server setup, several servers
seem to remain idle as fewer than 8 files are being written to simultaneously for the
majority of the time. Furthermore, the overhead associated with synchronizing all
files across 8 IO servers will ultimately increase the time spent in IO, to the point
where the IO will take longer than the model run when a large number of MPI tasks
are utilized. Reducing the number of IO servers by increasing the number of tasks per
server but retaining the total number of MPI tasks for IO is also seen to be detrimental
to performance for 1024 or fewer MPI tasks, as this limits the ability of the IO servers
to write multiple files in parallel. Furthermore, increasing the number of IO tasks and
retaining the same number of IO servers is also seen to reduce performance, as in this
case, fewer MPI tasks are being allocated to the model itself.

Even when IO servers are employed, there is still a significant overhead due to IO.
At 4096 cores, it takes approximately 185 seconds to complete the 24-model hour run
without IO, and 305 seconds to complete it with IO enabled. Fig. (7) shows a time-
sampled profile of the speed of UM output writes during a run with IO servers ena-
bled.

1

2

4

256 512 1024 2048 4096

Sp
ee

d
up

Cores

IO sever configuration comparison

8 IO tasks per IO server,
default configuration

16 IO tasks per IO server,
same number of IO tasks as
default configuration

16 tasks per IO server, twice
as many IO tasks as default
configuration

Fig. 7. Observed write speeds for a model day run of the N512L70 configuration. The model

produces output at approximately 200, 400, 600 and 800 seconds.

 Raijin’s high-speed file system is capable of sequentially writing to a single file at
around 700MB/s. The observed average write speed for a UM model dump is around
300MB/s. This is due to the overhead of the IO servers moving all data across to the
main IO server MPI task in 4MB segments, and writing each segment as it is re-
ceived. Fig. (8) shows the effect this has on atmosphere tasks.

Fig. 8. Cumulative time spent in UM atmosphere steps, ordered by longest time step to shortest.

This was performed with a 32×62 decomposition using 4 IO servers each with 16 MPI tasks,
for a total of 4096 cores.

Over half of the total run time was spent in the twelve longest atmosphere steps. The
long duration of these steps is caused by IO servers being unable to complete some
given request. There are a variety of reasons for this, for instance, an insufficient
amount of memory has been allocated to the IO servers, which, when full, will cause

0

150

300

450

600

750

0 500 1000 1500

W
rit

e
Sp

ee
d

(M
B/

s)

Time (s)

Write speed during N512L70 24 hr Model run

0

50

100

150

200

250

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 10
3

10
9

11
5

12
1

12
7

13
3

13
9

O
ve

ra
ll

Ru
n

Ti
m

e
(s

ec
)

Atmosphere steps ordered by time taken Most-Least

Cumulative Time Spent in Atmosphere Steps

the model to stop whilst the data in memory on the IO servers is written to disk. Many
of these issues could be alleviated with tuning of the IO server parameters. However,
as one increase the model resolution, this type of fine-tuning will not prevent such
stalling. The number of output files will not increase as resolution increase. Thus one
will need to either a) increase the amount of memory to each IO server task so that it
can hold more output data, or b) increase the number of MPI tasks dedicated to IO
server activity (eg. Increase number of IO servers and/or increase number of MPI
tasks belonging to each IO server). Each alternative will suffer from the same stalling
behavior. Thus alternate I/O methods should be explored. One possible approach is
MPI-IO [7] where multiple IO server tasks can write to files concurrently thereby
achieving greater write speeds. The overhead of sending entire files across to a single
MPI task would also be eliminated.

5 Conclusions and Future Work

We have investigated the overall performance of the UM MetOffice’s Unified Model
focusing on the OpenMP and IO server implementation. We found inefficiency in the
threading, with the second OpenMP thread of each MPI task spending approximately
75% of the time idle. OpenMP parallelism has been predominantly loop/data-wise. A
more task-wise OpenMP parallelism strategy could improve the treading efficiency
significantly. In particular, the sections of code identified in Section 3, namely, the
different convection subroutines, will be the first target for optimization.

IO is a significant factor in the run time of the UM, even with the IO server ap-
proach. Tuning of available IO server parameters can improve the performance at
N512L70, but it is unlikely that parameter tuning will have sufficient performance for
higher resolution configurations. One possible way to provide such speeds is to make
use of Raijin’s high-speed parallel file systems by employing a parallel IO standard,
such as MPI-IO. In particular, the large dump and post-processing files produced, at
several gigabytes each, rely on accumulating data from each IO server process before
writing the data from a single MPI task. This accumulation step can be replaced by
MPI-IO calls that allow each IO process to write to the file in lustre-aware manner.

References

1. Brown, A., Milton, S., Golding, B., Mitchell, J., & Shelly, A. (2012, December).
Unified Modeling and Prediction of Weather and Climate A 25-Year Journey.
American Meteorological Society , 1865-1877.

2. Braam, P., The Lustre Storage Architecture (2004). ftp://ftp.uni-
duisburg.de/pub/linux/filesys/Lustre/lustre.pdf.

3. Gabriel, E., E., F. G., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., et
al. (2004). Open MPI: Goals, Concept and Design of a Next Generation MPI
Implementation. Proceedings 11th European PVM/MPI Users' Group Meeting
(pp. 97-104). Budapest: Proceedings.

4. Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M., Mel-
vin, T., Smith, C., Vosper, S., Zerroukat, M. and Thuburn, J. (2014), An inherent-
ly mass-conserving semi-implicit semi-Lagrangian discretization of the deep-
atmosphere global non-hydrostatic equations. Q.J.R. Meteorol. Soc., 140: 1505–
1520. doi: 10.1002/qj.2235

5. Schlutter, M., Philippen, P., Morin, L., Geimer, M., & Mohr, B. (2014). Profiling
Hybrid HMPP Applications with Score-P on Heterogeneous Hardware. In M.
Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, & F. J. Peters (Ed.),
Parallel Computing: Accelerating Computational Science and Engineering
(CSE). 25, pp. 773-782. IOS Press.

6. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Mül-
ler, and W. E. Nagel. The Vampir Performance Analysis Tool-Set, pp. 139-155.
Springer Berlin Heidelberg, 2008.

7. Thakur, R., Gropp, W., & Lusk, E. (1999, February). Data sieving and collective
I/O in ROMIO. In Frontiers of Massively Parallel Computation, 1999. Frontiers'
99. The Seventh Symposium on the (pp. 182-189). IEEE.

