Pairwise Quantization

Abstract : We consider the task of lossy compression of high-dimensional vectors through quantization. We propose the approach that learns quantization parameters by minimizing the distortion of scalar products and squared distances between pairs of points. This is in contrast to previous works that obtain these parameters through the minimization of the reconstruction error of individual points. The proposed approach proceeds by finding a linear transformation of the data that effectively reduces the minimization of the pairwise distortions to the minimization of individual reconstruction errors. After such transformation, any of the previously-proposed quantization approaches can be used. Despite the simplicity of this transformation, the experiments demonstrate that it achieves considerable reduction of the pairwise distortions compared to applying quantization directly to the untransformed data.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01330582
Contributeur : Relja Arandjelović <>
Soumis le : samedi 11 juin 2016 - 17:50:37
Dernière modification le : vendredi 25 mai 2018 - 12:02:06

Fichier

PairwiseQuantization.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01330582, version 1
  • ARXIV : 1606.01550

Collections

Citation

Artem Babenko, Relja Arandjelović, Victor Lempitsky. Pairwise Quantization. 2016. 〈hal-01330582〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

99