A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences, Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO '09, pp.563-570, 2009.
DOI : 10.1145/1569901.1569980

URL : https://hal.archives-ouvertes.fr/hal-00431274

A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Theory of the hypervolume indicator, Proceedings of the tenth ACM SIGEVO workshop on Foundations of genetic algorithms, FOGA '09, pp.87-102, 2009.
DOI : 10.1145/1527125.1527138

URL : https://hal.archives-ouvertes.fr/inria-00430540

A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications, Theoretical Computer Science, vol.425, pp.75-103, 2012.
DOI : 10.1016/j.tcs.2011.03.012

URL : https://hal.archives-ouvertes.fr/inria-00638989

J. Bader and E. Zitzler, HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization, Evolutionary Computation, vol.19, issue.1, pp.45-76, 2011.
DOI : 10.1109/TEVC.2003.810758

N. Beume, C. M. Fonseca, M. Lopez-ibanez, L. Paquete, and J. Vahrenhold, On the Complexity of Computing the Hypervolume Indicator, IEEE Transactions on Evolutionary Computation, vol.13, issue.5, pp.1075-1082, 2009.
DOI : 10.1109/TEVC.2009.2015575

N. Beume, B. Naujoks, and M. Emmerich, SMS-EMOA: Multiobjective selection based on dominated hypervolume, European Journal of Operational Research, vol.181, issue.3, pp.1653-1669, 2007.
DOI : 10.1016/j.ejor.2006.08.008

K. Bringmann, Bringing order to special cases of klees measure problem, In Mathematical Foundations of Computer Science, pp.207-218, 2012.

K. Bringmann and T. Friedrich, Approximating the Volume of Unions and Intersections of High-Dimensional Geometric Objects, International Symposium on Algorithms and Computation, pp.436-447, 2008.

K. Bringmann and T. Friedrich, Approximating the Least Hypervolume Contributor: NPhard in General, But Fast in Practice, Conference on Evolutionary Multi-Criterion Optimization, pp.6-20, 2009.

D. Brockhoff, T. Wagner, and H. Trautmann, On the properties of the R2 indicator, Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference, GECCO '12, pp.465-472, 2012.
DOI : 10.1145/2330163.2330230

URL : https://hal.archives-ouvertes.fr/hal-00722060

T. Chan, Klee's Measure Problem Made Easy, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp.410-419, 2013.
DOI : 10.1109/FOCS.2013.51

K. Deb, L. Thiele, M. Laumanns, E. Zitzler, and . Zurich, Scalable Test Problems for Evolutionary Multi-Objective Optimization, TIK Report, vol.112, 2001.

K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable multi-objective optimization test problems, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600), pp.825-830, 2002.
DOI : 10.1109/CEC.2002.1007032

M. P. Hansen and A. Jaszkiewicz, Evaluating The Quality of Approximations of the Non- Dominated Set, 1998.

N. Hansen and A. Ostermeier, Completely Derandomized Self-Adaptation in Evolution Strategies, Evolutionary Computation, vol.9, issue.2, pp.159-195, 2001.
DOI : 10.1016/0004-3702(95)00124-7

E. J. Hughes, MSOPS-II: A general-purpose Many-Objective optimiser, 2007 IEEE Congress on Evolutionary Computation, pp.3944-3951, 2007.
DOI : 10.1109/CEC.2007.4424985

C. Igel, N. Hansen, R. , and S. , Covariance Matrix Adaptation for Multi-objective Optimization, Evolutionary Computation, vol.15, issue.1, pp.1-28, 2007.
DOI : 10.1109/TEVC.2003.810758

H. Ishibuchi, N. Tsukamoto, Y. S. Nojima, and Y. , Hypervolume approximation using achievement scalarizing functions for evolutionary many-objective optimization, 2009 IEEE Congress on Evolutionary Computation, pp.530-537, 2009.
DOI : 10.1109/CEC.2009.4982991

H. Ishibuchi, N. Tsukamoto, Y. S. Nojima, and Y. , Indicator-based evolutionary algorithm with hypervolume approximation by achievement scalarizing functions, Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO '10, pp.527-534, 2010.
DOI : 10.1145/1830483.1830578

J. Knowles, L. Thiele, and E. Zitzler, A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers, TIK Report, vol.214, 2006.

G. W. Snedecor and W. G. Cochran, Statistical Methods, 1989.

H. Trautmann, T. Wagner, and D. Brockhoff, R2-EMOA: Focused Multiobjective Search Using R2-Indicator-Based Selection, Learning and Intelligent Optimization Conference, pp.70-74, 2013.
DOI : 10.1007/978-3-642-44973-4_8

URL : https://hal.archives-ouvertes.fr/hal-00807901

N. Tsukamoto, Y. Sakane, Y. Nojima, and H. Ishibuchi, Incorporation of Hypervolume Approximation with Scalarizing Functions into Indicator-Based Evolutionary Multiobjective Optimization Algorithms, Transactions of the Institute of Systems, Control and Information Engineers, vol.23, issue.8, pp.165-177, 2011.
DOI : 10.5687/iscie.23.165

T. Wagner and H. Trautmann, Online convergence detection for evolutionary multiobjective algorithms revisited, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.

T. Wagner, H. Trautmann, and D. Brockhoff, Preference Articulation by Means of the R2 Indicator, Conference on Evolutionary Multi-Criterion Optimization, pp.81-95, 2013.
DOI : 10.1007/978-3-642-37140-0_10

URL : https://hal.archives-ouvertes.fr/hal-00807867

T. Wagner, H. Trautmann, M. , and L. , A Taxonomy of Online Stopping Criteria for Multi-Objective Evolutionary Algorithms, Evolutionary Multi-Criterion Optimization, pp.16-30, 2011.
DOI : 10.1007/978-3-642-19893-9_2

S. Wessing, Towards Optimal Parameterizations of the S-Metric Selection Evolutionary Multi-Objective Algorithm, 2009.

S. Wessing and B. Naujoks, Sequential parameter optimization for multi-objective problems, IEEE Congress on Evolutionary Computation, pp.1-8, 2010.
DOI : 10.1109/CEC.2010.5586529

H. Yildiz and S. Suri, On Klee's measure problem for grounded boxes, Proceedings of the 2012 symposuim on Computational Geometry, SoCG '12, pp.111-120, 2012.
DOI : 10.1145/2261250.2261267

Q. Zhang and H. Li, MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition, IEEE Transactions on Evolutionary Computation, vol.11, issue.6, pp.712-731, 2007.
DOI : 10.1109/TEVC.2007.892759

E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, 1999.

E. Zitzler, K. Deb, and L. Thiele, Comparison of Multiobjective Evolutionary Algorithms: Empirical Results, Evolutionary Computation, vol.8, issue.2, pp.173-195, 2000.
DOI : 10.1109/4235.797969

E. Zitzler, J. Knowles, and L. Thiele, Quality Assessment of Pareto Set Approximations, Multiobjective Optimization: Interactive and Evolutionary Approaches, pp.373-404, 2008.
DOI : 10.1007/978-3-540-88908-3_14

E. Zitzler and L. Thiele, Multiobjective optimization using evolutionary algorithms ??? A comparative case study, Conference on Parallel Problem Solving from Nature (PPSN V), pp.292-301, 1998.
DOI : 10.1007/BFb0056872

E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, G. Da-fonseca et al., Performance assessment of multiobjective optimizers: an analysis and review, IEEE Transactions on Evolutionary Computation, vol.7, issue.2, pp.117-132, 2003.
DOI : 10.1109/TEVC.2003.810758