Localization of the $W^{-1,q}$ norm for local a posteriori efficiency - Archive ouverte HAL Access content directly
Journal Articles IMA Journal of Numerical Analysis Year : 2020

Localization of the $W^{-1,q}$ norm for local a posteriori efficiency

(1, 2) , (2) , (3, 4)
1
2
3
4

Abstract

This paper gives a direct proof of localization of dual norms of bounded linear functionals on the Sobolev space $W^{1,p}_0(\Omega)$, $1 \leq p \leq \infty$. The basic condition is that the functional in question vanishes over locally supported test functions from $W^{1,p}_0(\Omega)$ which form a partition of unity in $\Omega$, apart from close to the boundary $\partial \Omega$. We also study how to weaken this condition. The results allow in particular to establish local efficiency and robustness with respect to the exponent $p$ of a posteriori estimates for nonlinear partial differential equations in divergence form, including the case of inexact solvers. Numerical illustrations support the theory.
Fichier principal
Vignette du fichier
norms_nonlin.pdf (1.38 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01332481 , version 1 (16-06-2016)
hal-01332481 , version 2 (15-01-2017)
hal-01332481 , version 3 (04-07-2018)

Identifiers

Cite

Jan Blechta, Josef Málek, Martin Vohralík. Localization of the $W^{-1,q}$ norm for local a posteriori efficiency. IMA Journal of Numerical Analysis, 2020, 40 (2), pp.914-950. ⟨10.1093/imanum/drz002⟩. ⟨hal-01332481v3⟩
539 View
606 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More