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Abstract

Learning parameters from voluminous data can be prohibitive in terms of memory and compu-
tational requirements. We propose a �compressive learning� framework where we estimate model
parameters from a sketch of the training data. This sketch is a collection of generalized moments
of the underlying probability distribution of the data. It can be computed in a single pass on the
training set, and is easily computable on streams or distributed datasets. The proposed framework
shares similarities with compressive sensing, which aims at drastically reducing the dimension of
high-dimensional signals while preserving the ability to reconstruct them.

To perform the estimation task, we derive an iterative algorithm analogous to sparse reconstruc-
tion algorithms in the context of linear inverse problems. We exemplify our framework with the
compressive estimation of a Gaussian Mixture Model (GMM), providing heuristics on the choice of
the sketching procedure and theoretical guarantees of reconstruction. We experimentally show on
synthetic data that the proposed algorithm yields results comparable to the classical Expectation-
Maximization (EM) technique while requiring signi�cantly less memory and fewer computations when
the number of database elements is large. We further demonstrate the potential of the approach on
real large-scale data (over 108 training samples) for the task of model-based speaker veri�cation.

Finally, we draw some connections between the proposed framework and approximate Hilbert
space embedding of probability distributions using random features. We show that the proposed
sketching operator can be seen as an innovative method to design translation-invariant kernels
adapted to the analysis of GMMs. We also use this theoretical framework to derive information
preservation guarantees, in the spirit of in�nite-dimensional compressive sensing.
Compressive Sensing, Compressive Learning, Database Sketching, Gaussian Mixture Model

1 Introduction

An essential challenge in machine learning is to develop scalable techniques able to cope with large-
scale training collections comprised of numerous elements of high dimension. To achieve this goal, it is
necessary to come up with approximate learning schemes which perform the learning task with a fair
precision while reducing the memory and computational requirements compared to standard techniques.
A possible way to achieve such savings is to compress data beforehand, as illustrated in Figure 1. Instead
of the more classical individual compression of each element of the database with random projections
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x1 . . . xn

Training data
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z

Database sketch

Chosen method

�
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Figure 1: Paths to compressive learning . The training data is compressed into a smaller repre-
sentation, typically through random projections. This can either consist in reducing the dimensions
of each individual entry (left bottom) or in computing a more global compressed representation of the
data, called sketch (top right). Parameters are then inferred from such a compressed representation by
a learning algorithm adapted to it. The proposed approach explores the second sketch-based option.

[2, 53, 24, 84, 72] the framework we consider in this paper corresponds to the top right scheme: a large
collection of training data is compressed into a �xed-size representation calledsketch. The dimension of
the sketch �and therefore the cost of infering/learning the parameters of interest from this sketch� does
not depend on the number of data items in the initial collection. A complementary path to handling
large-scale collections is online learning [30]. Sketching, which leverages ideas originating from streaming
algorithms [41], can trivially be turned into an online version and is amenable to distributed computing.

1.1 From compressive sensing to sketched learning.

As we will see, compressing a training collection into a sketch before learning is reminiscent of �and
indeed inspired by� compressive sensing (CS) [52] and streaming algorithms [40, 41]. The main goal of
CS is to �nd a dimensionality-reducing linear operator M such that certain high-dimensional vectors (or
signals) can be reconstructed from their observations byM . Initial work on CS [29, 46] showed that
such a reconstruction is possible fork-sparse signals of dimensiond; from only O(k) linear measurements
by (theoretically) solving an intractable NP-complete problem ([52], chap. 2), and in practice from
O(k ln(d)) linear measurements by solving a convex relaxation of this problem. MatricesM with such
reconstruction guarantees can be obtained as typical draws of certain random matrix ensembles. This
reconstruction paradigm from few random measurements has subsequently been considered and proven
to work for more general signal models [17]. Examples of such models include low-rank matrices [25],
cosparse vectors [75] and dictionary models [26]. Reconstruction from compressive measurements for
these models is made possible, among other properties, by the fact that they correspond to unions of
subspaces [12] which have a much lower dimension than the ambient dimension.

Low-dimensional models also intervene in learning procedures, where one aims at �tting a model
of moderate �dimension� to some training data f x1 : : : xn g � X in order to prevent over�tting and
ensure good generalization properties. In this paper, we considermixture models comprising probability
distributions on the set X of the form

P =
KX

k=1

� k Pk ; (1)

where the Pk 's are probability distributions taken in a certain set and the � k 's, � k � 0,
P

k � k = 1 , are
the weights of the mixture. Such a model can be considered as a generalized sparse model in the linear
spaceE of �nite measures over the setX .
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Similarly to compressive sensing, one can de�ne a linear compressive operatorA : E ! Cm which
computesgeneralized moments[60] of a measure� :

A : � 7! A � :=
1

p
m

� Z

X
M 1d�; : : : ;

Z

X
M m d�

�
; (2)

where the M j 's are well-chosen functions onX and the constant 1p
m is used for normalization purposes.

In the case where� is a probability measureP, the integrals are the expectations ofM j (x) with x � P.
Given some training data X = f x1; : : : ; xn g drawn from X , the corresponding empirical distribution

is

P̂ =
1
n

nX

i =1

� x i ; (3)

where � x i is a unit mass at x i . A practical sketch of the data can then be de�ned1 and computed as

ẑ = AP̂ =
1

n
p

m

"
nX

i =1

M j (x i )

#

j =1 ;:::;m

: (4)

Denoting � � E the set of probability distributions satisfying (1), �tting a probability mixture to the
training collection X in a compressive fashion can be expressed as the following optimization problem

argmin
P 2 �

kẑ � A Pk2 ; (5)

which corresponds to the search for the probability mixture in the model set� whose sketch is closest to
the empirical data sketch ẑ. By analogy with sparse reconstruction, we propose an iterative greedy recon-
struction algorithm to empirically address this problem, and exemplify our framework on the estimation
of GMMs.

1.2 Related works

A large set of the existing literature on random projections for dimension reduction in the context of
learning focuses on the scheme represented on the bottom left of Figure 1 : each item of the training
collection is individually compressed with random projections [2, 53] prior to learning for classi�cation
[24, 84] or regression [72], or to �tting a GMM [44]. In contrast, we consider here a framework where the
whole training collection is compressed to a �xed-size sketch, corresponding to the top right scheme in
Figure 1. This framework builds on work initiated in [19][20]. Compared to [19][20], the algorithms we
propose here: a) are inspired by Orthogonal Matching Pursuits rather than Iterative Hard Thresholding;
b) can handle GMMs with arbitrary diagonal variances; c) yield much better empirical performance (see
Section 5 for a thorough experimental comparison).

Our approach bears connections with the Generalized Method of Moments (GeMM) [60], where
parameters are estimated by matching empirical generalized moments computed from the data with
theoretical generalized moments of the distribution. Typically used in practice when the considered
probability models do not yield explicit likelihoods, the GeMM also provides mathematical tools to
study the identi�ability and learnability of parametric models such as GMMs [10, 9, 63]. Using the
empirical characteristic function is a natural way of obtaining moment conditions [49, 50, 101]. Following
developments of GeMM with a continuum of moments instead of a �nite number of them [31], powerful
estimators can be derived when the characteristic function is available at all frequencies simultaneously
[32, 107, 33]. Yet, these estimators are rarely implementable in practice.

This is naturally connected with a formulation of mixture model estimation as a linear inverse prob-
lem. In [22, 11] for example, this is addressed by considering a �nite and incoherent dictionary of densities
and the unknown density is reconstructed from its scalar products with every density of the dictionary.
These scalar products can be interpreted as generalized moments of the density of interest. Under these
assumptions, the authors provide reconstruction guarantees for their cost functions. In our framework,
we consider possibly in�nite and even uncountable dictionaries, and only collect a limited number of
�measurements�, much smaller than the number of elements in the dictionary.

Sketching is a classical technique in the database literature [41]. A sketch is a �xed-size data structure
which is updated with each element of a data stream, allowing one to perform some tasks without

1Any other unbiased empirical estimator of the moments, for example using the empirical median, can be envisioned.
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keeping the data stored. Applications include the detection of frequent elements, calledheavy hitters
[39] and simple statistical estimations on the data [55]. The sketches used in these works typically
involve quantization steps which we do not perform in our work. We also consider the density estimation
problem, which is closer to machine learning than the typical application of sketches. Closer to our work,
the authors in [100] consider the estimation of 2-dimensional histograms from random linear sketches.
Even though this last method is theoretically applicable in higher dimensions, the complexity would
grow exponentially with the dimension of the problem. Such a �curse of dimensionality� is also found
in [22, 11]: the size of the dictionary grows exponentially with the dimension of the data vectors, and
naturally impacts the cost of the estimation procedure. In our work, we rather consider parametric
dictionaries that are described by a �nite number of parameters. This enables us to empirically leverage
the structure of iterative algorithms from sparse reconstruction and compressive sensing to optimize
with respect to these parameters, o�ering better scalability to higher dimensions. This is reminiscent of
generalized moments methods for the reconstruction of measures supported on a �nite subset of the real
line [34], and can be applied to much more general families of probability measures.

The particular sketching operator that we propose to apply on GMMs (see Section 3 and further) is
obtained by randomly sampling the (empirical) characteristic function of the distribution of the training
data. This can be seen as a combination between two techniques from the Reproducing Kernel Hilbert
Space (RKHS) literature, namely embedding of probability distributions in RKHS using a feature map
referred to as the �Mean Map� [16, 94, 98], and Random Fourier Features (RFFs) for approximating
translation-invariant reproducing kernels [82].

Embedding of probability distributions in RKHS with the Mean Map has been successfully used for
a large variety of tasks, such as two-sample test [57], classi�cation [74] or even performing algebraic
operations on distributions [92]. In [96], the estimation of a mixture model with respect to the metric
of the RKHS is considered with a greedy algorithm. The proposed algorithm is however designed to
approximate the target distribution by a large mixture with many components, resulting in an approxi-
mation error that decreases as the number of components increases, while our approach considers (1) as
a �sparse� combination of a �xed, limited number of components which we aim at identifying. Further-
more, unlike our method that uses RFFs to obtain an e�cient algorithm, the algorithm proposed in [96]
does not seem to be directly implementable.

Many kernel methods can be performed e�ciently using �nite-dimensional, nonlinear embeddings
that approximate the feature map of the RKHS [82, 103]. A popular method approximates translation-
invariant kernels with RFFs [82]. There has been since many variants of RFFs that are faster [69, 108, 35],
more precise [106], or designed for a di�erent type of kernel [103]. Similar to our sketching operator,
structures combining RFFs with Mean Map embedding of probability distributions have been recently
used by the kernel community [15, 99, 77] to accelerate methods such as classi�cation with the so-called
Support Measure Machine [74, 99, 77] or two-sample test [110, 36, 65, 78].

Our point of view, i.e. that of generalized compressive sensing, is sensibly di�erent: we consider the
sketch as acompressedrepresentation of the probability distribution, and demonstrate that it contains
enough information to robustly recover the distribution from it, resulting in an e�ective �compressive
learning� alternative to usual mixture estimation algorithms.

1.3 Contributions and outline

Our main contributions can be summarized as follows:

� Inspired by Orthogonal Matching Pursuit (OMP) and its variant OMP with Replacement (OMPR),
we design in Section 2 an algorithmic framework for general compressive mixture estimation.

� In the speci�c context of GMMs, we design in Section 3.2 an algorithm that scales better with the
number K of mixture components.

� Inspired by random Fourier sampling for compressive sensing, we consider sketching operatorsA
de�ned in terms of random sampling of the characteristic function [19, 20]. However we show that
the sampling pattern of [19, 20] is not adapted in high dimension. In Section 3.3, in the speci�c
case of GMMs we propose a new heuristic and devise a practical scheme for randomly drawing
the frequencies that de�ne A . This is empirically demonstrated to yield signi�cantly improved
performance in Section 5.
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� We establish in Section 4 a connection between the choice of the proposed sampling pattern and
the design of a reproducing kernel on probability distributions. Compared to existing literature
[58, 77], our method is relatively simpler, faster to perform and fully unsupervised.

� Extensive tests on synthetic data in Section 5 demonstrate that our approach matches the esti-
mation precision of a state-of-the-art C++ implementation of the EM algorithm while enabling
signi�cant savings in time and memory.

� In the context of hypothesis testing-based speaker veri�cation, we also report in Section 6 results
on real data, where we exploit a corpus of 1000 hours of speech at scales inaccessible to traditional
methods, and match using a very limited number of measurements the results obtained with EM.

� We provide preliminary theoretical results (Theorem 3 in Section 7) on the information preservation
guarantees of the sketching operator. The proofs of these results (Appendices B and C) introduce
a new variant of the Restricted Isometry Property (RIP) [28], connected here to kernel mean
embedding and Random Features. Compared to usual guarantees in the GeMM literature, our
results have less of a �statistics� �avor and more of a �signal processing� one, such as robustness to
modeling error, i.e.the true distribution of the data is not exactly a GMM but close to one.

2 A Compressive Mixture Estimation Framework

In classical compressive sensing [52], a signalx 2 Rd is encoded with a measurement matrixM 2 Rm � d

into a compressed representationz 2 Rm :
z = Mx (6)

and the goal is to recoverx from those linear measurements. Often the system is underdetermined
(m < d ) and recovery can only be done with additional assumptions, typically sparsity. The vector
x = [ x ` ]d` =1 is said to besparseif it has only a limited number k < d of non-zero coe�cients. Its support
is the set of indices of non-zero entries:�( x) = f ` j x ` 6= 0g. The notation M � (resp. x � ) denotes the
restriction of matrix M (resp. vector x) to columns (resp. entries) with indices in � .

A sparse vector can be seen as a combination of few basis elements:x =
P

` 2 � x ` e` , wheref e` g` =1 ;:::;d

is the canonical basis ofRd. The measurement vectorz is thus expressed as a combination of fewatoms,
corresponding to the columns of the measurement matrix:z =

P
` 2 � x ` Me ` . The set of all atoms is

referred to as adictionary f Me ` g` =1 ;:::;d .

2.1 Mixture model and generalized compressive sensing

Let E = E(X ) be a space of signed �nite measures over a measurable space(X; B), and P the set of
probability distributions over X , P :=

�
P 2 E; P � 0;

R
X dP = 1

	
. In our framework, a distribution

P 2 P is encoded with a linear measurement operator (orsketching operator) A : P ! Cm :

z = AP: (7)

As in classical compressive sensing, we de�ne a �sparse� model inP. As mentioned in the introduction,
it is here assimilated to a mixture model (1), generated by combining elements from some given set
G = f P� g� 2T � P of basic distributions indexed by a parameter � 2 T . For some �nite K 2 N� , a
distribution is thus said to be K-sparse (in G) if it is a convex combination of K elements fromG:

P� ;� =
KX

k=1

� k P� k ; (8)

with P� k 2 G, � k � 0 for all k's, and
P K

k=1 � k = 1 . We name support of the representation2 (� ; � ) of
such a sparse distribution the set of parameters� = f � 1; :::; � K g.

The measurement vectorz = AP� ;� =
P K

k=1 � k AP� k of a sparse distribution is a combination of
atoms selected from thedictionary fA P� g� 2T indexed by the parameter � . Table 1 summarizes the
notations used in the context of compressive mixture estimation and their correspondence with more
classical notions from compressive sensing.

2Note that this representation might not be unique.
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Usual compressive sensing Compressive mixture estimation
Signal x 2 Rd P 2 P
Model K -sparse vectors K -sparse mixturesP� ;� =

P K
k=1 � k P� k

Measurement operator M 2 Rm � d A : P ! Cm

Support �( x) = f ` j x ` 6= 0g �( P� ;� ) = � = f � 1; :::; � K g
Dictionary of atoms f Me ` g` =1 ;:::;d fA P� g� 2T

Table 1: Correspondance between objects manipulated in usual compressive sensing of �nite-dimensional
signals and in the proposed compressive mixture estimation framework.

2.2 Principle for reconstruction: moment matching

As mentioned in Section 1, usual reconstruction algorithms (also known asdecoders[37, 17]) in gener-
alized compressive sensing are designed with the purpose of minimizing the measurement error while
enforcing sparsity [13], as formulated in equation (5). Here it also corresponds to traditional parametric
optimization in the Generalized Method of Moments (GeMM) [60]:

argmin
� ;�

kẑ � A P� ;� k2 ; (9)

where ẑ = AP̂ = 1
n

P n
i =1 A� x i is the empirical sketch. This problem is usually highly non-convex and

does not allow for an e�cient direct optimization, nevertheless we show in Section 7 that in some cases
it yields a decoder robust to modeling errors and empirical estimation errors, with high probability.

