
HAL Id: hal-01330136
https://inria.hal.science/hal-01330136

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupling Passenger Flows for Improved Load
Prediction

Stefan Haar, Simon Theissing

To cite this version:
Stefan Haar, Simon Theissing. Decoupling Passenger Flows for Improved Load Prediction. 13th
International Conference on Quantitative Evaluation of SysTems (QEST 2016) , Aug 2016, Québec
City, Canada. �hal-01330136�

https://inria.hal.science/hal-01330136
https://hal.archives-ouvertes.fr


Decoupling Passenger Flows for Improved Load
Prediction

Stefan Haar and Simon Theissing

MExICo team, INRIA and LSV, CNRS & ENS de Cachan,
Cachan, France

Abstract. This paper continues our work on perturbation analysis of
multimodal transportation networks (TNs) by means of a stochastic hy-
brid automaton (SHA) model. We focus here on the approximate com-
putation, in particular on the major bottleneck consisting in the high
dimensionality of systems of stochastic differential balance equations
(SDEs) that define the continuous passenger-flow dynamics in the dif-
ferent modes of the SHA model. In fact, for every pair of a mode and a
station, one system of coupled SDEs relates the passenger loads of all dis-
crete points such as platforms considered in this station, and all vehicles
docked to it, to the passenger flows in between. In general, such an SDE
system has many dimensions, which makes its numerical computation
and thus the approximate computation of the SHA model intractable. We
show how these systems can be canonically replaced by lower-dimensional
ones, by decoupling the passenger flows inside every mode from one an-
other. We prove that the resulting approximating passenger-flow dynam-
ics converges to the original one, if the replacing set of balance equations
set up for all decoupled passenger flows communicate their results among
each other in vanishing time intervals.

Keywords: Stochastic Hybrid Automata, Transportation Networks

1 Introduction

Apart from some exceptions, the different modes and lines in modern multi-
modal transportation networks do not share infrastructure elements, but are
loosely connected through passenger transfers. Understanding how these pas-
senger transfers connect their modes and lines is thus crucial if one wants to
analyse how perturbations spread across such TNs. In this context, the present
work is a contribution to our SHA model from [6] that we have developed for
the computation of passenger load forecasts in multimodal TNs; given (i) esti-
mations for all uncertain initial passenger loads (platforms, vehicles, etc.) and
uncertain continuous passenger arrival flows, and (ii) the possibility to track in-
dividual vehicles so as to study the impact of well-directed interventions to their
operation such as early departures.
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Our SHA Model. Our SHA model from [6] extends a previous deterministic
hybrid automaton (DHA) model from [4]. In this, a finite set of vehicles is op-
erated, and every vehicle is confined to a particular mode or line which does
not share infrastructure elements with any other modes or lines. Passengers are
grouped into a finite set of trip profiles, which define routes in the TN at hand,
together with preferences for choosing different vehicle missions. Every mode of
the DHA model corresponds to a particular configuration of the vehicles’ dis-
crete positions and discrete operational states. With these parameters, every
mode defines which passenger flows between stations and vehicles are possible.
In this way, a system of coupled ordinary differential equations (ODEs), one
equation per station, is associated to every mode. This system relates the pas-
senger loads of all stations and of all stopped vehicles docked to these stations,
to the passenger flows such as boarding and alighting in between. Transitions
between modes are triggered by (i) vehicles that must depart, i.e. whose elapsed
driving and dwell times exceed some deterministic thresholds fixed by operation
rules, and (ii) by passenger load trajectories hitting some pre-defined regions
and thus triggering the departure of some vehicle (examples: boarding a train
must stop if the train is full, or if the number of passengers on the platform is
small and the train is scheduled to leave, etc.).

Now a TN is everything but deterministic: The influx of passengers into the
system is a random process (from a macroscopic point of view, in fact a very
continuous and measurable random process as compared to e.g. single passenger
incidents), and the distribution of the passengers over the different possible trip
profiles - is also unknown and can only be given statistically. This motivated the
stochastic hybrid automaton (SHA) model that we introduced in [6]: Compared
to our above DHA model, we replaced all systems of ODEs by systems of (Itô-)
stochastic differential equations (SDEs), so as to be able to (i) start our analy-
ses with uncertain initial passenger loads, and (ii) include uncertain passenger
arrival flows into the model’s continuous time dynamics. The mechanism of trig-
gering mode transitions via thresholds remains the same; however, these hitting
times are not deterministic, isolated points in time any more, but rather random
variables with a continuous range of values.

Our SHA model thus does not fully cover the dynamical spectrum of the
stochastic hybrid system (SHS) from [8], but only implements a particular re-
alization thereof: In our SHA model, there are no mode transitions which are
exponentially distributed w.r.t. time. In this context, also note that the SHS
from [8] is an abstract mathematical model for a system with a mixed discrete
and continuous dynamics; no more no less. The definition of e.g. all vector fields
or possible mode transitions therein might be non-trivial and often cannot be
done by pen and paper. That is why, we employ artefacts from the Petri nets
formalism so as to e.g. derive all differential balance equations in a canonical
way; which was proposed in many papers such as [10] before.