Convex relaxations of (9) based on sparsity-promoting penalization terms [22, 11, 34, 80] can be
envisioned in certain settings, however their direct adaptation to general uncountable dictionaries of
atoms (e.g., with GMMs) seems di�cult. The main alternative is greedy algorithms. Using an algorithm
inspired by Iterative Hard Thresholding (IHT) [14], Bourrier et al. [19] estimate mixtures of isotropic
Gaussian distributions with �xed variance, using a sketch formed by sampling the empirical characteristic
function. As will be shown in Section 5.6, this IHT-like algorithm often yields an unsatisfying local
minimum of (9) when the variance is estimated. Instead, we propose a greedy approach similar to
Orthogonal Matching Pursuit (OMP) [73, 79] and its extension OMP with Replacement (OMPR) [64].

Another intuitive solution would be to discretize the space of the parameter� to obtain a �nite dic-
tionary of atoms and apply the classic convex relaxation or greedy methods mentioned above. However,
one quickly encounters the well-known curse of dimensionality: for a grid with precision" and a param-
eter of dimension p, the size of the dictionary is asO (" � p), which is intractable even for moderatep.
Initial experiments for learning GMMs in dimension d = 2 with diagonal covariance (i.e.the dimension
of the parameter � is p = 4 ) show that this approach is extremely long and has a very limited precision.
Instead, in the next section we propose an adaptation of OMPR directly in the continuous domain.

2.3 Inspiration: OMPR for classical compressive sensing

Matching Pursuit [73] and Orthonormal Matching Pursuit [79] deal with general sparse approximation
problems. They gradually extend the sparse support by selecting atoms most correlated with the residual
signal, until the desired sparsity is attained.

An e�cient variation of OMP called OMP with Replacement (OMPR) [64] exhibits better recon-
struction guarantees. Inspired by IHT[14], and similar to CoSAMP or Subspace Pursuit [52], it increases
the number of iterations of OMP and extends the size of the supportfurther than the desired sparsity
before reducing it with Hard Thresholding to suppress spurious atoms.

2.4 Proposed algorithms: Compressive Learning OMP/OMPR

Adapting OMPR to the considered compressive mixture estimation framework requires several modi�-
cations. We detail them below, and summarize them in Algorithm 1.

Several aspects of this framework must be highlighted:

� Non-negativity. Unlike classical compressive sensing, the compressive mixture estimation frame-
work imposes a non-negativity constraint on the weights� , that we enforce at each iteration. Thus
Step 1 is modi�ed compared to classical OMPR by replacing the modulus of the correlation by its
real part, to avoid negative correlation between atom and residual. Similarly, in Step 4 we perform
a Non-Negative Least-Squares (NNLS) [68] instead of a classical Least-Squares.
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Algorithm 1: Compressive mixture learningà la OMP: CL-OMP ( T = K ) and CL-OMPR ( T =
2K )

Data : Empirical sketch ẑ, sketching operator A , sparsity K , number of iterations T � K
Result : Support � , weights �
r̂  ẑ; �  ; ;
for t  1 to T do

Step 1 : Find a normalized atom highly correlated with the residual with a gradient descent

�  maximize�

�
Re

D
A P �

kA P � k2
; r̂

E

2
; init = rand

�
;

end
Step 2 : Expand support

�  � [ f � g ;
end
Step 3 : Enforce sparsity by Hard Thresholding if needed

if j� j > K then

�  arg min� � 0




 ẑ �

P j � j
k=1 � k

A P � k

kA P � k k
2






2
;

SelectK largest entries � i 1 ; :::; � i K ;
Reduce the support�  f � i 1 ; :::; � i K g;

end
end
Step 4 : Project to �nd weights

�  arg min� � 0



 ẑ �

P j � j
k=1 � k AP� k





2
;

end
Step 5 : Perform a gradient descentinitialized with current parameters

� ; �  minimize � ;�

� 

 ẑ �

P j � j
k=1 � k AP� k





2
; init = (� ; � ) ; constraint = f � � 0g

�
;

end

Update residual: r̂  ẑ �
P j � j

k=1 � k AP� k

end
Normalize � such that

P K
k=1 � k = 1
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� Normalization. Note that we do not enforce normalization
P K

k=1 � k = 1 at each iteration.
Instead, a normalization of � is performed at the end of the algorithm to obtain a valid distribution.
Enforcing the normalization constraint at each iteration was found on initial experiments to have
a negligible e�ect while increasing computation time.

� Continuous dictionary. The set G of elementary distributions is often continuously indexed (as
with GMMs, see Section 3.2) and cannot be exhaustively searched. Instead we propose to replace
the maximization in Step 1 of classical OMPR with a randomly initialized gradient descent, denoted
by a call to a sub-routine maximize� , leading to a � local � maximum of the correlation between
atom and residual. Note that the atoms are normalized during the search, as is often the case with
OMP.

� Global optimization step to handle coherent dictionaries. Compared to classical OMPR,
the proposed algorithm includes a new step at each iteration (Step 5), which further reduces the cost
function with a gradient descent initialized with the current parameters (� ; � ). This is denoted
by a call to the sub-routine minimize � ;� . The need for this additional step stems from the lack
of incoherence between the elements of the uncountable dictionary. For instance, in the case of
GMM estimation, a (K +1) -GMM approximation of a distribution cannot be directly derived from
a K -GMM by simply adding a Gaussian. This is reminiscent of a similar problem handled in High
Resolution Matching Pursuit (HRMP) [59], which uses a multi-scale decomposition of atoms, while
we handle here the more general case of a continuous dictionary using a global gradient descent that
adjusts all atoms. Experiments show that this step is the most time-consuming of the algorithm,
but that it is necessary.

Similar to classical OMPR, Algorithm 1 yields two algorithms depending on the number of iterations:

1. Compressive Learning OMP (CL-OMP) if run without Hard Thresholding (i.e. with T = K );

2. CL-OMPR (with Replacement) if run with T = 2K iterations.

Learning the number of components ? In the proposed framework, the number of componentsK
is known in advance and provided by the user. However, it is known that greedy approaches such as OMP
are convenient to derive stopping conditions, that could be readily applied to CL-OMP: when the residual
falls below a �xed (or adaptive) threshold, stop the algorithm (additional strategies would be required
for CL-OMPR however). In this paper however, we only compare the proposed method with classical
approaches such as EM for Gaussian Mixture Models, that consider the number of componentsK known
in advance. We leave for future work the implementation of a stopping condition for CL-OMP(R) and
comparison with existing methods for model selection.

2.5 Complexity of CL-OMP(R).

Just as OMP, which complexity scales quadratically with the sparsity parameter K , proposed greedy
approaches CL-OMP or CL-OMPR have a computational cost of the order ofO(mdKT ), where T � K
is the number of iterations, resulting in a quadratic cost with respect to the number of componentsK .

This is potentially a limiting factor for the estimation of mixtures of many basic distributions (large
K ). In classical sparse approximation, approximate least squares approaches such as Gradient Pursuit
[13] or LocOMP [71] have been developed to overcome this computational bottleneck. One could probably
get inspiration from these approaches to further scale up compressive mixture estimation, however in
the context of GMMs we propose in Section 3.2 to rather leverage ideas from existing fast Expectation-
Maximization (EM) algorithms that are speci�c to GMMs.

2.6 Sketching by randomly sampling the characteristic function

Let us now assumeX = Rd. The reader will notice that in classical compressive sensing, the compressed
object is a vector x 2 Rd, while in this context, a training collection of vectors f x1; : : : ; xn g � Rd is
considered as an empirical version of some probability distributionP 2 E(Rd) which is the compressed
object.

The proposed algorithms CL-OMP(R) are suitable for any sketching operatorA and any mixture
model of parametric densitiesP� , as long as the optimization schemes in Steps 1 and 5 can be performed.
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In the case of a continuous dictionary the optimization steps can be performed with simple gradient
descents implicitly represented by calls to the sub-routinesmaximize� and minimize � ;� , provided AP�

and its gradient with respect to � have a closed-form expression.
In many important applications such as medical imaging (MRI and tomography), astrophysics or

geophysical exploration, one wishes to reconstruct a signal from incomplete samples of its discrete Fourier
transform. Random Fourier sampling was therefore one of the �rst problems to give rise to the classical
notions of compressive sensing [28, 27, 29]. Indeed, a random uniform selection of rows of the full Fourier
matrix, i.e. a random selection of frequencies, forms a partial Fourier matrix that satis�es a certain
Restricted Isometry Property (RIP) with overwhelming probability [29], and is therefore appropriate for
the encoding and recovery of sparse signals. For more details, we refer the reader to [52, 29, 28, 27, 6]
and references therein. Inspired by this methodology, we form the sketch by sampling the characteristic
function ( i.e. the Fourier transform) of the probability distribution P.

The characteristic function  � of a �nite measure � 2 E(Rd) is de�ned as:

 � (! ) =
Z �

e� i! T x
�

d� (x) 8! 2 Rd: (10)

For a sparse distribution P� ;� (in some given set of basic distributionsG � P ), we also denote � ;� =
 P � ; � for simplicity.

The characteristic function  P of a probability distribution P is a well-known object with many
desirable properties. It completely de�nes any distribution with no ambiguity and often has a closed-form
expression (even for distributions which may not have a probability density function with closed-form
expression,e.g., for � -stable distributions [91]), which makes it a suitable choice to build a sketch used
with CL-OMP(R). It has been used as an estimation tool at an early stage [50] as well as in more recent
developments on GeMM [32].

The proposed sketching operator is de�ned as a sampling of the characteristic function. Given
frequencies
 = f ! 1; :::; ! m g in Rd, we de�ne generalized moment functions:

M j (x) = exp
�
� i! T

j x
�

; j = 1 � � � m; (11)

and the sketching operator (2) is therefore expressed as

A � =
1

p
m

[ � (! 1); :::;  � (! m )]T : (12)

Given a training collection X = f x1; :::; xn g in Rd, we denote ̂ (! ) = 1
n

P n
i =1 e� i! T x i the empirical

characteristic function3. The empirical sketch ẑ = AP̂ is

ẑ =
1

p
m

h
 ̂ (! 1); :::;  ̂ (! m )

i T
: (13)

To fully specify the sketching operator (12), one needs to choose the frequencies! j that de�ne it. In
the spirit of Random Fourier Sampling, we propose to de�ne a probability distribution � 2 P to draw

(! 1; :::; ! m ) i:i:d:� � . Choosing this distribution is a problem of its own that will be discussed in details
in Section 3.3.

Connections with Random Neural Networks. It is possible to draw connections between the
proposed sketching operation and neural networks. DenoteW := [ ! 1; :::; ! m ] 2 Rd� m and X :=
[x1; :::; xn ] 2 Rd� n . To derive the sketch, one needs to compute the matrixU := W T X 2 Rm � n ,
take the complex exponential of each individual entryV := �f (U ) where �f is the pointwise application
of the function f (x) = e� ix =

p
m and �nally pool the columns of V to obtain the empirical sketch

ẑ = (
P n

i =1 v i ) =n. This procedure indeed shares similarities with a1-layer neural network: the output
y 2 Rm of such a network can be expressed asy = f (W T x), where x 2 Rd is the input signal, f is
a pointwise non-linear function and W 2 Rd� m is some weighting matrix. Therefore, in the proposed
framework, such a1-layer network is applied to many inputs x i , then the empirical average of the outputs
zi is taken to obtain a representation of the underlying distribution of the x i .

Neural networks with weights W chosen at random rather than learned on training data � as is done
with the frequencies! j � have been studied in the so-calledRandom Kitchen Sinks [83] or in the context

3Other more robust estimators can be envisioned such as the empirical median. The empirical average allows more easy
streaming or distributed computing.
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of Deep Neural Networks (DNN) with Gaussian weights [56]. In the latter, they have been shown to
perform a stable embedding of the inputx when it lives on a low-dimensional manifold. Similar to [56],
we show in Section 7 that with high probability the sketching procedure is a stable embeddingof the
probability distribution of x when this distribution belongs to, e.g., a compact manifold.

2.7 Complexity of sketching

The main computational load of the sketching operation is the computation of the matrix U = W T X ,
which theoretically scales in O(dmn). Large multiplications by random matrices are indeed a well-
known computational bottleneck in Compressive Sensing, and some methods circumvent this issue by
using approximated fast transforms [45, 70]. Closer to our work (see Section 4), fast transforms have also
been used in the context of Random Fourier Features and kernel methods [69, 108]. We leave the study
of a possible adaptation of these acceleration methods for future work, and focus on simple practical
remarks about the computation of the sketch.

GPU computing. Matrix multiplication is one of the most studied problem in the context of large-
scale computing. A classical way to drastically reduce its cost consists in using GPU computing [104].
Recent architectures can even leverage giant matrix multiplication using multiple GPUs in parallel [109].

Distributed/online computing. The computation of the sketch can also be performed in a dis-
tributed manner. One can divide the databaseX in T subsetsXt containing nt items respectively, after
which individual computing units can compute the sketchesẑt of each subsetXt in parallel, using the
same frequencies. Those sketches are then easily merged4 as ẑ =

P T
t =1 nt ẑt =

P T
t =1 nt . The cost of com-

puting the sketch is thus divided by the number of units T. Similarly, this simple observation allows the
sketch to be computed in an online fashion.

3 Sketching Gaussian Mixture Models

In this section, we instantiate the proposed framework in the context of Gaussian Mixture Models
(GMMs). A more scalable algorithm speci�c to GMMs is �rst introduced as a possible alternative to
CL-OMP(R). We then focus on the design of the sketching operatorA , i.e. on the design of the frequency
distribution � (see Section 2.6).

3.1 Gaussian Mixture Models

In the GMM framework, the basic distributions P� 2 G are Gaussian distributions with density functions
denoted p� :

p� (x) = N (x; � ; � ) =
1

(2� )d=2j� j1=2
exp

�
�

1
2

(x � � )T � � 1(x � � )
�

; (14)

where� = ( � ; � ) represents the parameters of the Gaussian with mean� 2 Rd and covariance� 2 Rd� d.
A Gaussian is said to be isotropic, or spherical, if its covariance matrix is proportional to the identity:
� = � 2I .

Densities of GMMs are denotedp� ;� =
P K

k=1 � k p� k . A K -GMM is then naturally parametrized by
weight vector � 2 RK and parameters� k = ( � k ; � k ); k = 1 � � � K .

Compressive density estimation with mixtures of isotropic Gaussians with �xed, known variance was
considered in [19]. In this work, we consider mixtures of Gaussians with diagonal covariances, which
is known to be su�cient for many applications [86, 111] and is the default framework in well-known
toolboxes such as VLFeat [102]. We denote(� 2

k; 1; :::; � 2
k;d ) = diag ( � k ). Depending on the context, we

equivalently denote � k = [ � k ; � k ] 2 R2d where � k = [ � 2
k;` ]` =1 ��� d is the diagonal of the covariance of the

k-th Gaussian.
The characteristic function of a GaussianP� has a closed-form expression:

 � (! ) = exp
�
� i! T �

�
exp

�
�

1
2

! T � !
�

; (15)

4A similar strategy can also be used on a single machine when the matrix U is too large to be stored
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from which we can easily derive the expression of the gradients necessary to perform the optimization
schemesmaximize� , minimize � ;� in CL-OMP(R), with the sketching operator introduced in Section
2.6.

3.2 A faster algorithm speci�c to GMM estimation

To handle mixtures of many Gaussians (largeK ), the fast hierarchical EM used in [90] alternates between
binary splits of each Gaussiank along its �rst principal component (in the case of Gaussians with diagonal
covariance, this is the dimension` with the highest variance � 2

k;` ) and a few EM iterations.
Our compressive adaptation is summarized in Algorithm 2. The binary split is performed by calling

the function Split , and the EM steps are replaced byStep 5 of Algorithm 1 to adjust all Gaussians.
In the case where the targeted sparsity levelK is not a power of2, we split the GMM until the support
reaches a size2dlog 2 K e > K , then reduce it with a Hard Thresholding (Step 3 of Algorithm 1), similar
to CL-OMPR.

Since the number of iterations in Algorithm 2 is T = dlog2 K e, the computational cost of this
algorithm scales in O(mdK logK ), which is much faster for large K than the quadratic cost of CL-
OMPR.

In practice, Algorithm 2 is seen to sometimes yield worse results than CL-OMPR (see Section 5.6),
but be well-adapted to other tasks such as,e.g., GMM estimation for large-scale speaker veri�cation (see
Section 6).