Problem Formulation. In [5], we introduced a strategy for the approximate com-
putation of our above SHA model: We let the automaton change its mode only
at equidistantly-spaced discrete points in time. Several challenges then arise. On
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the one hand, we are confronted with an explosion of the SHA model’s timed
mode graph, that - as its name suggests - captures the evolution of the SHA
model’s mode in discrete time steps; but we do not consider this combinatorial
problem here, it will be treated in another work. Rather, our present paper fo-
cusses on another major bottleneck, namely the high dimensionality of the SDE
systems defining the passenger flow dynamics in any given mode. The dimension
of theses systems of coupled SDEs that we set up for every pair (mode, station)
in the SHA model from [6] corresponds to the number of the passengers’ differ-
ent trip profiles, multiplied by the number of different discrete positions for the
passengers within this station and the vehicles docked to it. Our major concern
with this high dimensionality then is the fact that all algorithms that we have
found so far are prone to what is known as the curse of dimensionality.

Simulation of SDEs. Monte Carlo simulations [9] require to sample realiza-
tions of the uncertain initial states of the considered random variables. For
one-dimensional RVs subjected to one-dimensional SDEs this sampling might
be trivial e.g. by employing the inverse transform sampling. However, it seems
that sampling the uncertain initial state of multidimensional RVs is a non-trivial
task that is active and still an open problem. Among the algorithms proposed
thus far, we mention the Metropolis-Hastlings and the Gibbs sampler, which can
be integrated into what is called a Markov Chain Monte Carlo simulation [1].
Other more exotic sampling techniques might involve e.g. neural networks [7].

Analytic Methods. Instead of sampling as above, another approach that we shall
study elsewhere is to numerically integrate a multivariate Fokker-Planck equa-
tion. Such a system of partial ordinary differential equations is derived from
the original multidimensional SDE, and describes the time evolution of an ini-
tial probability density function (PDF) under the system’s dynamics; here, it
concerns the passenger load vector’s density function, giving the distribution of
the number of passengers in the different trip profiles. However, many compu-
tational drawbacks also come along with this method, or more specifically with
the numerical integrations required. First, not all numerical integration schemes
can ensure the conservation of the probability flux in their basic set up; with
the Finite Volume method [2] being one exception. Second, those schemes which
can ensure the conservation of the probability flux are not easily extendible from
common two or three dimensional applications to higher-dimensional problems.

Alternative Approaches. Alternatives to the computation or simulation of high-
dimensional SDEs might involve their discrete approximation, which we do not
pursue here. The technique studied here aims at decoupling the dynamics in
the SDEs, so as to produce an alternative set of lower-dimensional SDEs that
reproduces, or at least approximates, the original model dynamics. For instance,
the authors of [3] mention the local specification of flows in a fluid stochastic
Petri net model as a means for the decoupling. However, in contrast to our
approach, they look at scalar rather than vectorial (passenger) flows.
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In the rest of this paper, we shortly review our SHA model from [6] in Sec.
2 together with the discrete time computation of its state space from [5]. We
also discuss the set up of all high-dimensional SDEs for the passenger flow dy-
namics in the SHA model’s different modes. We then explain in Sec. 3 how the
passenger flows in all modes can be systematically decoupled so as to replace
the original systems of SDEs by approximating lower-dimensional ones. In this
context, we also proof asymptotic convergence of the dynamics produced by
the lower-dimensional SDEs w.r.t. the original dynamics. Last but not least, we
summarize the contribution of our approach, and give a brief outlook on future
work in Sec. 4.

2 Our SHA Model

2.1 Model Structure

Infrastructure. Basic modelling blocks of the SHA model are place/transition
nets (= Petri nets with the token flow left out), which capture the structure of
a finite set of stations S and a finite set of transportation grids G (TGs).

Every station s ∈ S is made up of a finite set P s of gathering points p ∈ P s (=
places; represented by double circles) that can accommodate a limited number
of passengers, and a finite set T s of corridors t ∈ T s (= transitions; represented
by double boxes) connecting (i) GPs to other GPs, or (ii) GPs to the station’s
exterior (cf. Fig. 1 below). Here, connected means “possibility of a passenger
flow” in the direction of the edges that connect the corridors with the GPs.

Station S1

Transportation Grid
Station S2

Station S3

PlatformAccess

1,2,3

x1: 1,2
x2: 2,3

Board

1,2,3

Wayp.
w11,2,3

x1, x2

Track
t1,2

1,2,3

Wayp.
w2

1,2,3

x1, x2

Track
t3,1

x1, x2
Track
t2,3

2,3

Wayp.
w3

2,3

x1

Alight

11

x1, x2

Alight

2,32,3

Fig. 1. Representation of the infrastructure of a sample TN in our SHA model, together
with (i) the paths of two different vehicle missions x1 and x2, and (ii) an indication of
the stops along these paths for the specification of three different trip profiles (TPs).
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Every TG g ∈ G captures the structure of a particular mode or line; and
in doing so, all possible vehicle movements between its finite set W g of discrete
waypoints w ∈ W g (= places; represented by simple circles) which accommo-
date the vehicle tokens (at maximum one vehicle per waypoint) via tracks (=
transitions; represented by simple boxes).

A finite set of tuples (a, b) ∈ I, with I ⊆ (T ×W ) ∪ (W × T ), T :=⋃
s∈S T s and W :=

⋃
g∈GW g, composed of a transition in a station and a way-

point in a TG, defines the interface between the stations and the TGs (repre-
sented by dashed arcs in Fig. 1 above): Every tuple (a, b) ∈ I either connects
some GP in a station s ∈ S to a waypoint in a TG g ∈ G, in which case a ∈ P s
and b ∈W g; or vice versa. In this way, every tuple defines which passenger flow
between a vehicle stopped at a waypoint in a TG and a GP (= platform) in a
station is possible for the purpose of boarding & alighting; see below.

Vehicle Operation. At the heart of the operation of a finite set V of all vehicle
tokens v ∈ V considered in the SHA model are missions: Every mission defines a
path in a particular transportation grid, together with (i) a sequence of stops at
the waypoints along that path; (ii) deterministic-timed (minimum & maximum
dwell times) and passenger load-dependent departure conditions from the stops
which might state that a vehicle cannot depart from a stop as long as some
passengers still want to alight from or board it; and (iii) driving times between
all waypoints which might be functions of the positions of all vehicle tokens.

Passenger Routing. We group all passengers into a finite set Y := {1, 2, . . . , n} of
n ∈ N different trip profiles (TPs): Every y ∈ Y defines a particular path in TN’s
infrastructure, together with the passengers’ preferences for the different vehicle
missions (cf. Fig. 1 above). However, this does not mean that the passengers
cannot change their TPs as we will highlight in a short (see Sec. 2.3).

2.2 Hybrid State

As common in the literature of hybrid automata, we refer to the discrete state
of our SHA model at any time τ ≥ 0 as its mode: A particular mode q ∈ Q from
the finite set of all different modes Q defines for every v ∈ V (i) the position
of v in form of a waypoint in a TG; (ii) the driving condition of v which is
either parked, stopped or driving; (iii) the operational state of v in form of a
mission to be executed, a discrete state therein, and a sequence of missions to
be accomplished. Thus, every q ∈ Q tells us which vehicle is docked to which
station; and in doing so, defines the (continuous) passenger flow dynamics in
TN.

Remark 1. We say that a vehicle v ∈ V is docked to a station s ∈ S iff (i) v
is stopped at a waypoint w ∈ W g in some TG g ∈ G; (ii) acc. to I, either
passengers can board v stopped at w from some GP in s, or alight from it to
some GP in s. Moreover, we denote by V (s, q) ⊆ V the subset of all vehicles
that are docked to s in q.
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Remark 2. If k is a row (column) vector, then we denote by k[i] the element in
its i-th column (row).

The continuous state of the SHA model at any τ ≥ 0, defines (i) the elapsed
dwell times of all stopped vehicles, (ii) the elapsed driving times of all moving
vehicles, and (iii) the passenger load M (b, τ), with M : (b, τ) ∈ (P ∪ V)×R≥0 →
M (b) and

M (b) :=

k ∈ (R≥0)
|Y|

:

|Y|∑
i=1

k[i] ≤ c (b)

 , (1)

for every vehicle b ∈ V and every GP in a station b ∈ P . Therein, P :=
⋃
s∈S P s,

M (b, τ) [i] gives the number of passenger at/on-board b, who travel acc. to the
TP i ∈ Y, and c (b), with c : P ∪ V → R>0, gives the maximum number of
passengers b can accommodate at the same time.

2.3 Balance Equations

For any q ∈ Q, we adapt the notation •b (q) for the preset and b• (q) for the
postset of any b ∈ P ∪ V ′ (q), with V ′ (q) :=

⋃
s∈S V (s, q) , from the Petri nets

literature for our purposes: •b (q) denotes the set of all corridors in the stations
that are connected by an arc pointing towards b. Accordingly, b• (q) denotes
the set of all corridors in the stations that are connected by an arc pointing
away from b. For b ∈ V ′ (q), those arcs (dashed arcs in Fig. 1 above) point
towards/away from the waypoint which accommodates b.

Note that all corridors in the stations of our SHA model are connected in a
special way to the rest of the modelled infrastructure (GPs in the stations and
waypoints in the TGs).

Remark 3. For any t ∈ T , we denote by ?t (q) := b the single GP in a station
or vehicle docked to a station b ∈ P ∪ V ′ (q) which is connected to t in q by an
arc pointing towards t iff t ∈ b• (q). Accordingly, we denote by t? (q) := a, for
any t ∈ T , the single GP or vehicle docked to a station a ∈ P ∪ V ′ (q) which is
connected to t in q by an arc pointing away from t iff t ∈ •a (q).