Function Split( � ) : split each Gaussian in the support along its dimension of highest variance

Data : Support � = f � 1; :::; � K g where � k = [ � k ; � k ]
Result : New support � new of sizej� new j = 2K
� new  ; ;
for k  1 to K do

`  arg maxj 2 [1;d] � 2
k;j ;

� new  � new [ f (� k � � k;` e` ; � k ) ; (� k + � k;` e` ; � k )g ;
end

Algorithm 2: An algorithm with complexity O(K logK ) for compressive GMM estimation

Data : Sketch ẑ, sketching operator A , sparsity K
Result : Support � , weights �
�  ; ;
begin Initialize with one atom highly correlated with the sketch

�  
n

maximize�

�
Re

D
A P �

kA P � k2
; ẑ

E

2
; init = rand

�o
;

end
for t  1 to dlog2 K e do

begin Split each Gaussian in the support along its dimension of highest variance
�  Split (�) ;

end
Perform Step 3 , Step 4 and Step 5 of Algorithm 1;

end
Normalize � such that

P K
k=1 � k = 1

3.3 Designing the frequency sampling pattern

A key ingredient in designing the sketching operatorA is the choice of a probability distribution � to
draw the frequency sampling pattern f ! 1; : : : ; ! m g as de�ned in Section 2.6. We show in Section 4
that this corresponds to the design of a translation-invariant kernel in the data domain. Interestingly,
working in the Fourier domain seems to make the heuristic design strategy more direct. Literature
on designing kernels in this context usually focus on maximizing the distance between the sketch of
two distributions [97, 77], which cannot be readily applied in our context since we sketch only a single
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distribution. However, as we will see, the proposed approach follows the general idea of maximizing the
capacity of the sketch to distinguish this distribution from others, which amounts to maximizing the
variations of the sketch with respect to the parameters of the GMM at the selected frequencies.

3.3.1 Oracle frequency sampling pattern for a single known Gaussian

We start by designing a heuristic for choosing frequencies adapted to the estimation of a single Gaussian
P� , assuming the parameters� = ( � ; � ) are available � which is obviously not the case in practice. We
will deal in due time with mixtures, and with unknown parameters.

Gaussian frequency distribution. Recall the expression (15) of the characteristic function � (! ) =
e� i! T � � 1

2 ! T � ! of the GaussianP� . It is an oscillating function with Gaussian amplitude of inverted
variance with respect to the original Gaussian. Given that j � j / N

�
0; � � 1�

, choosing a Gaussian

frequency distribution � (G)
� = N

�
0; � � 1�

is a possible intuitive choice [19, 20] to sample the characteristic
function  � . It concentrates frequencies in the regions where the sampled characteristic function has
high amplitude.

However, points drawn from a high-dimensional Gaussian concentrate on an ellipsoid which moves
away from the origin as the dimensiond increases. Such a Gaussian sampling therefore �undersamples�
low or even middle frequencies. This phenomenon has long been one of the reasons for using dimension-
ality reduction for GMM estimation [44]. Hence, in high dimension the amplitude of the characteristic
function becomes negligible (with high probability) at all selected frequencies.

Folded Gaussian radial frequency distribution. In light of the problem observed with the Gaus-
sian frequency distribution, we propose to draw frequencies from a distribution allowing for an accurate
control of the quantity ! T � ! , and thus of the amplitude e� 1

2 ! T � ! of the characteristic function. This
is achieved by drawing

! = R� � 1
2 ' ; (16)

where ' 2 Rd is uniformly distributed on the `2 unit sphere Sd� 1, and R 2 R+ is a radius chosen
independently from ' with a distribution pR we will now specify.

With the decomposition (16), the characteristic function  � is now expressed as

 �

�
R� � 1

2 '
�

= exp
�

� iR' T � � 1
2 �

�
exp

�
� 1

2 R2�
=  � (R);

where  � is the characteristic function of a one-dimensional Gaussian with mean � = ' T � � 1
2 � and

variance � 2 = 1 . We thus consider the estimation of a one-dimensional GaussianP� 0 = N (� 0; � 2
0), with

� 0 = 1 , as our baseline to design a radius distributionpR .
In this setting, we no longer su�er from unwanted concentration phenomena and can resort to the

intuitive Gaussian radius distribution to sample  � 0 . It corresponds to a radius density function pR =
N + (0; 1

� 2
0
) = N + (0; 1) (i.e. Gaussian with absolute value, referred to asfolded Gaussian). Using this

radius distribution with the decomposition (16) yields a frequency distribution � (F Gr )
� referred to as

Folded Gaussian radiusfrequency distribution. Note that, similar to the Gaussian frequency distribution,
the Folded Gaussian radius distribution only depends on the (oracle) covariance� of the sketched
distribution P� .

Adapted radius distribution Though we will see it yields decent results in Section 5, the Folded
Gaussian radius frequency distribution somehow produces too many frequencies with a low radiusR.
These carry a limited quantity of information about the original distribution, since all characteristic
functions equal 1 at the origin5. We now present a heuristics that may avoid this �waste� of frequencies.

Intuitively, the chosen frequencies should properly discriminate Gaussians with di�erent parameters,
at least in the neighborhood of the true parameter� 0 = ( � 0; � 0) = ( � 0; 1). This corresponds to promoting
frequencies! leading to a large di�erencej � (! ) �  � 0 (! )j for parameters� close to� 0. A way to achieve
this is to promote frequencies where the norm of the gradientkr �  � (! )k2 is large at � = � 0.

5 In a way, numerous measures of the characteristic function near the origin essentially measure its derivatives at various
orders, which are associated to classical polynomial moments.
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Recall that for a one-dimensional Gaussian � (! ) = e� i�! e� 1
2 � 2 ! 2

. The norm of the gradient is
expressed as:

kr �  � (! )k2
2 = jr �  � (! )j2 + jr � 2  � (! )j2 = j� i! � (! )j2 +

�
�
�
� �

1
2

! 2 � (! )

�
�
�
�

2

=
�

R2 +
R4

4

�
e� � 2 R 2

and therefore kr �  � 0 (! )k2 =
�

R2 + R 4

4

� 1
2

e� 1
2 R 2

since � 2
0 = 1 . This expression still has a Gaussian

decrease (up to polynomial factors), and indeed avoids very low frequencies. It can be normalized to a
density function:

pR = C
�

R2 + R 4

4

� 1
2

e� 1
2 R 2

; (17)

with C some normalization constant. Using this radius distribution with the decomposition (16) yields
a distribution � (Ar )

� referred to asAdapted radius frequency distribution. Once again, this distribution
only depends on the covariance� .

3.3.2 Oracle frequency sampling pattern for a known mixture of Gaussians

Any frequency distribution � ( :)
� selected for sampling the characteristic function of a single known Gaus-

sian P� can be immediately and naturally extended to a frequency distribution � ( :)
� ;� to sample the

characteristic function of a known GMM P� ;� , by mixing the frequency distributions corresponding to
each Gaussian:

� ( :)
� ;� =

KX

k=1

� k � ( :)
� k

: (18)

Each component � ( :)
� k

has the same weight than its corresponding GaussianP� k . Indeed, a Gaussian
with a high weight must be precisely estimated, as its in�uence on the overall reconstruction error (e.g. in
terms of Kullback-Leibler divergence) is more important than the components with low weights. Thus
more frequencies adapted to this Gaussian are selected.

The draw of frequencies with an oracle distribution � ( :)
� ;� is summarized in Function DrawFreq.

3.3.3 Choosing the frequency sampling pattern in practice

In practice the parameters(� ; � ) of the GMM to be estimated are obviously unknown beforehand, so the
oracle frequency distributions � ( :)

� ;� introduced in the previous section cannot be computed. We propose
a simple method to obtain an approximate distribution that yields good results in practice. The reader
must also keep in mind that it is very easy to integrate some prior knowledge in this design, especially
since the proposed frequency distributions only take into account the variances of the GMM components,
not their means.

The idea is to estimate the average variance�� 2 = 1
Kd

P K
k=1

P d
` =1 � 2

k;` of the components in the
GMM � note that this parameter may be signi�cantly di�erent from the global variance of the data, for
instance in the case of well-separated components with small variances. This estimation is performed
using a light sketch z0 with m0 frequencies, computed on a small subset ofn0 items from the database,
then a frequency distribution corresponding to a single isotropic Gaussian� ( :)

�� 2 I is selected.
Indeed, if the variances� 2

k;` 's are not too di�erent from each other, the amplitude of the empirical

characteristic function j ̂ (! )j approximately follows e� 1
2 k! k2

2 �� 2
with high oscillations, allowing for a very

simple amplitude estimation process: assuming them0 frequencies used to compute the sketchz0 are
ordered by increasing Euclidean radius, the sketchz0 is divided into consecutive blocks, maximal peaks
of its modulus are identi�ed within each block forming a curve that approximately follows e� 1

2 R 2 �� 2
, then

a simple regression is used to estimate�� 2. This process is illustrated in Figure 2.
To cope with the fact that the "range" of frequencies that must be considered to computez0 is also

not known beforehand, we initialize �� 2 = 1 and reiterate this procedure several times, each time drawing
m0 frequencies adapted to the current estimation of�� 2, i.e. with some choice of frequency distribution
� ( :)

�� 2 I , and update �� 2 at each iteration. In practice, the procedure quickly converges in three iterations.
The entire process is summarized in detail in FunctionEstimMeanSigmaand Algorithm 3.
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Function DrawFreq(f � k gk=1 ;:::;K ; � ; m; f ) : drawing frequencies for a GMM with known variances
and weights, choosing one of the three distributions described in Section 3.3

Data : Set of variances and weights of a GMMf � k gk=1 ;:::;K , � , number of frequenciesm, type of
frequency distribution f 2 f (G); (FGr ); (Ar )g

Result : Set of frequencies
 = f ! 1; :::; ! m g
for j  1 to m do

Draw a label according to the weights of the GMM kj �
P K

k=1 � k � k ;
if f = ( G) then

! j � N
�

0; � � 1
k j

�
; // Gaussian

end
else

Draw a direction ' � U (Sd� 1);
if f = ( FGr ) then

R � N + (0; 1) ; // Folded Gaussian radius

end
else if f = ( Ar ) then

R � pR with pR de�ned by (17) ; // Adapted radius

end

! j  R�
� 1

2
k j

' ;
end

end

Function EstimMeanSigma(X ; n0; m0; c; T) : Estimation of the mean variance �� 2

Data : Dataset X = f x1; :::; xn g, small number of items n0 � n, small number of frequenciesm0,
number of blocksc 2 N�

+ , number of iterations T
Result : Estimated mean variance�� 2

begin Initialize
�� 2  1;

end
for t  1 to T do

begin Draw some frequencies adapted to the current�� 2

f ! 1; :::; ! m 0 g  DrawFreq(�� 2I ; 1; m0; (Ar )) ;
Sort the frequenciesf ! 1; :::; ! m 0 g by increasing radiusk! j k2;

end
begin Compute small empirical sketch, without 1p

m 0
normalization (Figure 2, left)

ẑ0  
h

1
n 0

P n 0
i =1 e� i! T

j x i

i

j =1 :::m 0

;

end
begin Divide sketch into blocks, �nd maximum peak in each block (Figure 2, center)

s  b m0=cc;
for q  1 to c do

j q = arg max j 2 [( q� 1)s+1; qs] jẑ0;j j;
end

end
begin Update �� 2 (Figure 2, right)

ê  
�
ẑ0;j q

�
q=1 :::c ;

�� 2 = arg min � 2 > 0




 ê �

h
e� 1

2 R 2
j q

� 2
i

q=1 :::c






2
;

end
end
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Figure 2: Estimation of �� 2 (Function EstimMeanSigma), for d = 10, K = 5 , m0 = 500 and n0 = 5000.
Green: modulus of the sketch with respect to the norm of frequencies (ordered by increasing radius).
Blue: visualization of the peaks in each block of20 consecutive values. Red: �tted curvee� 1

2 R 2 �� 2
for

the estimated �� 2.

Algorithm 3: Draw the frequencies in practice.

Data : Dataset X = f x1; :::; xn g, number of frequenciesm, type of frequency distribution
f 2 f (G); (FGr ); (Ar )g, parameters for the estimation of the mean variance(n0; m0; c; T)

Result : Set of frequencies
 = f ! 1; :::; ! m g
begin Estimate the mean variance

�� 2  EstimMeanSigma(X ; n0; m0; c; T);
end

begin Draw frequencies with the distribution � ( :)
�� 2 I


  DrawFreq(�� 2I ; 1; m; f );
end

3.4 Summary

At this point, all procedures necessary for compressive GMM estimation have been de�ned. Given a
databaseX = f x1; :::; xn g, a number of measurementsm and a number of componentsK , the entire
process is as follow:

� In the absence of prior knowledge, drawm frequencies using Algorithm 3 on (a fraction of) the
dataset. The proposed Adapted radius frequency distribution is recommended, other parameters
have default values (see Section 5.3), the e�ect of modifying them has been found to be negligible.

� Compute the empirical sketch ẑ = 1p
m

h
1
n

P n
i =1 e� i! T

j x i

i

j =1 :::m
. One may use GPU and/or dis-

tributed/online computing.

� Estimate a K -GMM using CL-OMP(R) or the more scalable but less precise Algorithm 2.

Connections with Distilled sensing. The reader may note that designing a measurement operator
adapted to some particular data does not �t the classical paradigm of compressive sensing.

The two-stage approaches used to choose the frequency distribution presented above can be related to
a line of work referred to as adaptive (ordistilled) sensing [61], in which a portion of the computational
budget is used to crudely design the measurement operator while the rest is used to actually measure
the signal. Most often these methods are extended to multi-stage approaches, where the measurement
operator is re�ned at each iteration, and have been used in machine learning [38] or signal processing [7].
Allocating the resources and choosing betweenexploration (designing the measurement operator) and
precision (actually measuring the signal) is a classic trade-o� in areas such as reinforcement learning or
game theory.
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4 Kernel design and sketching

It turns out that sketching operators as (12) are intimately related to RKHS embedding of probability
distributions [94, 98] and RFFs [82]. The proposed, carefully-designed choice of frequency distribution
appears as an innovative method to design a reproducing kernel, which is faster and provides better
results than traditional choices in the kernel literature [99], as experimentally shown in Section 5.4.
Additionally, approximate RKHS embedding of distributions turns out to be an appropriate framework
to derive the information preservation guarantees of Section 7.

4.1 Reproducing Kernel Hilbert Spaces (RKHS)

We refer the reader to Appendix A for de�nitions related to positive de�nite (p.d.) kernels and measures.
Let � : X � X ! C be a p.d. kernel. By Moore-Aronszajn Theorem [4], to this kernel is associated a

unique Hilbert spaceH � CX that satis�es the following properties: for any x 2 X the function � (x ; :)
belongs to H , and the kernel satis�es the reproducing property 8f 2 H ; 8x 2 X; h� (x ; :); f i H = f (x).
The spaceH is referred to as the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel
� . We denote h:; :i H the scalar product of the RKHS H. We refer the reader to [62] and references
therein for a review of RKHS and kernel methods.

We focus here on the spaceX = Rd and on translation-invariant kernels of the form

� (x; y ) = K (x � y ); (19)

where K : Rd ! C is a positive de�nite function. Translation-invariant positive de�nite kernels are
characterized by the Bochner theorem:

Theorem 1 (Bochner [88], Thm. 1.4.3). A continuous function K : Rd ! C is positive de�nite if and
only if it is the Fourier transform of a �nite (i.e., �( Rd) =

R
Rd d�( ! ) < 1 ) nonnegative measure� on

Rd, that is:

K (x) =
Z

Rn
e� i! T x d�( ! ): (20)

This expression implies the normalization j� (x ; y )j � j � (x ; x)j = �( Rd). Hence, without loss of
generality, up to a scaling factor, we suppose�( Rd) = 1 . This means in particular that � is a probability
distribution on Rd.

4.2 Hilbert Space Embedding of probability distributions

Embeddings of probability distributions [94, 98] are obtained by de�ning the Mean Map ' : P ! H :

' (P) = Ex � P (� (x ; :)) : (21)

Using the Mean Map we can de�ne the following p.d. kernelK(P; Q) = h' (P); ' (Q)i H over the set
of probability distributions P. Note that this expression is also equivalent to the following de�nition
[98, 74]: K(P; Q) = Ex � P;y � Q (� (x ; y )) .

We denote  � (P; Q) = k' (P) � ' (Q)kH the pseudometric induced by the Mean Map on the set
of probability distributions, often referred to as Maximum Mean Discrepancy (MMD) [99]. Fukumizu
et al. introduced in [54] the concept of characteristic kernel, that is, a kernel � for which the map '
is injective and the pseudometric  � is a true metric. Translation-invariant characteristic kernels are
characterized by the following Theorem [98].

Theorem 2 (Sriperumbudur et al. [98]). Assume that � (x ; y ) = K (x � y ) whereK is a positive de�nite
function on Rd. Then � is characteristic if and only if supp(�) = Rd, where � is de�ned as (20).

Many classical translation-invariant kernels (Gaussian, Laplacian....) indeed exhibit a Fourier trans-
form with a support that is equal to Rd, and are therefore characteristic. This is also the case for all
kernels corresponding to the proposed frequency distributions� ( :)

� that we de�ned in Section 3.3.
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4.3 From Kernel design to the design of a frequency sampling pattern

In the case of a translation-invariant kernel, the metric  � can be expressed as 2
� (P; Q) =  2

� (P; Q)
where by abuse of notation, for a given frequency distribution� , we introduce

 2
� (P; Q) :=

Z

Rd
j P (! ) �  Q (! )j2 d�( ! ); (22)

where we recall that  P (! ) is the characteristic function of P. The proof of Theorem 2 is actually based
on this reformulation [98].

Hence, givenm frequencies(! 1; :::; ! m ) i:i:d:� � and the corresponding sketching operatorA (12), we
can expect that for large enoughm, with high probability,

 2
� (P; Q) = E! � � j P (! ) �  Q (! )j2 �

1
m

mX

j =1

j P (! j ) �  Q (! j )j2 = kAP � A Qk2
2 : (23)

Building on this relation between the metric  2
� (�; �) and the sketching operators considered in this

paper, we next derive some connections with kernel design. We further exploit these connections to draw
a theoretical analysis of the information preservation guarantees of the sketching operatorA in Section 7.

Traditional kernel design. Given some learning task, the selection of an appropriate kernel �known
as kernel design� is a di�cult, open problem, usually done by cross-validation. Even when using RFFs to
leverage the computational gain of explicit embeddings (compared to potentially costly implicit kernels),
the considered frequency distribution� is usually derived from a translation-invariant kernel � chosen in
a parametric family endowed with closed-form expressions for both� and � [82, 99]. A typical example
is the Gaussian kernel (chosen for the simplicity of its Fourier transform), which bandwidth is often
selected by cross-validation [97, 99].

Spectral kernel design: designing the frequency sampling pattern. Learning an appropriate
kernel by directly deriving a spectral distribution of frequencies for Random Fourier Features has been
an increasingly popular idea in the last few years. In the �eld of usual reproducing kernels on �nite-
dimensional objects, researchers have explored the possibility of modifying the matrix of frequencies to
obtain a better approximation quality [106] or to accelerate the computation of the kernel [69]. Both
ideas have been exploited for learning an appropriate frequency distribution, often modeled as a mixture
of Gaussians [105, 108, 76] or by optimizing weights over a combination of many distributions [93].

In the context of using the Mean Map with Random Features, learning a kernel has been often
explored for the two-sample test problem, mainly based on the idea of maximizing the discriminative
power of the MMD [97]. Similar to our approach, such methods often divide the database in two parts
to learn the kernel then perform the hypothesis test [58, 65], or are done in a streaming context [78].
Variants of the Random Fourier Features have also been used [36].

Compared to these methods, the approach proposed in Section 3.3 is relatively simple, fast to perform,
and based on an approximate theoretical expression of the MMD for clustered data instead of a thorough
statistical analysis of the problem. In the spirit of our sketching framework, it only requires a tiny portion
of the database and is performed in acompletely unsupervisedmanner, which is quite di�erent from most
existing literature. Furthermore, in this paper we only consider traditional Random Fourier Features for
translation-invariant kernels.

Using more exotic kernels and/or adapting more advanced learning methods to our framework
is left for future work. Still, in Section 5.4, we empirically show that the estimation of �� 2 (Func-
tion EstimMeanSigma) is much faster than estimation by cross-validation, and that the Adapted radius
distribution � (Ar )

�� 2 I performs better than a traditional Gaussian kernel with optimized bandwidth.

5 Experiments with synthetic data

To validate the proposed framework, the algorithms CL-OMP(R) (Algorithm 1) are �rst extensively
tested against synthetic problems for which the true parameters of the GMM are known. Experiments
on real data will be conducted in Section 6, with the additional analysis of Algorithm 2. The full Matlab
code is available at [67].
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5.1 Generating the data

When dealing with synthetic data for various settings, it is particularly di�cult to generate problems
that are �equally di�cult� when varying the dimension d and the level of sparsity K . We opted for a
simple heuristic to draw K Gaussians neither too close nor to far from one another, given their variances.

Since and-dimensional ball with radius r has volume Ddr d (with Dd a constant depending ond),
we consider that any Gaussian which isapproximately isotropic with variance � 2 (i.e., N (0; � ) with
� � � 2I ) �occupies� a volumeV� 2 = � dV1;where V1 is a reference volume for� = 1 .

Variances � 2
k;` are randomly drawn uniformly from 0:25 to 1:75, so that E(�� 2) = 1 . The means� are

chosen so that they lie in a ball su�ciently large to accommodate for a volume K � V�� 2 . We therefore
choose� � N (0; � 2

� I ) with � � that veri�es V� 2
�

= KV �� 2 , which yields � � = K
1
d ��; i.e., � � = K

1
d by

considering the expected value of�� . In practice this choice seems to o�er problems that are neither too
elementary nor too di�cult.

5.2 Evaluation measure

To evaluate reconstruction performance when the true distributionp of the data is known, one can resort
to the classic Kullback-Leibler divergenceD(PjjQ) [42]. A symmetric version of the KL-divergence is
more comfortable to work with: d(P; �P) = D(Pjj �P) + D( �P jjP), where P is the true distribution and
�P is the estimated one (we still refer to this measure as �KL-divergence�). In our framework,P and �P
are GMMs with density functions denoted p and �p, hence as in [19] to estimate the KL-divergence in

practice we draw (y1; :::; yn 0) i:i:d:� P with n0 = 5 � 105 and compute

d(P; �P) �
1
n0

n 0
X

i =1

�
ln

�
p(y i )
�p(y i )

�
+

�p(y i )
p(y i )

ln
�

�p(y i )
p(y i )

��
: (24)

5.3 Basic Setup

The basic setup is the same for all following experiments, given data(x1; :::; xn ) 2 Rd and parameters
m; K . We suppose the data to be approximately centered (see Section 5.1).

First, unless speci�ed otherwise (e.g., in Section 5.4 ), we draw frequencies according to an Adapted
radius distribution � (Ar )

�� 2 I , using Algorithm 3 with parameters m0 = 500, n0 = min( n; 5000), c = 30,
T = 5 . The empirical sketch ẑ is then computed.

The compressive algorithms are performed with their respective number of iterations. For Step 1 of
CL-OMP(R), the gradient descent is initialized with a centered isotropic Gaussian with random variance6

� 2 � U
�
[0:5�� 2; 1:5�� 2]

�
. Furthermore, during all optimization steps in CL-OMP(R) or Algorithm 2, we

constrain all variances to be larger than a small10� 15 for numerical stability. All continuous optimization
schemes in CL-OMP(R) are performed with Stephen Becker's adaptation of the L-BFGS-B algorithm
[23] in C, with Matlab wrappers [8].

We compare our results with an adaptation of the previous IHT algorithm [19, 20] for isotropic
Gaussians with �xed variances, in which all optimization steps have been straightforwardly adapted for
our non-isotropic framework with relaxed variances. The IHT is performed with 10 iterations, which is
the default value in the original paper.

We use the VLFeat toolbox [102] to perform the EM algorithm with diagonal variances. The algorithm
is repeated 10 times with random initializations and the result yielding the best log-likelihood is kept.
Each run is limited to 100 iterations.

All following reconstruction results are computed by taking the geometric mean over 50 experiments
(i.e. the regular mean in logarithmic scale).

5.4 Results: role of the choice of frequency distribution

In this section we compare di�erent choices of frequency distributions. We drawN = 300000 items in
two settings, respectively low and high dimensional:d = 2 ; K = 3 and d = 20; K = 5 . In each setting
we construct the sketch with m = 10K (2d+1) frequencies (see Section 5.5). Reconstruction is performed
with CL-OMPR.

6After trying many variants of initialization strategy, we came to the conclusion that the algorithm is very robust to
initialization. This is one of the possible choices.
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(G) (FGr) (Ar)

d = 2 ; K = 3
� ( :)

� 0 ;� 0
� 9:30 � 8:90 � 9:38

� ( :)
�� 2 I � 8:93 � 8:67 � 9:20

d = 20; K = 5
� ( :)

� 0 ;� 0
3:15 � 6:17 � 6:48

� ( :)
�� 2 I 3:41 � 5:80 � 6:32

Table 2: Log-KL-divergence on synthetic data using the CL-OMPR algorithm, for m = 10(2d + 1) K
frequencies andN = 300 000 items. We compare the three proposed frequency distributions: Gaussian
[19] (G), Folded Gaussian radius (FGr) or Adapted radius (Ar), using either the oracle distribution
de�ned in Section 3.3.2 or the approximate distribution used in practice, learned with EstimMeanSigma.

Reconstruction result Est. time

d = 2 ; K = 3
Adapted radius (proposed) � 9:38 ( �� 2) 1:02s

Gaussian kernel [82, 99] � 9:14 (� 2
best ) 23:10s

d = 20; K = 5
Adapted radius (proposed) � 6:32 ( �� 2) 0:98s

Gaussian kernel [82, 99] � 5:18 (� 2
best ) 74:10s

Table 3: Log-KL-divergence results on synthetic data using the CL-OMPR algorithm, for m = 10(2d +
1)K frequencies andn = 300 000 items, comparing the proposed Adapted radius distribution � (Ar )

�� 2 I and

a frequency distribution � (Gk )
� 2

best
corresponding to a Gaussian kernel (Gk) [82, 99], with a bandwidth� 2

best

selected among15 values exponentially spread from10� 1 to 102 yielding the best result in each case.
Estimation times for parameters �� 2 and � 2

best are also given.

In Table 2, we compare the three frequency distributions introduced in Section 3, both with the oracle
frequency distribution � ( :)

� 0 ;� 0
(i.e. using Function DrawFreqwith the true parameters of the GMM) � we

remind the reader that this setting unrealistically assumes that the variances and weights of the GMM
are known beforehand �, and with the approximate one� ( :)

�� 2 I (Algorithm 3). The results show that the
Gaussian frequency distribution indeed yields poor reconstruction results in high dimension (d = 20),
while the Adapted radius frequency distribution outperforms the two others. The use of the approximate
� ( :)

�� 2 I instead of the oracle� ( :)
� 0 ;� 0

is shown to have little e�ect.
In Table 3 we compare the proposed Adapted radius frequency distribution with a frequency distri-

bution � = N (0; I � � 2
best ) corresponding to a Gaussian kernel� (x ; y ) = exp

�
� kx � y k2

2
2� 2

best

�
[82, 99], where

the bandwidth � 2
best is selected among15 values exponentially spread from10� 1 to 102 to yield the best

reconstruction results in each setting. It is seen that the Adapted radius distribution � (Ar )
�� 2 outperforms

the Gaussian kernel in each case, and the estimation of the parameter�� 2 is signi�cantly faster than the
tedious learning of the bandwidth � 2

best .
We conduct an experiment to determine how robust is the isotropic distribution of frequencies� (Ar )

�� 2 I
when treating strongly non-isotropic data. We �rst generate a GMM in dimension d = 10 with K = 10
components, with the process described in Section 5.3 but with identity covariances. Then the �rst
�ve dimensions of the parameters are divided by a factorA > 0, meaning that: for ` = 1 ; :::; 5 and
k = 1 ; :::; K , we do � k;`  � k;` =A and � 2

k;`  � 2
k;` =A2. It simulates data which do not have the same

range in each dimension (Fig. 3, top). In Fig. 3 (bottom), for increasing values ofA we compare CL-
OMPR with the learned frequency distribution � (Ar )

�� 2 I , CL-OMPR using the ideal frequency distribution

� (Ar )
� 0 ;� 0

, and EM. It is indeed seen that, in terms of KL-divergence (left), the results produced by CL-
OMPR with the learned frequency distribution deteriorates as the non-isotropy of the GMM increases.
On the contrary, CL-OMPR with the oracle frequency distribution and EM do not seem to be a�ected.
Hence in the �rst case the problem lies with the learned frequency distribution and not the CL-OMPR
algorithm itself. To further con�rm this fact, we examine the MMD  � with the corresponding frequency
distribution � in each case. It is seen that CL-OMPR with the learned frequency distribution performs
as well as the oracle one, meaning that the MMD de�ned with an isotropic choice of frequencies � ( Ar )

�� 2 I

is indeed not adapted for strongly non-isotropic problems, and that despite the ability of CL-OMPR
to approximately minimize the cost function (9) (which approximates the MMD, see (23)), it does not
produce good results.

In that particular case, the problem could be potentially resolved by a whitening of the data, e.g. by
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computing the empirical covariance of the fraction of the database used for the frequency distribution
design phase, and multiplying each datapoint by its inverse during the sketching phase. However there
are of course cases where the proposed methods would be further challenged, for instance if components
are �at in a dimension but far apart: the global covariance of the data along that dimension would
be large, even if the variance of each Gaussian components is small (these cases are however rarely
encountered in practice). As mentioned before (see Sec. 4.3), another solution would be to use more
advanced methods for designing the MMD � than the proposed simple one. Overall, we leave treatment
of strongly non-isotropic data for future work.

Nevertheless, from now on, all experiments are performed with an approximate Adapted radius
distribution � (Ar )

�� 2 I .

Figure 3: Top: isotropic GMM in dimension n = 10 with K = 10 components displayed along the �rst two
dimensions (left), the same GMM with one dimension divided byA = 5 (right). Bottom: reconstruction
results for the KL-divergence (left) or MMD (right) with n = 2 :105 items, using m = 2000 frequencies
for CL-OMPR, with respect to the coe�cient A.

5.5 Results: number of measurements

We now evaluate the quality of the reconstruction with respect to the number m of frequencies, for
varying dimension d and number of componentsK in the GMM (Figure 4).

It is seen that the KL-divergence exhibits a sharp phase-transition with respect tom, whose occur-
rence seems to be proportional to the �dimension� of the problem,i.e. the number of free parameters
(2d + 1) K . This phenomenon is akin to usual compressive sensing. In light of this observation, the
number of frequencies in all following experiments is chosen asm = 5(2d + 1) K , beyond the empirically
obtained phase transition.

5.6 Results: comparison of the algorithms

We compare the compressive algorithms and EM in terms of reconstruction, computation time and
memory usage, with respect to the number of samplesN .

Precision of the reconstruction In Figure 5, KL-divergence reconstruction results are shown for EM
and all compressed algorithms: IHT [19], CL-OMP (Algorithm 1 with T = K ), CL-OMPR (Algorithm 1
with T = 2K ) and Algorithm 2. We consider two settings, one with low K = 5 (left) and one with high
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Figure 4: Log KL-divergence reconstruction results for CL-OMPR with respect to the normalized number
of frequenciesm=((2d + 1) K ) and the dimension d (left) or number of components K (right), using
n = 300 000 items. On the left K = 10, and on the right d = 10.

Figure 5: Reconstruction results on synthetic data in dimensiond = 10, with K = 5 component (left) or
K = 20 (right), and number of frequenciesm = 5(2d + 1) K , with respect to the number of items in the
databasen.

K = 20 (right), in dimension n = 10. The number of measurements is set atm = 5(2d + 1) K in each
case.

With few Gaussians (K = 5 ), all compressive algorithms yield similar results, close to those achieved
by EM. The precision of the reconstruction is seen to improve steadily with the sizen of the database.
With more Gaussians (K = 20), CL-OMPR clearly outperforms the other compressive algorithms, and
even outperforms EM for very largen.

The IHT algorithm [19] adapted to non-isotropic variances often fails to recover a satisfying GMM.
Indeed, IHT �lls the support of the GMM at the very �rst iteration, and is seen to converge toward a
local minimum of (9), in which all Gaussians in the GMM are equal to the same large Gaussian that
encompasses all data. Note that this situation could not happen in [19], where all Gaussians have �xed,
known variance.

Computation time and memory In Figure 6, computation time and memory usage of the compres-
sive methods and EM are presented with respect to the database sizen, using anIntel Core i7-4600U 2.1
GHz CPU with 8 GB of RAM. In terms of time complexity (resp. memory usage), the EM algorithm
scales inO(dnKT EM ) for a �xed number of iterations TEM = 100 (resp. O(nd)). The CL-OMP or
CL-OMPR algorithms scale in O(mdK 2) (resp. O(md)), while Algorithm 2 scales in O(mdK logK )
(resp. the sameO(md)).

At large n the EM algorithm indeed becomes substantially slower than all compressive methods (Fig
6, left). We also keep in mind that we compare a MATLAB implementation of the compressive methods
with a state-of-the-art C++ implementation of EM[102]. Similarly, at large n the compressive algorithms
outperform EM by several orders of magnitude in terms of memory usage (Fig 6, right).
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Figure 6: Memory (left) and time (right) usage of all algorithms on synthetic data with dimension n = 10,
number of componentsK = 5 , and number of frequenciesm = 5(2d + 1) K , with respect to the number
of items in the databasen. On the left, �Sketching� refers to the time of computing the sketch with
a naive, direct computation, which must be added to the computation time of the recovery algorithm
(that does not vary with n) to obtain the total computation time of the proposed method. However the
reader must keep in mind that the sketching step can be massively parallelized, is adapted to streams of
data, and so on.

We discussed the computational cost of the sketching operation in Section 2.7, and the possible use
of parallelization and distributed computing. In our settings, even when it is done linearly this operation
is still faster than EM (Figure 6, left).