This special structure allows us to decompose all corridors in q ∈ Q into three
disjoint sets; implementing inflows, transfer flows, and outflows: Inflows model
the arrival processes of the passengers who join the SHA model from TN’s ex-
terior.

Definition 1 (Inflow). An inflow is a passenger flow assigned to any t ∈ T 1,
with

T 1 :=
{
t ∈ T : ∃ p ∈ P s.t. t ∈ •p∧

@ p′ ∈ P s.t. t ∈ p• ∧ @w ∈W s.t. (w, t) ∈ I
}
.

(2)

Transfer flows model passenger flows within the SHA model; including passenger
transfers between the GPs in the stations, as well as passenger transfers between
GPs in the stations and vehicles docked to the stations.
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Definition 2 (Transfer Flow). A transfer flow in q ∈ Q is a passenger flow
assigned to any t ∈ T 2 (q), with

T 2 (q) :=
{
t ∈ T : ∃ b ∈ P ∪ V (q) s.t. t ∈ •b∧

∃ b′ ∈ P ∪ V ′ (q) s.t. t ∈ (b′)
•}
.

(3)

Finally, outflows model the SHA model’s drain of passengers to TN’s exterior.

Definition 3 (Outflow). An outflow is a passenger flow assigned to any t ∈
T 3, with

T 3 :=
{
t ∈ T : ∃ p ∈ P s.t. t ∈ p• ∧

@ p′ ∈ P s.t. t ∈ p• ∧ @w ∈W s.t. (t, w) ∈ I
}
.

(4)

With that said, we denote by T ′ (q), with T ′ (q) := T 1 ∪ T 2 (q) ∪ T 3, the set of
all corridors active in q ∈ Q; and by γ (τ), with γ : R≥0 → Q, the mode of our
SHA model at time τ ≥ 0.

dM (b, τ) :=
∑

t∈•b∩T ′(γ(τ))

R (t)

Passenger flow into b︷ ︸︸ ︷
[φ (t, τ) dτ + δ (t) dW (τ)]−

∑
t∈b•∩T ′(γ(τ))

[φ (t, τ) dτ + δ (t) dW (τ)]︸ ︷︷ ︸
Passenger flow leaving b

(5)

then defines the time evolution of the passenger load of every GP in a station
and of every vehicle docked to a station b ∈ P ∪ V ′ (q) at any time τ ≥ 0
when the SHA model is in q ∈ Q. This balance equation relates M (b, τ) to all
passenger flows into b and leaving it: We capture the routing of all passengers
along the different TPs as well as their local re-routing among these TPs in
so-called routing matrices.

Remark 4. We denote by Ψd1×d2 , for some d1, d2 ∈ N>0 and any set Ψ , the set
of all matrices with d1 rows and d2 columns, whose elements are from Ψ . In the
case that d2 = 1, we drop d2 in Ψd1×d2 and write Ψd1 instead.

The i-th row and the j-th column of a particular routing matrix R (t) assigned
to t ∈ T , with

R : T →

K ∈ (R≥0)
|Y|×|Y|

:

|Y|∑
i=1

K[i, j] = 1,∀j = Y

 ,

defines the relative amount of the flow of passengers who join t acc. to the TP
j ∈ Y, and who leave t acc. to the TP i ∈ Y; and the fact that every column of
R (t) must either sum up to one or to zero, implies that all passenger flows are
conserved.
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Remark 5. Time could be included in the domain of the routing matrices above
so that they might change values during mode transitions of the SHA model
depending on the hybrid state; so as to account e.g. for loudspeaker announce-
ments.

We next write down the passenger flow assigned to every corridor t ∈ T (q) in q
acc. to its impact on M (p, τ) as the sum of a drift term φ (t, τ), with

φ : (t, τ) ∈
⋃
q∈Q

T ′ (q)× R≥0 →

v ∈ (R≥0)
|Y|

:

|Y|∑
i=1

v[i] ≤ φmax (q, t)

 ,

and a constant diagonal diffusion term

δ :
⋃
q∈Q

T ′ (q)→
{
K ∈ R|Y|×|Y| : K[i, j] = 0,∀i 6= j

}
.

Therein, φmax (q, t), with φmax : q ∈ Q×T ′ (q)→ R≥0, is the maximum passenger
throughput of the corridor t ∈ T ′ (q), when the SHA model is in q ∈ Q.

Remark 6. Let X be a continuous RV. Then, pdf (X) denotes its PDF; σ (X)
denotes its state space; and pdf (X,x) denotes the evaluation of pdf (X) at x for
some x ∈ σ (X).

We discuss the specification of φ (·) and δ (·) in more detail in the rest of this
paper. Here, only note that the drift term of a flow into some b ∈ P ∪ V ′ (q)
shifts the density of M (b, τ) in its domain. The flow’s diffusion term narrows or
broadens the density of M (b, τ).

2.4 Grouping of Balance Equations

In principle, the passenger flows in (5) can be defined as any functions of the
SHA model’s complete hybrid state as long as they are capacity- and demand-
sensitive; crucial properties that we assume for all passenger flows in our SHA
model: We say that some passenger flow is capacity-sensitive iff its drift does
not cause the passenger load of some GP or vehicle to exceed the capacity limit
of that GP or vehicle.

Definition 4 (Capacity-Sensitive Flow). A passenger flow assigned to some
t ∈ T ′ (q) in q ∈ Q is capacity-sensitive iff t ∈ T 3 or

|Y|∑
i=1

M (t?, τ) [i]→ c (t?)

implies that φ (t, τ)→ 0 for any τ ≥ 0.

Additionally, we say that a passenger flow is demand-sensitive iff its drift does
not cause any passenger load to become negative.
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Definition 5 (Demand-Sensitive Flow). A passenger flow assigned to some
t ∈ T ′ (q) in q ∈ Q is demand-sensitive iff t ∈ T 1 or

M (?t, τ) [j]

|Y|∑
i=1

R (t) [i, j]→ 0

implies that φ (t, τ) [j]→ 0 for all j ∈ Y and for any τ ≥ 0.

Remark 7. Def. 4 and 5 taken alone cannot ensure the non-negativity and ca-
pacity limits of the passenger loads assuming non-zero diffusion terms in (5).
Instead both properties must be explicitly ensured during the computation or
simulation of (5) in form of reflecting boundary conditions. See e.g. [6], where
we derive reflecting boundary conditions for the numerical integration of a mul-
tivariate Fokker-Planck equation obtained from (5).

For our purposes however, we do not need this kind of global inclusion of
the SHA model’s complete hybrid state into the specification of the passenger
flows: We restrict the domains of their drift terms to the passenger loads in their
presets and postsets.

Definition 6 (Local Flow). A passenger flow assigned to some t ∈ T ′ (q) in
q ∈ Q is local iff for any τ ≥ 0,

– t ∈ T 1, and the flow’s drift term only depends on M (t?, τ), or
– t ∈ T 2 (q), and the flow’s drift term only depends on M (?t, τ) and M (t?, τ),

or
– t ∈ T 3, and the flow’s drift term only depends on M (?t, τ).

This local specification of all passenger flows produces a natural decomposition
of all SDEs set up for any q ∈ Q: The balance equations in form of (5) set up
for the passenger loads of all GPs p ∈ P s and vehicles v ∈ V (s, q), for some
station s ∈ S, are independent from the passenger loads of all GPs outside s
and vehicles not docked to s. We can thus group them into one common system
of coupled SDEs of dimension k := (|P s|+ |V (s, q)|) |Y|, which latter system is
decoupled from those systems set up for all other stations.

Remark 8. In practice, we do only have to consider all those TPs in the domain
specification for the passenger load of a particular GP or vehicle, whose paths
cover this GP or vehicle. Thus, k as defined above only defines an upper bound
for the dimension of the system of SDEs set up for s in q.

2.5 Mode Transitions

We assume that at the initial simulation time τ = 0, with τ ≥ 0, our SHA
model is in one particular mode with marginal probability one, and we know
the elapsed driving & dwell times of all vehicles. We then let our SHA model
transition between its discrete modes only at discrete time steps τ = i∆τ , with
i ∈ N>0, of fixed length ∆τ > 0. In this context, we also let the elapsed driving
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& dwell times of all vehicles only evolve at τ = i∆τ by ∆τ . A directed acyclic
graph (DAG) then captures the time evolution of our SHA model’s vehicle load
(= particular mode and particular realization of all elapsed discrete driving &
dwell times). We do not go into details of its computation here, but only stress
some important points. Refer to [5] for more information: Every node, say m,
in this DAG, say G, represents a particular vehicle load for our SHA model in
the half-closed time interval

[
hm ∆τ , (hm + 1) ∆τ

)
iff hm ∈ N≥0 is the height

of m in G. Thus, two nodes with the same height h′ ∈ N>0 in G represent two
alternatives for our SHA model’s vehicle load in

[
h′ ∆τ , (h

′ + 1) ∆τ
)
. Two or

more branches away from m indicate the possibility of mode transitions; with
one branch for every alternative mode transition, and one additional branch for
the continuation of m-th mode. Several nodes with the same height in G can
have the same mode and thus the same passenger flow dynamics in common.

q0

q1

τ > 3∆τ

q2

τ ≥ 0,
x ∈ X

(a)

r0[0,∆τ) :

r1[∆τ , 2∆τ) : r2

x ∈ X

r3[2∆τ , 3∆τ) : r4

x ∈ X

(b)

Fig. 2. Schematic comparison of a (classical) mode graph (a) and a timed mode graph
(b) for our SHA model: X denotes a compact region in the SHA model’s complete
passenger load space as entrance condition for a not further specified passenger load-
driven mode transition, and ∆τ > 0 is the fixed time step that separates every pair of
two consecutive time layers when the SHA model can change its mode