6 Large-scale proof of concept: speaker veri�cation

Gaussians Mixture Models are popular for their capacity to smoothly approximateany distribution [87]
by a large number of Gaussians. This is often the case with real data, and the problem of�tting a
large GMM to data drawn from some distribution is somewhat di�erent from that of clustering data and
identifying reasonably well separated components, as presented in the previous section. In order to try
out compressive methods on this challenging task, we test them on a speaker veri�cation problem, with
a classical approach requiring GMM referred to as Universal Background Model (GMM-UBM) [86].

6.1 Overview of Speaker Veri�cation

Given a fragment of speech and a candidate speaker, the goal is to assess if the fragment was indeed
spoken by that person.

We quickly describe GMM-UBM in this section. For more details we refer the reader to the origi-
nal paper [86]. Similar to many speech processing tasks, this approach uses Mel Frequency Cepstrum
Coe�cients (MFCC) and their derivatives ( � -MFCC) as features x i . Those features have been often
modeled with GMMs or more advanced Markov models. However, in our framework we donot use
� -MFCC; indeed those coe�cients typically have a negligible range in dynamic compared to the MFCC,
which results in a di�cult and unstable choice of frequencies. As mentioned before, this problem may be
potentially solved by a pre-whitening of the data, which we leave for future work. In this con�guration,
the speaker veri�cation results will indeed not be state-of-the-art, but our goal is mainly to test our
compressive approach on a di�erent type of problem than that of clustering synthetic data, for which we
have already observed excellent results.

In the GMM-UBM model, each speaker S is represented by one GMM(� S ; � S ). The key point is
the introduction of a model (� UBM ; � UBM ) that represents a �generic� speaker, referred to as Universal
Background Model (UBM). Given speech data X and a candidate speakerS, the statistic used for
hypothesis testing is a likelihood ratio between the speaker and the generic model:

T(X ) =
p� S ;� S (X )

p� UBM ;� UBM (X )
: (25)

If T(X ) exceeds a threshold� , the data X are considered as being uttered by the speakerS.
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The GMMs corresponding to each speaker must somehow be �comparable� to each other and to the
UBM. Therefore, the UBM is learned prior to individual speaker models, using a large database of speech
data uterred by many speakers. Then, given training dataXS speci�c to one speaker, one M-step from
the EM algorithm initialized with the UBM is used to adapt the UBM and derive the model(� S ; � S ).
We refer the reader to [86] for more details on this procedure.

In our framework, the EM or compressive estimation algorithms are used to learn the
UBM.

We note that this type of signal processing task may fully bene�t from the advantages of the sketch
structure described in Section 2.7. For instance, in practice one can imagine collecting bit by bit the data
to train the UBM in a real-life environment, in which case the sketch and the UBM may be progressively
updated without having to keep the spoken fragments, possibly of sensitive nature.

6.2 Setup

The experiments were performed on the classical NIST05 speaker veri�cation database. Both train-
ing and testing fragments are 5-minutes conversations between two speakers. The database contains
approximately 650 speakers, and 30 000 trials.

The MFCCs are computed using the Voicebox toolbox [21]. After �ltering the audio data by a speech
activity detector, the MFCCs are computed on 23ms frames with a50% overlap. The �rst coe�cient is
removed and we obtain 12-dimensional features (d = 12).

Results are presented by choosing the threshold� that yields the same rates of false alarm and missed
detection, referred to as Equal Error Rate (EER). Each result is obtained as the mean of �ve experiments.

In all experiments, except when indicated otherwise, the compressive methods are performed using
a sketch obtained by compressing the entire database ofn = 2 :108 MFCC vectors after voice activity
detection. The compression is performed taking advantage of distributed computing, by dividing the
database into200parts that are then compressed simultaneously on a computer cluster. Hence, even for
a high number of frequenciesm = 105 the compression of then = 2 :108 items takes less than an hour.

6.3 Results

EER (%) Time (s)
CL-OMPR Algorithm 2 CL-OMPR Algorithm 2

m = 103 40:3 32:5 7:102 5:10
m = 104 29:4 29:0 7:103 5:102

m = 105 28:8 28:6 7:104 5:103

Table 4: Comparison between CL-OMPR and Algorithm 2 for speaker veri�cation, with K = 64.

Splitting algorithm In the previous section, Algorithm 2 was observed to be less accurate than CL-
OMPR (Figure 5). However, as mentioned before the estimation problem considered here is somehow
not to identify well-separated components, but rather to �t a GMM with a large number of components
to a smooth probability density. In the �rst case, on synthetic data, Algorithm 2 is indeed expected
to sometimes yield poor results: unlike a Matching Pursuit-based approach such as CL-OMPR, at
each iteration it locally divides the current Gaussians rather than �exploring� elsewhere. In the second
case however, Algorithm 2 may yield a correct approximation of the smooth density, by successively
approaching it with GMMs at increasingly �ner scales.

In Table 4, we compare the results obtained with CL-OMPR and Algorithm 2 on the speaker ver-
i�cation task using K = 64 Gaussians in the UBM. Results are indeed similar when the number of
frequenciesm is large, and even surprisingly better with Algorithm 2 for a low number of frequencies
m = 1000. Naturally, Algorithm 2 is much faster than CL-OMPR, with more than a 10 times speedup.

Sketching a large database In Table 5, we compare EER results when using eithern1 = 3 :105 items
uniformly selected in the database to cover all speakers, or alln2 = 2 :108 items in the database. The
compressive Algorithm 2 is performed at both scales, while EM is only performed withn1 items, since
the whole database is too large to be handled by the VLFeat toolbox on a machine with8 GB of RAM.
For the compressive approach, the use of the entire database indeed improves the results when compared
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K = 8 K = 64 K = 512
n1 n2 n1 n2 n1 n2

EM 31:4 n/a 29:5 n/a 27:5 n/a

Alg. 2
m = 103 32:5 31:2 31:1 32:5 31:2 29:4
m = 104 32:1 30:7 30:2 29:0 30:3 29:1
m = 105 32:5 30:7 29:8 28:6 29:4 29:2

Table 5: Comparison EM and Algorithm 2 for speaker veri�cation, in terms of EER. For Algorithm 2,
results that outperform these of EM are outlined.

Figure 7: E�ect of the number of frequenciesm on speaker veri�cation results. Algorithm 2 is performed
on the whole database withn2 = 2 :108 items, while EM can only be performed onn1 = 3 :105 items.

to using only n1 items to compute the sketch. At low K = 8 or K = 64 and high number of frequencies
m, the compressive approach usingn2 items outperforms EM using only n1 items.

Limitations due to coherence. While increasing the number of componentsK seems to consistently
improves the results of EM, it is not the case with the compressive method for a �xed sketch sizem. A
possible intuitive explanation could be that, by increasing the number of components we also increase
the coherence between them �i.e. the Gaussians in the GMM are increasingly overlapping each other
� which makes it more and more di�cult to handle for any sparsity-based approach. In practice, it
results in many components in the GMM having weights� � 0. In other words, the algorithm outputs
a K 0-GMM with K 0 < K : there seems to be a �limit� number of components above which additional
Gaussians are useless. It may be possible to deal with a higher level of sparsity by drastically increasing
the number of frequenciesm, at the cost of higher compression and estimation times.

Number of components K and compression. In Figure 7 we study the e�ect of m for various
number of componentsK = 8 , 64 and 512. In each case we observe a sharp phase transition going from
an EER of 50%, which corresponds to random guessing, to the results observed in Table 5. Somehow
surprisingly, this phase transition does not seem to depend onK , unlike the one observed on synthetic
data (Figure 4). As mentioned before it could be interesting to drastically increasem to see if the gap
between results obtained EM and those obtained with Algorithm 2 can be bridged in theK = 512 case,
however the phase transition pattern does not support this idea but rather a limitation of the method
itself, maybe in the algorithmic approach.

Overall, results on synthetic and real data show that the�tting problem is, as expected, more challeng-
ing than the clustering problem for the proposed sparsity-based approach. Indeed, while the clustering
problem (synthetic data) is that of identifying well-separated components of a sparse distribution, the
�tting problem is similar to a sparse approximation task, which is known to be challenging when the
�signal� ( i.e. the true distribution of the data) is not sparse. Nevertheless, let us point out that in Fig-
ure 7, results approaching those of EM are obtained form = 3000 frequencies only, which corresponds
to a whopping 33000-fold compression of the database.
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7 Information preservation guarantees ?

In this section we derive a number of information preservation guarantees of the proposed sketching
operator. Let us come back to the �generic� compressive learning inverse problem introduced in Section
1:

argmin
P 2 �

kẑ � A Pk2 ; (26)

where � is some �low-dimensional� model. Compressive estimation algorithms such as CL-OMP(R)
(Algorithm 1) or the more scalable Algorithm 2 (speci�cally designed for GMM) seek an approximate
solution to this problem in the case � = GK , with GK the set of K -sparse distributions in G.

Precise recovery guarantees for CL-OMP(R) or Algorithm 2 are beyond the scope of this paper due to
the random nature of several steps in these algorithms and the many non-convex optimization schemes
that they contain. Instead, we rather demonstrated empirically in Sections 5 and 6 that these algorithms
perform well on a large range of GMM estimation problems, with synthetic and real data.

In parallel, a fundamental question consists in asking if the problem is well-posed,i.e. if a potential
solution of (26) is somehow guaranteed to be a �good� estimate of the distribution of the data. Namely,
we ask the following questions:

� For a distribution P� 2 � , does the sketchz = AP� contain �enough� information to retrieve the
distribution P� ?

� Is this retrieval robust to using the empirical sketch ẑ instead of the true sketchz?

� Is this retrieval robust if z = AP where the encoded distributionP is not exactly in the model � but
only well-approximatedby a distribution in the model ( i.e. the distanced(P; �) = inf P � 2 � d(P; P� )
is small for some metricd) ?

The answers to these questions are linked to the existence of a so-calledinstance-optimal decoder
[37, 17], i.e. a (not necessarily tractable) reconstruction paradigm that is robust to noise and modeling
error. In this paper, we show that with high probabilitythe decoder induced by solving (26) is instance
optimal with respect to the Maximum Mean Discrepancy (MMD) metric [99] (Eq. (22)), provided the
model and frequency distribution satisfy some assumptions. We then prove this result for GMMs with
bounded parameters, starting with the toy example of single Gaussians (K = 1 ).

The proof of our main Theorem (Theorem 3), given in Appendix B, introduces variants of usual
tools in compressive sensing. The idea is to use the fact that a Lower Restricted Isometry Property
(LRIP) induces the existence of a robust instance optimal decoder, as shown by Bourrieret al. [17]. To
prove the LRIP for the measurement operatorA , we use the fact that the empirical meankAP � A Qk2

2
concentrates around its expectation 2

� (P; Q), and use � -coverings to extend this concentration result
uniformly over the whole model � this method is similar to the �simple proof� of the RIP developed by
Baraniuk et al. [5].

As we will see, the results are still in a preliminary state and suboptimal in some cases. However,
the use of compressive sensing tools in the context of kernel mean embedding and Random Features is
an original and promising lead for future work, as is the introduction of guarantees such as robustness to
modeling error for a Generalized Method of Moments problem. They can be seen as our main theoretical
contribution.

7.1 Existence of instance optimal decoders for sketched distributions

In this section we formulate a general result that guarantees robust decoding of any model� (not
necessarily restricted to mixture models) under some hypotheses.The reader should refer to Appendix A
for de�nitions related to � -coverings.

Assumption A 1 (�) (Compactness of the model). The model � is compact with respect to the total
variation norm k:kT V . In particular, it implies that it has �nite covering numbers N � ;k:kT V (� ) < 1 .

In the context of mixture models, the following Lemma shows that compactness of any basic set of
distributions G extends to its set of K -sparse distributions GK , and that their covering numbers are
related. Its proof is given in Appendix C.1.
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Lemma 1. Suppose the set of basic distributionsG is compact with respect to some normk:k, denote
C = max P 2G kPk. Then for all K the set ofK -sparse distributions GK is also compact and satis�es, for
all � > 0 and 0 < � < 1,

NGK ;k:k (� ) �
�

8C � NG;k:k (� � )
(1 � � )�

� K

: (27)

Note that, in the case wherek:k = k:kT V as in Assumption A 1 (�) , we haveC = 1 .
The second assumption involves the model� , the frequency distribution � , a small nonnegative

constant � � 0 and a constant A > 0.

Assumption A 2 (�; � ; � ; A) (Domination of the total variation norm) . For all P1; P2 2 � , we have
h
 � (P1; P2) � �

i
)

h
kP1 � P2kT V � A � (P1; P2)

i
; (28)

where  � is the MMD (22).

Note that, since kP1 � P2kT V � 2 for all measures, if � > 0 Assumption A 2 (�; � ; � ; A) is always
veri�ed with A = 2 =� .

�Ideal� decoder. Given any sketch z 2 Cm and measurement operatorA , for all P1; P2 2 P we have
�
�
�kz � A P1k2 � k z � A P2k2

�
�
� � kA (P1 � P2)k2 � k P1 � P2kT V ; (29)

by Lemma A.2 in Appendix A.2. Hence the function P 2 � 7! k z � A Pk2 is continuous with respect to
the total variation norm. If Assumption A 1 (�) is satis�ed and the model � is compact, this function
reaches its minimum on it, which implies that the problem (26) has at least one solution.

In light of this observation, under Assumption A 1 (�) , we analyze below the information-theoretic
estimation guarantees of the idealized decoder� that minimizes (26), i.e. return a distribution verifying:

�( z; A ) 2 argmin
P 2 �

kz � A Pk2: (30)

We now turn to the main result of this section.

Theorem 3. Consider a model� , a frequency distribution � , a small positive constant1 � � > 0 and
a constant A � 1 such that AssumptionsA 1 (�) and A 2 (�; � ; � ; A) hold.

Let x i 2 Rd, i = 1 :::n be n points drawn i:i:d: from an arbitrary distribution P � 2 P , and ! j 2 Rd,
j = 1 :::m be m frequencies drawni:i:d: from � . Denote �P = �( ẑ; A ) the distribution reconstructed from
the empirical sketchẑ.

Let � > 0. Suppose that
m � 12A2 log

�
2
� � N � ;k:kT V

�
� 2
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��
: (31)

Then, with probability at least 1 � � on the drawing of the itemsx i and sampling frequencies! j , we
have

 �
�
P � ; �P

�
� 5 dT V (P � ; �) +

4(1+
p

2 log(2 =� ))
p

n + �; (32)

where  � is the MMD (22) and dT V (P � ; �) = inf P 2 � kP � � PkT V is the distance fromP � to the model.

Hence the MMD between the distribution in the model recovered from the empirical sketch and the
original distribution P � is controlled by the distance (measured by the total variation norm) betweenP �

and the model, and a small additive error. This proves that the decoding is robust both to the use of the
empirical sketch instead of the true sketch, and to the fact thatP � may not be exactly in the model. The
choice of the kernel for the MMD is crucial to obtain meaningful guarantees. It somehow justi�es the
general strategy of choosing a kernel that maximizes the discriminative power of the MMD [97], which as
mentioned earlier is the idea behind the proposed Adapted Radius heuristic. Further work will examine
relationship between the MMD and other classic metrics such as likelihood or KL-divergence [85].
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Limitations and future work. Theorem 3 does not hold for an additive error� = 0 , which would
be more akin to usual compressive sensing. In Appendix B.2, we give a version of the Theorem under a
di�erent set of Hypotheses H i that include the � = 0 case. However, exhibiting a model� and frequency
distribution � that satisfy those hypotheses in the� = 0 case is yet to be done.

The control of the MMD  �
�
P � ; �P

�
with the distance dT V (P � ; �) is not optimal � ideally we would

like to have the same metric on both sides of the inequality. In Appendix B, we formulate all results for
a general metricd under some assumptions, then specialize in the cased = k:kT V allowing for possible
future generalizations.

We now apply Theorem 3 to GMMs, starting with the case K = 1 as a toy example.

7.2 Applications to single Gaussians (toy example)

We consider the caseK = 1 where the model � is formed by single Gaussians as a toy example7,
i.e. � = G. We show that when the set T of parameters of the Gaussians is compact, Assumption
A 1 (�) is veri�ed with an explicit bound on the covering numbers of the model. Additionally, when the
frequency distribution is Gaussian, AssumptionA 2 (�; � ; � ; A) is veri�ed with a bound A that does not
depend on the additive error � . Using the Gaussian kernel has the advantage of yielding closed-form
expressions for the mean kernel, which at this point does not seem to be feasible with the proposed
Adapted Radius distribution.

Recall the parametrization � = [ � ; � ] with � 2 Rd and � 2 (R+ n f 0g)d of the set G = f P� g� 2T of
Gaussians with diagonal covariance. We suppose here that the set of parametersT � R2d is compact,
i.e. closed and bounded. In particular, the variances of the considered Gaussians are bounded, and we
denote � 2

min := min [� ;� ]2T min` � 2
` > 0 (resp. � 2

max := max [� ;� ]2T max` � 2
` < 1 ) their minimum (resp.

maximum) value. We also de�ne M := max [� ;� ] k� k2, and �nally we denote radius (T ) := min f r >
0;9x 2 R2d; T � B (x; r )g the Chebyshev radius[1] of T , i.e. the minimal radius r such that T is
contained in a ball of radius r for the Euclidean norm.

Note that our framework is signi�cantly di�erent from many other works [94, 57, 66] which provide
guarantees when thesupport of the distributions is compact, while here the Gaussian densities have
in�nite support but their parameters belong to a compact set, which is a far more realistic setting.

Theorem 4. Suppose the set of parametersT � R2d is compact. Then the set of GaussiansG = f P� g� 2T
is compact. Furthermore, for all � > 0, we have

NG;k:kT V (� ) �
�

B
�

� 2d

; (33)

where B := 8 max
�
� � 1

min ; � � 2
min =

p
2
�

radius(T ).

Thus Assumption A 1 (�) is veri�ed for the model � = G. Assumption A 2 (�; � ; � ; A) is also veri�ed,
and for a Gaussian frequency distribution we have the following:

Theorem 5. Suppose the set of parametersT � R2d is compact, and the frequency distribution is an
isotropic Gaussian � = N

�
0; a

d I
�

for some a > 0.
Then, for all P; Q 2 G, we have

kP � QkT V � D � (P; Q) ; (34)

where

D = max( � � 1
min ; � � 2

min =
p

2)

s
2dD1 � e3a� 2

max

a(1 � e� D 1 )
with D1 = � 2

max a
�

1 +
2M 2

d

�
: (35)

The proof is given in Appendix C.2.
As a consequence, AssumptionA 2 (�; � ; � ; A) is veri�ed for � = G, � = N (0; � 2

� I ), any � � 0 and
A = min( D; 2=� ). Theorems 4 and 5 lead to the following immediate corollary of Theorem 3.

Corollary 1. In the case � = G of single Gaussians with a compact set of parameters, for a Gaussian
frequency distribution � = N

�
1; a

d I
�

and any constant 0 < � � 1, Theorem 3 is veri�ed with (31)
replaced by

m � 12A2
�

4d log
�

C
�

�
+ log

2
�

�
; (36)

where A = min( D; 2=� ), C =
p

24B , B is de�ned as in Theorem 4 andD is de�ned as in Theorem 5.
7Obviously, �tting a single Gaussian to a dataset can easily be done by direct empirical estimators.
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Hence, for a �xed model � = G, the additive error � decreases exponentially with the number of
measurementsm. It is also interesting to note that conversely, for a small additive error � � 2=D =
O(1=

p
d), assuming that all parameters of the model appearing in the expression ofD are constant, we

have A = O(
p

d) and thus the number of measurementsm must grow as O(d2) with the dimension.
It is sub-optimal in the sense that the ideal estimators of the mean and diagonal covariance of a single
Gaussian, i.e. the empirical mean and covariance, have sizeO(d). This number of measurements may
scale with the size of the empirical estimators for Gaussian withfull covariance, although the results
presented in this paper do not directly apply to this case.

7.3 Application to GMMs

Theorem 4 and Lemma 1 allow for an immediate extension of AssumptionA 1 (�) from the set of basic
distributions to the corresponding mixture models. In the case of GMMs, we have the following corollary,
whose proof is given in Appendix C.2.

Corollary 2. Suppose the set of parametersT � R2d is compact. Then, for all K > 1 the set of GMMs
GK is compact. Furthermore, for all � > 0, we have

NGK ;k:kT V (� ) �
�

2(B + 1)
�

� (2d+1) K

; (37)

where B is de�ned as in Theorem 4.

Unfortunately, unlike the compactness property, Assumption A 2 (�; � ; � ; A) cannot be immediately
extended from the set of basic distributionsG to the mixture model GK , and it is not clear whether doing
so would require some additional hypotheses or not. Though we strongly believe that a result similar to
the K = 1 case holds (see the discussion at the end of this section), here we use the fact that Assumption
A 2 (�; � ; � ; A) is veri�ed with A = 2 =� regardless of the model and frequency distribution.

This leads to the following corollary.

Corollary 3. In the case � = GK of GMMs with a compact set of parameters, for any frequency
distribution and constant 0 < � � 1, Theorem 3 is veri�ed with (31) replaced by

m � 48� � 2
�

2K (2d + 1) log
�

C
�

�
+ log

2
�

�
; (38)

where C =
p

48(B + 1) , with B de�ned as in Theorem 4.

Conjecture. Corollary 3 suggests that the reconstruction error� for GMMs decreases asO
�

n� 1
2 + m� 1

2

�

(up to some inverse exponential factor), which seems to nullify the advantages of the �compressive� ap-
proach. This is due to the use of the �worst� boundA = 2 =� in Assumption A 2 (�; � ; � ; A) . However,
we strongly believe that Assumption A 2 (�; � ; � ; A) may hold with a better bound that does not depend
on � , similar to the K = 1 case.

We support this claim by empirically evaluating reconstruction results of the CL-OMPR algorithm
with respect to the MMD in Figure 8. We observe a phase transition pattern similar to the one already
noted in Section 5.5 for the KL-divergence, which is inconsistent with an additive error that scales in
O

�
m� 1=2

�
. On the contrary, the O

�
n� 1=2

�
decrease is indeed observed, which supports the theory but

also the capacity of CL-OMPR to approximate the ideal decoder (30).
The proof of Assumption A 2 (�; � ; � ; A) for general GMMs seems complex and beyond the scope of

this paper. A possible strategy would be to be able to directly extend AssumptionA 2 (�; � ; � ; A) on
the basic set of distributions G to the corresponding mixture model GK , while another approach would
be to use a di�erent metric other than the total variation norm. The latter is particularly discussed in
Appendix B.

8 Conclusion and outlooks

We presented a method for probability mixture estimation on a large database exploiting asketchof the
data instead of the data itself. The sketch is an appropriate structure that leads to considerable gain in
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Figure 8: Reconstruction results of CL-OMPR for the  � metric with respect to m (left) and n (right),
in dimension d = 10 and K = 5 components, using the true theoretical sketchAP� 0 ;� 0 on the left and
m = 5K (2d + 1) frequencies on the right. In a similar fashion to the KL-divergence (Section 5.2), the
MMD  � is approximated by drawing 5�105 frequencies from� and by empirically evaluating (22), using
the closed-form expression of the characteristic function of GMMs.

terms of memory. It can be computed in a distributed or streaming manner, and it can fully exploit the
advantages of GPU computing.

A typical greedy method for sparse reconstruction was de�ned, leading to reconstruction algorithms
both e�cient and stable, even when the dictionary of atoms is in�nite and uncountable. In the case of
GMM, an additional e�cient algorithm based on hierarchical splitting of GMMs was described.

A heuristic to select generalized moments based on a decomposition robust to high dimension and
maximal variations of the characteristic function was designed. A procedure to estimate the parameter
of this heuristic was described, resulting in a method that is faster than traditional kernel design by
cross-validation, has the advantage of being unsupervised and thus is probably suited for other tasks,
and yields better reconstruction results.

Excellent results were observed on synthetic data, where the greedy algorithms approach the recon-
struction results of EM, using less memory and computation time when the number of database elements
is large. The method was successfully applied to a large-scale speaker veri�cation task. The hierarchical
approach proved to be the most e�cient method for this challenge, illustrating the diversity of the prob-
lem and of the proposed solutions. As in usual compressive sensing, limitations of the method when the
number of sparse components in the distribution is large were observed.

Finally, information preservation guarantees were developed for the recovery of any compact set of
distributions. The proof of Theorem 3 (Appendix B) introduced a weaker variant of the Restricted
Isometry Property (RIP) for non-uniform recovery. We then applied this result to GMMs with bounded
parameters, and observed a technical bottleneck between the toyK = 1 case and general GMMs.

Outlooks. As mentioned earlier, the method can readily be applied to other mixture models, such as
mixtures of � -stable distributions which do not have explicit likelihood but whose characteristic function
is known [91]. Based on the principle of maximizing the variation of the characteristic function, suitable
heuristics for the choice of the sampling pattern may be derived for other models.

The method can also easily incorporate variants of Random Fourier Features that are faster to
compute or more precise [69, 106]. Existing methods to learn the kernel [58, 108, 93, 78] may be adapted
to our framework, and in return the proposed unsupervised kernel learning procedure and Adapted radius
heuristic may be useful for other tasks.

As mentioned earlier, technical di�culties on the domination between certain metrics were observed
between the toy K = 1 case and general GMMs, pointing to a promising lead for future work. The proof
of Theorem 3 also uses innovative variants of several classical tools in compressive sensing, which may
be useful in the study of other instances of generalized compressive sensing.
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A De�nitions, preliminary results

In this section, we group some de�nitions and useful results.

A.1 Positive de�nite kernels

We recall the de�nition of p.d. kernels.

De�nition A.1 (Positive de�nite kernel) . Let X be an arbitrary set. A symmetric function (or kernel )
� : X � X ! C is called positive de�nite (p.d.) if, for all n 2 N, c1; :::; cn 2 C and all x1; :::; xn 2 X ,
we have

nX

i;j =1

ci �cj � (x i ; x j ) � 0:

Note that strict positivity is not mandatory in the above equation. In terms of vocabulary, p.d. kernels
bear connections with, e.g., positive semi-de�nite matrices (however they are indeed called positive
de�nite kernels in the literature).

De�nition A.2 (Positive de�nite function) . A function K : Rd ! C is called positive de�nite if the
kernel de�ned by � (x ; y ) = K (x � y ) is positive de�nite.

A.2 Measures

De�nition A.3 (Nonnegative measure). A measure � 2 E over a measurable space(X; B) is said
nonnegative if:

8B 2 B; � (B ) � 0:

De�nition A.4 (Support of a measure). The support of a signed measure� 2 E over a measurable,
topological spaceX is de�ned to be the closed set,

supp(� ) := X n
[

f U � X : U is open; � (U) = 0 g:

De�nition A.5 (Total variation norm, Finite measure) . Let � 2 E be a signed measure over a measurable
space(X; B). De�ne the Jordan decomposition (� � ; � + ) of � where � + and � � are positive measures
(see [51] and [89] Chap. 6 for more details). Denotej� j = � + + � � . The total variation norm of �
is de�ned as:

k� kT V = j� j(X ) =
Z

X
dj� j(x):

The measure� is said �nite if k� kT V < 1 .
Note that if � is totally continuous with respect to the Lebesgue measure, i.e. if there exists an inte-

grable function f such that d� (x) = f (x)dx, then the total variation norm is the classic L 1-norm of this
function: k� kT V = kf kL 1 .
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We have the following bounds.

Lemma A.2. For any sketching operatorA obtained by sampling the characteristic function, and any
�nite signed measure � 2 E , we have

kA � k2 � k � kT V : (A.39)

For any frequency sampling distribution� and any pair of probability distributions P; Q 2 P , we have

 � (P; Q) � k P � QkT V : (A.40)

Proof. For any � 2 E , we have

kA � k2
2 =

1
m

mX

j =1

�
�
�
�

Z

Rd
e� i! T

j x d� (x)

�
�
�
�

2

�
1
m

mX

j =1

� Z

Rd
dj� j(x)

� 2

= k� k2
T V :

For all P; Q 2 P a simple reformulation of  � (P; Q), see [98], is:

 � (P; Q)2 =
ZZ

� (x; y )d(P � Q)(x)d(P � Q)(y );

where the kernel� is de�ned by (19) and (20). Sincej� j � 1, we immediately obtain the result.

A.3 Covering numbers

De�nition A.6 (Ball, � -covering, Covering number). Let (X; d ) be a metric space. For any� > 0 and
x 2 X , we denoteBX (x; � ) the ball of radius � centered at the pointx:

BX (x; � ) = f y 2 X; d (x; y) � � g :

Let Y � X be a subset ofX . A subsetZ � Y is an � -covering of Y if Y �
S

z2 Z BX (z; � ).
The covering number NY;d (� ) 2 N [ f + 1g is the smallest number of pointsyi 2 Y such that the

set f yi g is an � -covering of Y .

Remark A.1. A subsetY of a topological space(X; d ) that has �nite covering numbers for any � > 0
is called totally bounded and is not necessarily compact: a set is in fact compact if and only if it is
totally boundedand complete. Hence, though in the rest of the paper we often focus on explicitly bounding
the covering numbers of certain sets, if compactness of these sets is required it will have to be proved
independently.

Our de�nition of covering numbers is that of internal covering numbers, meaning that the centers
of the covering balls are required to be included in the set being covered. Somewhat counter-intuitively
these covering numbers (for a �xed radius� ) are not necessarily increasing with the inclusion of sets8.
We have instead the following property:

Lemma A.3. Let A � B � X be subsets of a metric space(X; d ), and � > 0. Then,

NA;d (� ) � NB;d (�=2): (A.41)

Proof. Let b1; :::; bN be a�=2-covering ofB . We construct a � -covering ai of A in the following way. Each
bi is either: a) in the set A, in which case we takeai = bi , b) at distance less than�=2 of a point a 2 A,
in which case we takeai = a and note that the ball centered on ai covers at least as much as the ball
centered in bi , i.e. BX (bi ; �=2) � BX (ai ; � ), c) in none of these cases and we discard it. There are less
ai 's than bi 's, and the union of balls of radius � with centers ai covers at least as much as the balls of
radius �=2 with centers bi , and therefore the set ofai 's is a � -covering of B and of A.

Another useful property is related to the embedding of sets by a Lipschitz function.

8For instance, consider a set A formed by two points, included in set B which is a ball of radius � . Suppose those two
points diametrically opposed in B . We have A � B , but two balls of radius � are required to cover A (since their centers
have to be in A), while only one such ball is su�cient to cover B .
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Lemma A.4. Let (X; d ) and (X 0; d0) be two metric spaces, andY � X , Y 0 � X 0. If there exists a
surjective function f : Y ! Y 0 which is L -Lipschitz with L > 0, i.e. such that

8x; y 2 Y; d0(f (x); f (y)) � Ld(x; y);

then for all � > 0 we have
NY 0;d0(� ) � NY;d (�=L ): (A.42)

Proof. De�ne � 2 = �=L , denote N = NY;d (� 2), and let yi 2 Y , i = 1 ; :::; N be an � 2-covering of Y . Let
any y0 2 Y 0. There exists y 2 Y such that f (y) = y0 sincef is surjective. Let yi be a center of a ball in
the � 2-covering of Y , we have

d0(y0; f (yi )) = d0(f (y); f (yi )) � Ld(y; yi ) � L� 2 = �:

Thus f f (yi )gi =1 ;:::;N is an � -covering of Y 0, and we haveNY 0;d0(� ) � N .

Finally, we report a property from [43]:

Lemma A.5 ([43], Prop. 5). Let (X; k:k) be a Banach space of �nite dimensiond. Then for any
� > 0; x 2 X and R > 0 we have

NB X (x;R ) ;k:k (� ) �
�

4R
�

� d

: (A.43)

A.4 Concentration of averages

We will use Bernstein's inequality in the following simple version [95]:

Lemma A.6 (Bernstein's inequality ([95], Thm. 6)) . Let x i 2 R, i = 1 ; :::; n be i:i:d: bounded random
variables such thatEx i = 0 , jx i j � M and V ar(x i ) � � 2 for all i 's.

Then for all t > 0 we have

P

 
1
n

nX

i =1

x i � t

!

� exp
�

�
nt 2

2� 2 + 2Mt=3

�
: (A.44)

We also report a concentration result in Hilbert spaces from [83].

Lemma A.7 ([83], Lemma 4). Let x i 2 H , i = 1 ; :::; n be i:i:d: random variables in a Hilbert Space
(H ; k:k) such that kx i k � M with probability one. Denote �x their empirical average �x = (

P n
i =1 x i ) =n.

Then for any � > 0, with probability at least 1 � � ,

k�x � E�xk �
M
p

n

�
1 +

r

2 log
1
�

�
: (A.45)

B Proof of Theorem 3

B.1 Lower RIP

A measurement operatorA satis�es the usual generalized Lower Restricted Isometry Property (LRIP)
[17] on the model� with constant � > 0 if:

8P; Q 2 � ; � � (P; Q)2 � kA P � A Qk2
2: (B.46)

For a measurement operatorA drawn at random (in our case by randomly drawing a set of frequencies

 = f ! j gj =1 ;:::;m ), the usual approach from compressive sensing theory is to prove that, with high
probability, (B.46) is satis�ed:

P


�
8P; Q 2 � ; � � (P; Q)2 � kA P � A Qk2

2

�
� 1 � �; (B.47)

where P
 indicates probability with respect to the set of frequencies
 .
De�ning the normalized secant set

S :=
�

P � Q
 � (P; Q)

; P; Q 2 � ;  � (P; Q) 6= 0
�

� E; (B.48)
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the LRIP (B.46) is equivalent to : 8� 2 S; � � kA � k2
2, and (B.47) is equivalent to

P

�
8� 2 S; � � kA � k2

2

�
� 1 � �: (B.49)

Hence, a typical proof of the (L)RIP [5, 81] consists in de�ning an � -covering of the normalized secant
set, proving a pointwise LRIP at the center of each ball using concentration results, then uniformly
extending the result to the whole normalized secant set using Lipschitz continuity of the measurement
operator.