2.6 Propagation of Passenger Loads

At any simulation time τ = i∆τ , with i ∈ N≥0 and ∆τ > 0, one single marginal
joint PDF, say pdf (i), defines the passenger loads of all GPs in the stations and of
all vehicles. For i = 0, we assume that pdf (i) is known with marginal probability
one. Then, starting from i = 0, all passenger loads have to be propagated forward
in time from one time layer in the SHA model’s DAG to the next: For the com-
putation of pdf (i+ 1), for some i ∈ N≥0, all high-dimensional systems of SDEs
defined by our SHA model’s different modes in the time layer

[
i∆τ , (i+ 1) ∆τ

)
of the DAG, must be computed from τ = i∆τ to τ = (i+ 1) ∆τ with pdf (i) as
common initial PDF. Depending on the particular use case at hand so as to e.g.
forecast the risk of overcrowded platforms, this forward propagation is normally
terminated once the simulation time exceeds some constant threshold. Refer to
[5] for more details.
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3 The Decoupling of All Passenger Flows

3.1 Overview

Our decoupling approach is perhaps best described by the following sequence of
images: We assume that every GP in a station and every vehicle b ∈ P ∪ V has
the shape of a circular area, say Ab. We next assume that the passenger load of
b is equally distributed on Ab at any simulation time step τ = i∆τ , with τ ≥ 0,
i ∈ N≥0, and ∆τ > 0; in which ∆τ is the fixed time step that separates every
pair of two consecutive time layers confining all mode transitions.

Remark 9. We denote by Γ (τ), with Γ : R≥0 → 2Q \ ∅, the subset of all modes
our SHA model can be in at time τ ∈ R≥0.

For any time τ ∈ Hi, from the time interval Hi :=
[
i∆τ , (i+ 1) ∆τ

)
, any mode

q ∈ Γ (τ), and any b ∈ P ∪ V ′ (q), we divide Ab into |(•b ∪ b•) ∩ T ′ (q)| non-
overlapping slices (cf. Fig 3 below); in which one slice is attributed to every
passenger flow into or leaving b, i.e., the passenger flow assigned to every corridor
t ∈ (•b ∪ b•)∩T ′ (q). Our assumptions above then imply that at τ = i∆τ (i) the
surface area of a particular slice defines how many passengers it accommodates
at τ , and (ii) the distribution of this latter number of passengers w.r.t. the
passengers’ different TPs is identical to the distribution of the total number
of passengers at b and τ w.r.t. the different TPs. We moreover assume that
a retractable wall is installed along every frontier separating two neighbouring
slices (dashed lines in Fig. 3 below). These walls prevent the equidistant re-
distribution of the slices’ passenger loads at any τ ∈ Hi, which diffusion is
restricted to the discrete time step τ = (i+ 1) ∆τ when all walls are removed.

λ (p1,t12,q) c (p1)

λ (p1,t1,q) c (p1)

λ (p1,t2,q) c (p1)

p1

t1: inflow

t2: outflow

t12: transfer

p2

Fig. 3. Schematic representation of our decoupling approach: all GPs and vehicles
docked to the stations in a particular mode, say q, of the SHA model are divided into
slices, with impenetrable walls separating neighbouring slices until the next discrete
point in time, say τ , arrives when the SHA model can change its mode. As long as the
SHA model stays in q, all passengers flow into or out of the slices. They do not flow
into or out of the original GPs and vehicles. A re-distribution of the slices’ passenger
loads occurs at τ .

So in our physically-touched model above, the slices’ passenger loads are
decoupled at any τ ∈ Hi, which implies that they might be filled and emptied
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at different rates if we assume that the passengers flow into and leave the slices
of b; instead of flowing into and leaving b itself. For the specification of the
slices’ surface areas, we use the maximum passenger throughputs assigned to
the corridors for the different modes; see below.

3.2 Decoupled Balance Equations

General Structure. The system of SDEs that we will set up for the decoupled
passenger flow assigned to every t ∈ T ′ (q) for any q ∈ Q next, defines how
this flow manipulates the passenger load Mq,t (?t, τ) of the isolated slice from ?t
attributed to t in q and/or the passenger load Mq,t (t?, τ) of the isolated slice
from t? attributed to t in q; when our SHA model is in q. We write it down in
the very general form of

dXq,t (τ) := Aq,t (Xq,t (τ)) dτ +Bq,t (Xq,t (τ)) dW (τ) , (6)

with the state vector Xq,t, the drift vector Aq,t, the diffusion matrix Bq,t, and
the vector of |Y| uncorrelated Wiener processes W.

Remark 10. We write the tuple of a mode q ∈ Q and a transition t ∈ T ′ (q)
in form of subscript separating both in the given order by a comma next to a
variable or constant iff we refer to the projection of that variable or constant in
(6) set up for the decoupled passenger flow assigned to t in q.