Semi-uniform LRIP. In our framework, we introduce a �non-uniform� version of the LRIP, in which
the inequality (B.47) will be veri�ed for a given P 2 � with high probability, uniformly for all Q 2 � .
It is expressed as:

8P 2 � ; P


�
8Q 2 � ; � � (P; Q)2 � kA P � A Qk2

2

�
� 1 � �: (B.50)

We refer to this version of the LRIP as semi-uniform in probability. It holds with a smaller number of
measurementsm than the uniform case, and we show in the next section that it issu�cient to obtain
recovery guarantees withjoint probability on the drawing of frequenciesf ! j g and items f x i g. For more
details on non-uniform compressive sensing results, we refer the reader to the book by Foucart and
Rauhut [52], Chaps. 9 and 11.

Similar to the uniform case, we introduce a family of �non-uniform� normalized secant sets, de�ned
for each P 2 � as:

SP :=
�

P � Q
 � (P; Q)

; Q 2 � ;  � (P; Q) 6= 0
�

� E: (B.51)

The semi-uniform LRIP (B.50) is then equivalent to

8P 2 � ; P

�
8� 2 SP ; � � kA � k2

2

�
� 1 � �: (B.52)

A typical proof would therefore follow the exact same pattern than the uniform case, using non-uniform
normalized secant sets instead of the normalized secant set.

Restricted, semi-uniform LRIP. Unlike �nite dimensional frameworks, where normalized secant
sets are contained in a unit ball that is necessarily compact, here it is in general challenging to prove
the existence of �nite covering numbers for this set. Under AssumptionA 1 (�) , the model � itself is
compact, which suggests using the embeddingQ 2 � ! P � Q

 � (P;Q ) 2 SP . However the behavior of this
function when Q gets close toP may be delicate to analyze. Thus for all� � 0 and P 2 � we de�ne the
restricted non-uniform normalized secant set:

S�
P :=

�
P � Q

 � (P; Q)
; Q 2 � ;  � (P; Q) > �

�
� E: (B.53)

Note that, when we let � = 0 the restricted non-uniform normalized secant setS0
P is just the previous

non-uniform normalized secant setSP .

Hypotheses to establish the restricted, semi-uniform LRIP We are going to prove the restricted
semi-uniform LRIP (B.50) under two hypotheses. The �rst hypothesis depends on a model� , a frequency
distribution � , a non-negative constant� � 0, and a choice of metricd(�; �).

Hypothesis H 1 (�; � ; � ; d) (Covering numbers of the secant set). For all P 2 � , the restricted non-
uniform normalized secant setS�

P has �nite covering numbers NS �
P ;d (� ) < 1 .

In the case where the constant� > 0 is positive and the metric d = k:k is a norm, the covering
numbers of the secant set are controlled by those of the model.

Lemma B.8. Let k:k be a norm on the space of �nite signed measureE, and � a frequency distribution
such that the model� has �nite covering numbers with respect to some metric�d which satis�es

8P; Q 2 � ; �d(P; Q) � max
�

kP � Qk;  � (P; Q)
�

:

The model is in particular bounded for the normk:k, denote C = max
�
1; supP;Q 2 � kP � Qk

�
.
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Then, for any strictly positive constant 1 � � > 0, Assumption H 1 (�; � ; � ; d) holds with d = k:k.
Furthermore, for any P 2 � and � > 0 we have

NS �
P ;k:k (� ) � N � ; �d

�
�� 2

2(C + 1)

�
: (B.54)

Proof. Let P 2 � be any distribution in the model. Consider the complement of the ballB � ; � (P; � ):

Q�
P = B c

� ; �
(P; � ) = f Q 2 � ;  � (P; Q) > � g � � ; (B.55)

and the function f P : Q�
P ! S �

P such that f P (Q) = P � Q
 � (P;Q ) , which is surjective by de�nition of S�

P . Let

us show that f P is (C + 1) =� 2-Lipschitz continuous for the metric �d, and conclude with Lemma A.4.
For any Q1; Q2 2 Q �

P , we have

kf P (Q1) � f P (Q2)k =






P � Q1

 � (P; Q1)
�

P � Q2

 � (P; Q2)




 ;

�






P � Q1

 � (P; Q1)
�

P � Q2

 � (P; Q1)




 +






P � Q2

 � (P; Q1)
�

P � Q2

 � (P; Q2)




 ;

�
1
�

kQ2 � Q1k + kP � Q2k

�
�
�
�

1
 � (P; Q1)

�
1

 � (P; Q2)

�
�
�
� ; since  � (P; Q1) > �

�
1
�

kQ1 � Q2k +
C
� 2

�
�
�  � (P; Q2) �  � (P; Q1)

�
�
� ; sincekP � Q2k � C

�
1
�

kQ1 � Q2k +
C
� 2  � (Q1; Q2) ; by the triangle inequality,

�
C + 1

� 2
�d (Q1; Q2) : since � � 1

Hence the function f P is Lipshitz continuous with constant L = ( C + 1) =� 2, and therefore for all
� > 0:

NS �
P ;k:k (� )

Lemma A.4
� NQ �

P ; �d(�=L )
Lemma A.3

� N � ; �d

� �
2L

�
:

To formulate the second hypothesis, we denotef a function from N � R+ to R+ .

Hypothesis H 2 (�; � ; � ; f ) (Probability of the pointwise LRIP) . For any P 2 � , any � 2 S �
P , any t � 0

and any integer m > 0, we have
P


�
1 � kA � k2

2 � t
�

� f (m; t ); (B.56)

where A : E ! Cm is a sketching operator built by independently drawingm frequencies according to� .

In Section B.2, under hypothesesH 1 (�; � ; � ; d) and H 2 (�; � ; � ; f ), we prove an extended version of
Theorem 3 (referred to as Theorem 3 bis). Unlike Theorem 3 this extended version covers the case� = 0 .

Then, in Section B.3 we prove that under the AssumptionsA 1 (�) and A 2 (�; � ; � ; A) used to state
Theorem 3, H 1 (�; � ; � ; d) holds with d(�; � 0) = k� � � 0kT V provided that � > 0, and H 2 (�; � ; � ; f ) holds
for an appropriate choice of function f .

Remark B.2. Ideally, one would like to exploit Theorem 3 bis with� = 0 to obtain performance guar-
antees without the extra additive term� . However, putting this into practice would require characterizing
covering numbers for the normalized secant setSP = S0

P , which can be tricky and is left to future work.
It is indeed already not trivial to determine when this set has �nite covering numbers.

We can now state our version of the LRIP.

Theorem B.6. Consider a model� , a frequency distribution � , a non-negative constant� � 0, a metric
d(�; �) and a function f such that AssumptionsH 1 (�; � ; � ; d) and H 2 (�; � ; � ; f ) are satis�ed.

Let P � 2 � be any distribution in the model.
Assume that for all �; � 0 2 S �

P �

sup
A

�
�
�kA � k2 � kA � 0k2

�
�
� � d(�; � 0); (B.57)
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where the supremum is over all possible frequencies! de�ning the sketching operatorA .
De�ne

� = NS �
P � ;d

�
1
4

�
� f

�
m; 7

16

�
:

Then, with probability at least 1 � � on the drawing of them frequencies! j 's, we have

8P 2 � s.t.  � (P � ; P) � � :
1
4

 � (P � ; P)2 � kA P � � A Pk2
2: (B.58)

Proof. The idea is to de�ne an � -covering of the restricted non-uniform normalized secant setS�
P � with

respect to the metric d, to apply the concentration result of Assumption H 2 (�; � ; � ; f ) at the center of
each ball and to conclude with a union bound.

Let � > 0, 1 > t > 0 and denote N = NS �
P � ;d (� ) for simplicity, which is �nite by Assumption

H 1 (�; � ; � ; d). We consider � 1; :::; � N an � -covering of S�
P � with respect to the metric d. Considering

Assumption H 2 (�; � ; � ; f ), a union bound yields that, with probability greater than 1 � N � f (m; t ),

8i 2 [1; N ]; 1 � kA � i k
2
2 < t: (B.59)

Assuming (B.59) is satis�ed, let any distribution P 2 � such that  � (P � ; P) > � . Denote � :=
P � � P

 � (P � ;P ) 2 S �
P � , and let i 2 [1; N ] such that � i is the center of the ball closest to� in the covering. We

have

1 � kA � k2 =1 � kA � i k2 + kA � i k2 � kA � k2

� 1 �
p

1 � t + kA � i k2 � kA � k2 since (B.59) is veri�ed
(a)
� 1 �

p
1 � t + d(� i ; � ) by (B.57)

� 1 �
p

1 � t + �:

Choosing t > 0 and � =
p

1 � t � 1=2 (for example: t = 7=16, � = 1=4), we obtain kA � k2
2 � 1=4, that is

to say
1
4

 � (P � ; P)2 � kA P � � A Pk2
2: (B.60)

This shows that the LRIP (B.58) is veri�ed except with probability at most

NS �
P � ;d

� p
1 � t � 1=2

�
� f (m; t ) :

Specializing to t = 7=16 yields the desired result.

Remark B.3 (LRIP without the restricted Lipschitz property (B.57) ?) . In (a) we used Property (B.57),
which could be called arestricted Lipschitz property for the function � 7! kA � k2. It is restricted to S�

P � ,
but assumed to hold uniformly over all possible draws of the sketching operatorA . Thanks to Lemma A.2
and the triangle inequality,

�
�
�kA � k2 � kA � 0k2

�
�
� � kA (� � � 0)k2 � k � � � 0kT V ;

hence property (B.57) indeed holds whend(�; � 0) = k� � � 0kT V , even without the restriction to S�
P � . In

the rest of this paper we primarily concentrate on this setting.
It would however be interesting for future work to consider metricsd with much larger balls than those

of the total variation norm, since they may lead to substantially smaller covering numbersNS �
P � ;k:k �

NS �
P � ;k:kT V

, and thus LRIP guarantees for much smallerm. Theorem B.6 still yields guarantees with
such metrics, provided the restricted Lipschitz property(B.57) holds. An analog of Theorem B.6 for even
weaker metrics, that do not satisfy(B.57), can also be envisioned using chaining arguments [81] provided
that

P
 (kA � � A � 0k2 � (1 + t)d(�; � 0)) � g(m; t )

with an appropriately decaying function g(m; t ).
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B.2 A version of Theorem 3 with weaker assumptions

In this section, we formulate a version of Theorem 3, referred to as Theorem 3 bis, that allows for an
additive error � = 0 , under the HypothesesH i . In the next section we deduce from it the version given
in Section 7.1, that uses AssumptionsA i .

Theorem 3 bis. Consider a model� , a frequency distribution � , a non-negative constant� � 0 and a
function f such that AssumptionsH 1 (�; � ; � ; d) and H 2 (�; � ; � ; f ) hold with d(�; � 0) = k� � � 0kT V .

Consider ~d(�; �) a metric such that, for any P1; P2 2 P we have

~d(P1; P2) � max
�

 � (P1; P2) ; sup
A

kAP1 � A P2k2

�
; (B.61)

where the supremum is over all possible frequencies! de�ning the sketching operatorA .
Assume that � is compact9 with respect to ~d, and note that under this assumption the decoder� is

still well-de�ned by (30), since one can replace the total variation norm by the metric~d in the r.h.s. of
(29).

Let x i 2 Rd, i = 1 :::n be n points drawn i:i:d: from an arbitrary distribution P � 2 P , and ! j 2 Rd,
j = 1 :::m be m frequencies drawni:i:d: from � . Denote �P = �( ẑ; A ) the distribution reconstructed from
the empirical sketchẑ.

De�ne Pproj 2 � as (one of) the projection(s) of the probability P � onto the model:

Pproj 2 argmin
P 2 �

~d(P � ; P); (B.62)

which indeed exists since� is assumed to be compact.
De�ne

� = 2NS �
P proj

;k:kT V

�
1
4

�
� f

�
m; 7

16

�
: (B.63)

Then, with probability at least 1 � � on the drawing of the itemsx i and sampling frequencies! j , we
have

 �
�
P � ; �P

�
� 5 ~d(P � ; �) +

4(1+
p

2 log(2 =� ))
p

n + �; (B.64)

where ~d(P � ; �) = inf P 2 �
~d(P � ; P) is the distance from P � to the model.

Proof. Recall that the target distribution P � and its projection Pproj are �xed. By Lemma A.2, the
restricted Lipschitz property (B.57) holds with d(�; � 0) = k� � � 0kT V . Considering (B.63), Theorem
B.6 yields that since AssumptionsH 1 (�; � ; � ; d) and H 2 (�; � ; � ; f ) hold, the LRIP applied to Pproj is
satis�ed with probability at least 1 � �= 2 on the drawing of frequencies:

8P� 2 � s.t.  � (Pproj ; P� ) � � :
1
4

 � (Pproj ; P� )2 � kA Pproj � A P� k2
2;

which can be reformulated in:

8P� 2 � ;  � (Pproj ; P� ) � max
�

2kAP � � A P� k2; �
�

� 2kAP � � A P� k2 + �: (B.65)

Let P 2 P be any distribution. For some random draw of the operatorA , denote �P = � ( AP; A) 2 �
which, by de�nition of the decoder, belongs to the model. We have:

 �
� �P ; P � �

�  �
� �P ; Pproj

�
+  � (Pproj ; P � ) triangle ineq.

� 2kA �P � A Pproj k2 +  � (Pproj ; P � ) + � using (B.65)

� 2kA �P � A Pk2 + 2kAP � A P � k2 + 2kAP � � A Pproj k2 +  � (Pproj ; P � ) + �
triangle ineq.

Given the de�nition (30) of the decoder � and of the distribution �P = � ( AP; A), we have

kA �P � A Pk2 = min
P � 2 �

kAP� � A Pk2: (B.66)

9Compactness of the model is still required here, in order to de�ne a projection operator onto it as well as to ensure at
least one solution to the problem (26). This assumption could be relaxed, with the addition of an arbitrary small additive
error, similar to [18].
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SincePproj is in the model � , we thus havekA �P � A Pk2 � kA Pproj � A Pk2. Hence

 �
� �P ; P � �

� 2kAPproj � A Pk2 + 2kAP � A P � k2 + 2kAP � � A Pproj k2 +  � (Pproj ; P � ) + �

� 4kAP � A P � k2 + 4kAP � � A Pproj k2 +  � (Pproj ; P � ) triangle ineq.
(b)
� 4kAP � A P � k2 + 5 ~d(P � ; �) + �: using (B.61) and (B.62)

Thus we proved that, with probability at least 1 � �= 2 on the drawing of frequencies, we have:

8P 2 P ;  � (P � ; � ( AP; A)) � 5 ~d(P � ; �) + 4 kAP � A P � k2 + �:

In particular, with a joint probability of at least 1 � �= 2 on the drawing of frequencies! j and items x i ,
we have

 �

�
P � ; �

�
A P̂ ; A

��
� 5 ~d(P � ; �) + 4 kAP̂ � A P � k2 + �; (B.67)

where P̂ = 1
n

P n
i =1 � x i .

We now show that with high probability the term kAP̂ � A P � k2 is bounded by � :=
(1+

p
2 log(2 =� ))
p

n .
Denote P
 (resp. PX ) the probability distribution of the set of frequencies 
 = f ! j gj =1 ;:::;m (resp. of
the set of items in the databaseX = f x i gi =1 ;:::;n ). Their joint distribution is denoted P
 ;X , and is such
that dP
 ;X (
 ; X ) = dP
 (
) dPX (X ) by independence.

Consider the set:
A :=

n
(
 ; X ) s.t. kA P̂ � A P � k2 � �

o
:

For a �xed measurement operatorA , we use Lemma A.7 on the random variablesA � x i in Cm . We

observe that kA � x i k2 = 1 , AP̂ = (
P n

i =1 A� x i ) =n and AP � = 1p
m

h
Ex � P � e� i! T

j x
i

j =1 :::m
= Ex � P � A� x .

Hence, with probability at least 1 � �= 2 on the drawing of items:

kAP̂ � A P � k2 � �:

In other words, we obtain the following result:

8
 ;
Z

X
1A (
 ; X )dPX (X ) � 1 � �= 2: (B.68)

Hence,
ZZ


 ;X
1A (
 ; X )dP
 ;X (
 ; X ) =

Z




� Z

X
1A (
 ; X )dPX (X )

�
dP
 (
)

� (1 � �= 2)
Z



dP
 (
) = 1 � �= 2;

meaning that, with probability at least 1 � �= 2 on the drawing of frequenciesand items, we have

kAP̂ � A P � k2 � �: (B.69)

We can now conclude: a union bound yields that (B.67) and (B.69) are simultaneously satis�ed with
probability at least 1 � � , which leads to the desired result.