Projection of Passenger Loads & Flows. As outlined in the figurative overview
of our decoupling approach above, we project M (b, τ), for any b ∈ P ∪V ′ (q) and
q ∈ Q, to Mq,t (t, τ), with Mq,t : T ′ (q)× R≥0 →Mq,t (b) and

Mq,t (b) :=

k ∈ (R≥0)
|Y|

:

|Y|∑
i=1

k[i] ≤ λ (b, t, q) c (b)

 ,

at τ = i∆τ , with i ∈ N≥0, acc. to

Mq,t (b, i∆τ) := λ (b, t, q) M (b, i∆τ) (7)

iff our SHA model is in mode q at τ = i∆τ . Therein, λ (b, t, q), with

λ (b, t, q) :=
φmax (q, t)∑

t′∈(•b∪b•)∩T ′(q)
φmax (q, t′)

, (8)

defines the maximum number λ (b, t, q) c (b) of passengers the isolated slice from
b ∈ P ∪V ′ (q) assigned to t ∈ (•b ∪ b•)∩ T ′ (q) in q can accommodate (cf. Fig. 3
above). This simple projection implies

pdf (Mq,t (b, i∆τ) = λ (b, t) k) = pdf (M (b, i∆τ) = k) ,∀k ∈M (b) , (9)

withM (b) from (1). We also use (8) to project φ (t, τ) - which we assume to be
local, demand- & capacity sensitive - to φq,t (t, τ) acc. to Tab. 1 below, which
implies that all qualitative properties of φ (t, τ) such as demand-sensitiveness are
adopted by φq,t (t, τ).
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Table 1. Specification of φq,t (t, τ) assigned to t ∈ T ′ (q) in q ∈ Q

Inflow: φ
(
λ−1 (t?, t, q) Mq,t (t?, τ)

)
Transfer Flow: φ

(
λ−1 (?t, t, q) Mq,t (?t, τ) , λ−1 (t?, t, q) Mq,t (t?, τ)

)
Outflow: φ

(
λ−1 (?t, t, q) Mq,t (?t, τ)

)
Inflows. In general, we neither know the passengers’ exact arrival times, nor
the TPs of the new arriving passengers. However, in most situations we know
some reference values, and we can estimate quite reasonably fluctuations around
them (e.g. from statistical considerations); which latter knowledge we can then
map to the systems of SDEs set up for all decoupled inflows. More specifically,
we set up for every t ∈ T 1 a balance equation in form of (5), which defines the
impact of the inflow assigned to t, to the passenger load of t?; and integrate this
balance equation into (6). Tab. 2 lists the corresponding ingredients.

Transfer Flows. Once having joined the SHA model, we assume that the passen-
ger transfer dynamics regarded in isolation within the SHA model in a particular
mode is deterministic; which implies zero diffusion terms for the specification of
all decoupled passenger transfer flows: For every t ∈ T 2 (q) in q ∈ Q, we set
up two balance equations in form of (5). The first balance equation defines the
impact of the transfer flow assigned to t, to the passenger load of ?t. Accord-
ingly, the second balance equation relates the passenger load of t? to the same
decoupled transfer flow. We then integrate both balance equations into (6) acc.
to Tab. 2.

Table 2. Specification of the system of SDEs set up for the decoupled inflow, transfer
flow, or outflow assigned to t ∈ T ′ (q) in mode q ∈ Q of our SHA model

Inflow Transfer Flow Outflow

Schematic
structure t?t ?t

t

t? ?t t

Xq,t (τ) Mq,t (t?, τ)

[
Mq,t (?t, τ)
Mq,t (t?, τ)

]
Mq,t (?t, τ)

Aq,t (τ) R (t) φq,t (t, τ)

[
−φq,t (t, τ)

R (t) φq,t (t, τ)

]
−φq,t (t, τ)

Bq,t δ (t) 0 0

Outflows. Similar to the specification of all transfer flows above, we demand zero
diffusion terms for all passenger outflows: For every t ∈ T 3, we set up a balance
equation in form of (5) and integrate it into (6). This balance equation relates
the passenger load of ?t, to the outflow assigned to t (cf. Tab. 2).
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3.3 Correctness of Our Decoupling Approach

Assume that our SHA model is in mode q ∈ Q at time τ = i∆τ , for some
i ∈ N≥0; in which ∆τ > 0 is the fixed time step that separates every pair of two
consecutive time layers confining all mode transitions. Moreover, assume that we
like to compute the probability of a particular mode transition of the SHA model
at time τ = (i+ 1) ∆τ ; which is triggered by the passenger load trajectory of
some GP in a station or vehicle docked to a station b ∈ P ∪V ′ (q) taking a value
from k ∈ K, with K ⊆ M (b) and M (b) from (1). More formally speaking, we
thus like to compute the probability

P (M (b, (i+ 1) ∆τ) ∈ K) :=

∫
K

pdf (M (b, (i+ 1) ∆τ) = k) dk (10)

with M (b, τ) specified at τ = i∆τ by pdf (M (b, i∆τ)) acc. to (9).

Remark 11. Let X1, X2, . . . , Xn be a vector of n ∈ N>0 continuous RVs.
Then, pdf (Xj ; j ∈ {1, 2, . . . , n}) denotes the joint PDF of X1, X2, . . . , Xn;
pdf (Xj = xj ; j ∈ {1, 2, . . . , n}) denotes the evaluation of pdf (Xj ; j ∈ {1, 2, . . . , n})
at (x1, x2, . . . , xn), with xj ∈ σ (Xj), ∀j ∈ {1, 2, . . . , n}.