Remark B.4. In (b) we used inequality (B.61), in particular the assumption that the inequality

~d(P1; P2) � kA P1 � A P2k2 (B.70)

holds uniformly over all possible choices of frequencies de�ningA . Thanks to Lemma A.2, the inequal-
ity (B.61) indeed holds with ~d = dT V . In the rest of this paper, we concentrate on this setting. It would
however be interesting for future work to consider metrics~d much closer to the natural choice � (; ),
since they may lead to sharper upper bounds. A possibility would be to relax(B.61) and only assume that
inequality (B.70) (possibly up to multiplicative constants) holds with high probability on the draw ofA ,
given a pair P1 = P � and P2 = Pproj .
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B.3 Proof of Theorem 3

We now turn to the proof of Theorem 3, which consists in proving that the AssumptionsA i imply the
hypothesesH i in the � > 0 case, and applying Theorem 3 bis.

For Hypothesis H 1 (�; � ; � ; d), we apply Lemma B.8 with the total variation norm k:k = �d = k:kT V

to obtain the following corollary.

Corollary B.4. Let a model � such that AssumptionA 1 (�) is satis�ed, and a positive constant � > 0.
Then, for any frequency distribution � , HypothesisH 1 (�; � ; � ; d) is satis�ed with d = k:kT V , and we

have

NS �
P ;k:kT V

(� ) � N � ;k:kT V

�
�� 2

6

�
: (B.71)

Hypothesis H 2 (�; � ; � ; f ) is an application of Bernstein's inequality.

Lemma B.9. Consider a model � , a frequency distribution � , a non-negative constant� � 0 and a
constant A such that AssumptionA 2 (�; � ; � ; A) is satis�ed.

Then Assumption H 2 (�; � ; � ; f ) is satis�ed with the function f de�ned as

f (m; t ) = exp
�

�
m

2A2 �
t2

1 + t=3

�
: (B.72)

Proof. Fix P � 2 � . Suppose! j , j = 1 :::m are drawn i:i:d: from � and let A be the corresponding
sketching operator. Let any � 2 S �

P � , denote P 2 � such that � = P � � P
 � (P � ;P ) . Denote Z j = 1 �

j  P � ( ! j ) �  P ( ! j ) j2

 � (P � ;P )2 . Since AssumptionA 2 (�; � ; � ; A) is veri�ed and j P � (! j ) �  P (! j )j � k P � � PkT V

for all frequencies, theZ j 's are i:i:d: random variables verifying Z j 2 [1� A2; 1]. Furthermore, according
to Lemma A.2 we have necessarilyA � 1 and thus we have

jZ j j � A2: (B.73)

The Z j 's are also centered:

E! l Z j = 1 �
E! � � j P � (! ) �  P (! )j2

 � (P � ; P)2 = 0 : using (22)

Furthermore, we have

V ar(Z j ) = V ar

 
j P � (! ) �  P (! )j2

 � (P � ; P)2

!

�
Ej P � (! ) �  P (! )j4

 � (P � ; P)4 �
kP � � Pk2

T V � Ej P � (! ) �  P (! )j2

 � (P � ; P)2 �  � (P � ; P)2

� A2 �
Ej P � (! ) �  P (! )j2

 � (P � ; P)2 = A 2:

Since 1
m

P m
j =1 Z j = 1 � kA � k2

2, applying Bernstein's inequality (Lemma A.6) we get : for all t > 0,

8� 2 S �
P � ; P


�
1 � kA � k2

2 � t
�

= P


0

@ 1
m

mX

j =1

Z j � t

1

A � exp
�

�
m

2A2 �
t2

1 + t=3

�
: (B.74)

We can �nally prove Theorem 3, by combining Corollary B.4, Lemma B.9 and Theorem 3 bis. For
simpli�cation, we also use the following bound on the function f de�ned in Lemma B.9:

f (m; 7=16) = exp
�

�
147m

1760A2

�
� exp

�
�

m
12A2

�
:

C Application to GMMs

C.1 Compactness of mixture models

In this section we prove Lemma 1, which extends the compactness of the setG of basic distributions to
the corresponding mixture modelGK .
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Proof of Lemma 1. Recall that we have assumed compactness of the setG with respect to some norm
k:k. In particular, it is bounded, and we note C = max P 2G kPk. Let � > 0 and � 2]0; 1[. Denote � 1 = � �
and � 2 = (1 � � )�=C . Also denote N1 = NG;k:k (� 1) and let N1 = f P1; :::; PN 1 g be an � 1-covering of G.

Similarly, let B +
1 = f � 2 RK

+ ;
P K

k=1 � k = 1g, denote N2 = NB +
1 ;k:k1

(� 2), let N2 = f � 1; :::; � N 2 g be

an � 2-covering of B +
1 . Denote B1 := BR;k:k1 (0; 1) the unit `1-ball in RK , note that B +

1 � B1, such that
we have

N2 = NB +
1 ;k:k1

(� 2)
Lemma A.3

� NB 1 ;k:k1 (� 2=2)
Lemma A.5

� (8=�2)K : (C.75)

De�ne the following set:

� := f P� ;� 2 GK ; 8k; P� k 2 N 1; � 2 N 2g: (C.76)

The cardinality of this set veri�es j� j � (jN 1j)K jN 2j = ( N1)K N2.
Let us show that � is an � -covering of GK . Let P� ;� 2 GK be any K -sparse distribution. For all

k = 1 :::K , let P�� k
2 N 1 be the distribution in N1 which is the closest toP� k , and let �� 2 N 2 be the

weight vector in N2 that is the closest to � . Denote �� = f �� 1; :::; �� K g, and note that P �� ; �� 2 � . We have

kP� ;� � P �� ; �� k =







KX

k=1

� k P� k �
KX

k=1

�� k P�� k







;

�







KX

k=1

� k P� k �
KX

k=1

� k P�� k







+







KX

k=1

� k P�� k
�

KX

k=1

�� k P�� k







;

�
KX

k=1

� k

 P� k � P�� k


 +

KX

k=1

j� k � �� k j

 P�� k


 ;

�
KX

k=1

� k kP� k � P�� k
k + Ck� � �� k1; (C.77)

� � 1

KX

k=1

� k + C� 2 = � 1 + C� 2 = �;

and � is indeed an� -covering of GK . Therefore, we have the bound (for all� )

NGK ;k:k (� ) � j � j � (N1)K N2

by (C.75)
�

�
8C � NG;k:k (� � )

(1 � � )�

� K

:

Furthermore, in equation (C.77), we have shown in particular that for all P� ;� ; P� 0;� 0 2 GK ,

kP� ;� � P� 0;� 0k �
KX

k=1

� k kP� k � P� 0
k
k + k� � � 0k1

and therefore the embedding(P� 1 ; :::; P� K ; � ) ! P� ;� from (G)K � B +
1 to GK is continuous. HenceGK

is the continuous image of the set(G)K � B +
1 , which is compact sinceG is compact, and thereforeGK is

compact.

C.2 Covering numbers of Gaussians

Proof of Theorem 4. Consider the embedding� : T ! G de�ned as � (� ) = P� , which is surjective by
de�nition of G. We show that � is Lipschitz continuous, for the Euclidean norm on T � R2n and total
variation norm on G � E .

We begin by the classical Pinsker's inequality [48]:

kP � QkT V �
p

2DKL (P jjQ); (C.78)

where DKL is the Kullback-Leibler divergence. By symmetry, we have:

kP � Qk2
T V � DKL (P jjQ) + DKL (QjjP): (C.79)
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The Kullback-Leibler divergence has a closed-form expression in the case of multivariate Gaussians
[47]:

DKL (P� 1 jjP� 2 ) =
1
2

�
log

j� 2j
j� 1j

+ tr
�
� � 1

2 � 1
�

� d + ( � 2 � � 1)T � � 1
2 (� 2 � � 1)

�
: (C.80)

In our case, with diagonal Gaussians and bounded parameters, we have

DKL (P� 1 jjP� 2 ) + DKL (P� 1 jjP� 2 ) =
tr

�
� � 1

2 � 1
�

+ tr
�
� � 1

1 � 2
�

2
� d + ( � 2 � � 1)T � � 1

2 + � � 1
1

2
(� 2 � � 1)

=
1
2

dX

` =1

 
� 2

1;`

� 2
2;`

+
� 2

2;`

� 2
1;`

� 2

!

+
dX

` =1

� � 2
1;` + � � 2

2;`

2
(� 2;` � � 1;` )2;

�
1
2

dX

` =1

 
� 4

2;` + � 4
1;` � 2� 2

1;` � 2
2;`

� 2
1;` � 2

2;`

!

+
1

� 2
min

k� 1 � � 2k2
2;

�
1

2� 4
min

dX

` =1

�
� 2

1;` � � 2
2;`

� 2
+

1
� 2

min
k� 1 � � 2k2

2;

�
1

2� 4
min

k� 2 � � 1k2
2 +

1
� 2

min
k� 1 � � 2k2

2 � L 2k� 1 � � 2k2
2;

where L := max
�
� � 1

min ; � � 2
min =

p
2
�
. Hence

kP� 1 � P� 2 kT V � Lk� 1 � � 2k2; (C.81)

and the embedding� is L -Lipschitz. Hence G is the continuous image of a compact set and is compact.
Since � is also surjective, we can apply Lemma A.4 and conclude: denoteB � R2d a ball of radius

radius(T ) for the Euclidean norm such that T � B , and we have

NG;k:kT V (� )
Lemma A.4

� NT ;k:k2 (�=L )
Lemma A.3

� NB;k:k2

� �
2L

� Lemma A.5
�

�
8L radius(T )

�

� 2d

=
�

B
�

� 2d

;

(C.82)
which is the desired result.

Proof of Corollary 2. Combining Theorem 4 and Lemma 1 proves that the set of GMMsGK is compact.
Furthermore, we obtain the following bound, for all 0 < � < 1:

NGK ;k:kT V (� ) �
B 2dK 8K

� 2dK (1 � � )K � (2d+1) K
;

where B is de�ned as in Theorem 4. By choosing10 � = B
B +1 , we obtain

NGK ;k:kT V (� ) �
�

B + 1
�

� (2d+1) K

8K �
�

2(B + 1)
�

� (2d+1) K

;

since8
1

2d +1 � 81=3 = 2 .

C.3 Domination between metrics on the set of Gaussians

In this section, we aim at proving Theorem 5. We begin by an intermediate result.

Lemma C.10. Suppose thatT � R2d is such that k� k2 � M and 0 < � 2
min � � 2

i � � 2
max for all

[� ; � ] 2 T . For all P� 1 ; P� 2 2 G,

k� 1 � � 2k2
2 � D 0kp� 1 � p� 2 k2

L 2 (Rd ) (C.83)

where

D 0 :=
(4�� 2

max )d=2+1 D1

� (1 � e� D 1 )
with D1 =

M 2

� 2
min

+
d
2

log
�

� 2
max

� 2
min

�

10 Note that the choice of � is not optimal (indeed the minimum is attained for � = 2d
2d+1 ), however we choose this value

for the simplicity and clarity of the resulting bound.
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Proof. We use a property from [3] on product of Gaussians:
Z

N (x; � a ; � a)N (x; � b; � b)dx =
1

(2� )d=2j� a + � bj1=2
exp

�
�

1
2

(� a � � b)T (� a + � b) � 1(� a � � b)
�

(C.84)
Hence we have

kp� 1 � p� 2 k2
L 2 (Rd ) =

Z
(p� 1 (x) � p� 2 (x))2dx

=
Z

p� 1 (x)2dx +
Z

p� 2 (x)2dx � 2
Z

p� 1 (x)p� 2 (x)dx

=
1

(2� )d=2

h
j2� 1j �

1
2 + j2� 2j �

1
2 � 2j� 1 + � 2j �

1
2 e� 1

2 ( � 1 � � 2 )T ( � 1 + � 2 ) � 1 ( � 1 � � 2 )
i

=
j2� 1j �

1
2 + j2� 2j �

1
2

(2� )d=2

2

41 � e
�

 
1
2 ( � 1 � � 2 )T ( � 1 + � 2 ) � 1 ( � 1 � � 2 )+log

 
j 2 � 1 j

� 1
2 + j 2 � 2 j

� 1
2

2 j � 1 + � 2 j
� 1

2

!! 3

5

�
2

(4�� 2
max )d=2

2

41 � e
�

 
1
2 ( � 1 � � 2 )T ( � 1 + � 2 ) � 1 ( � 1 � � 2 )+log

 
j 2 � 1 j

� 1
2 + j 2 � 2 j

� 1
2

2 j � 1 + � 2 j
� 1

2

!! 3

5 (C.85)

On the one hand, we have

0 �
1

4� 2
max

k� 1 � � 2k2
2 �

1
2

(� 1 � � 2)T (� 1 + � 2) � 1(� 1 � � 2) �
1
2

4M 2

2� 2
min

=
M 2

� 2
min

(C.86)

On the other hand,

log
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1
2 + j2� 2j �

1
2

2j� 1 + � 2j �
1
2

!

= log
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1
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1
2

2

!

+
1
2

log j� 1 + � 2j

�
1
2

log j2� 1j �
1
2 +

1
2

log j2� 2j �
1
2 +

1
2

log j� 1 + � 2j by concavity of the log

=
1
4

 
dX

` =1

log(� 2
1;` + � 2

2;` )2 �
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` =1

log(2� 2
1;` ) �

dX
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log(2� 2
2;` )

!

=
1
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!

�
1
4
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4� 2
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2;`

(� 2
1;` + � 2

2;` )2

!

since � log(x) � 1 � x

=
dX

` =1

(� 2
1;` � � 2

2;` )2

4(� 2
1;` + � 2

2;` )
�

1
8� 2

max
k� 1 � � 2k2

2

and therefore

0 �
1

8� 2
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1
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!
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: (C.87)

We can now bound

0 �
1

8� 2
max

k� 1 � � 2k2
2 �

"
1
2

(� 1 � � 2)T (� 1 + � 2) � 1(� 1 � � 2) + log
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� D1;

(C.88)
where

D1 =
M 2

� 2
min

+
d
2

log
�

� 2
max

� 2
min

�
:
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By concavity of x 7! 1 � e� x , the function ' : x 7! 1� e� x

x is decreasing. Hence we have:

8x 2 [0;D1]; 1 � e� x �
1 � e� D 1

D1
x:

Therefore, given (C.85) and (C.88), we have

kp� 1 � p� 2 k2
L 2 (Rd ) � D2

 
1
2

(� 1 � � 2)T (� 1 + � 2) � 1(� 1 � � 2) + log
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2

2j� 1 + � 2j �
1
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!!

;

where D2 := 2(1 � e� D 1 )
D 1 (4 �� 2

max )d= 2 .
And we have, using (C.88) again:

kp� 1 � p� 2 k2
L 2 (Rd ) �

D2

8� 2
max

k� 1 � � 2k2
2;

which leads to the desired result.

Proof of Theorem 5. We denoteF and F � 1 the Fourier and inverse Fourier transform:

F (f )( ! ) =
Z

Rd
e� i! T x f (x)dx;

F � 1(F )(x) =
1

(2� )d

Z

Rd
ei! T x F (! )d! :

We recall the classical Plancherel's Theorem:

kf k2
2 =

1
(2� )d kF (f )k2

2: (C.89)

Let P1; P2 2 G. Recall that � = N
�
0; a

n I
�
, denote � 2

� := a
d . The MMD is expressed:

 2
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where P0
i is a Gaussian with the same mean thanPi and dilated variance � 0

i = � i + I
2� 2

�
. Since

 P 0
i

= F (p0
i ), by Plancherel's Theorem we have:

 2
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� 2

�
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�
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kp0
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2k2
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The parameters of the GaussiansP0
i belong to a compact setT 0 =

n�
� ; � + I

2� 2
�

�
; (� ; � ) 2 T

o
. We

can therefore apply Lemma C.10, such that:

D 0kp0
1 � p0

2k2
2 � k � 0

1 � � 0
2k2

2 = k� 1 � � 2k2
2: (C.90)

The last equality comes from the fact that the variance between� i and � 0
i are just translated. The

constant D 0 is:

D 0 =
(4� (� 2

max + 1=(2� 2
� ))) d=2+1 D1
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�
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and thus �
� 2

�

2�

� d=4

D 0 � (P1; P2) � k � 1 � � 2k2:

Considering eq. (C.81) in the proof of Theorem 4, we have

kP1 � P2kT V � max(� � 1
min ; � � 2

min =
p

2)k� 1 � � 2k2 � �D � (P1; P2) ; (C.91)
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We now use the fact that � 2
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d . We have
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and similarly

(2� 2
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max =d+ 1) exp

�
d
2

log
�
2a� 2

max =d+ 1
�
�
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Using (C.92) with the fact that the function ' : x 7! 1� e� x

x is decreasing, and (C.93), we obtain

kP1 � P2kT V � D � (P1; P2) ; (C.94)

with D := max( � � 1
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min =
p
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q

2dD 2 �e3a� 2
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