Look at

P

 ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i+ 1) ∆τ) ∈ K

 =

∫
K

pdf

 ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i+ 1) ∆τ) = k

dk

(11)

instead, which is the probability that the sum of the decoupled passenger loads
of the different isolated slices from b (isolated in q) takes a value from K at
τ = (i+ 1) ∆τ . Let

l := |(•b ∪ b•) ∩ T ′ (q)| , (12)

and introduce the set M (b, k), with

M (b, k) :=

(k1, k2, . . . , kl) ∈ (M (b))
l

:

l∑
j=1

kj = k

 (13)

Moreover, let {t1, t2, . . . , tl} := (•b ∪ b•)∩ T ′ (q). Then, write down (11) in form
of

P

 ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, (i+ 1) ∆τ) ∈ K

 =

∫
K

∫
M(b,k)

pdf
(
Mq,tj (b, (i+ 1) τ) = kj ; j ∈ {1, 2, . . . , l}

)
d (k1, k2, . . . , kl) dk

(14)
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Therein, note that Mq,t1 (b, (i+ 1) ∆τ), . . . , Mq,tl (b, (i+ 1) ∆τ) are independent
RVs. Thus, (14) simplifies to

P

 ∑
t∈(•b∪b•)∩T ′(q)

Mt (b, (i+ 1) ∆τ) ∈ K

 =

∫
K

∫
M(b,k)

∏
tj∈(•b∪b•)∩T ′(q)

pdf
(
Mtj (b, (i+ 1) τ) = kj

)
d (k1, k2, . . . , kl) dk

(15)

Theorem 1. For any q ∈ Q, b ∈ P ∪ V ′ (q), and k ∈M (b), the integral∫
M(b,k)

∏
tj∈(•b∪b•)∩T ′(q)

pdf (Mti (b, (i+ 1) τ) = ki) d (k1, k2, . . . , kl)

from (15) converges to pdf (M (b, (i+ 1) ∆τ) = k) from (10) for ∆τ
∆τ>0−→ 0.

Note that Thm. 1 implies that our above decoupling approach produces a
set of SDEs (one for every decoupled flow) for the different modes of our SHA
model; this set approximates the original coupled passenger flow dynamics in
the limiting case of vanishing discrete simulation time steps, when we let the
decoupled slices communicate their results.

Proof of Theorem 1. Common Initial State: From (7), note that∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, i∆τ) =
∑

t∈(•b∪b•)∩T ′(q)

λ (b, t, q) M (b, i∆τ)

= M (b, i∆τ)
∑

t∈(•b∪b•)∩T ′(q)

λ (b, t, q) .
(16)

From (9) follows ∑
t∈(•b∪b•)∩T ′(q)

λ (b, t, q) = 1, (17)

which in turn implies ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, i∆τ) = M (b, i∆τ) . (18)

Common Differential Dynamics: The continuous time evolution of∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, τ)

in the time interval τ ∈
[
i∆τ , (i+ 1) ∆τ

)
is defined by

d

 ∑
t∈(•b∪b•)∩T ′(q)

Mq,t (b, τ)

 =
∑

t∈(•b∪b•)∩T ′(q)

dMq,t (b, τ), (19)
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with initial state

Mq,t (b, i∆τ) ,

for some i ∈ N≥0 and τ∆τ > 0, which is identical to (5) for ∆τ → 0 given the
specification of (6) acc. to Tab. 1 and Tab. 2, q.e.d.

3.4 Consequence of Our Decoupling Approach

In the original approximate computation of our SHA model’s state space, we were
confronted with one system of coupled SDEs for every station s ∈ S in every
mode. The dimension of this system is n := (ns,1 + ns,2) ny iff ns,1 corresponds
to the number of different gathering points in s, ns,2 corresponds to the number of
vehicles docked to s, and ny := |Y| corresponds to the number of the passengers’
different trip profiles in the TN at hand. Now our decoupling approach replaces
this n-dimensional system of SDEs by a set of probably much smaller systems
of ODEs (with uncertain initial states) and SDEs: Every of this new/replacing
system of equations has 2ny dimensions if it captures a transfer flow, and ny

dimensions otherwise.

4 Summary & Outlook

In this paper, we have considered one major bottleneck that may arise in the ap-
proximate computation of our SHA model from [5]: the numerical computation
of the many high-dimensional SDEs, which define the passenger flow dynamics
in its different modes. More specifically, we have shown how all passenger flows
can be systematically decoupled in the different modes of our SHA model, which
produces a set of lower-dimensional ODEs and SDEs replacing the original SDEs.
We proved correctness of this decoupling approach. Numerical experiments are
under way. We want to share our insights obtained from them in future pub-
lications, where we also intend to (i) discuss improvements targeting the com-
putation of the SHA model’s discrete state, and (ii) show how our model and
algorithms for its approximate computation can be applied to the perturbation
analysis of a multimodal TN.

Acknowledgement. The final publication will be available at Springer.
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