, C 1 |d| p ? ? (d) ·d, for all d ? R d , 5. |? (d) | ? C 2 (1 + |d|)

E. G. See,

R. G. Acosta and . Durán, An optimal Poincaré inequality in L 1 for convex domains URL: https://doi.org/10, Proc. Amer, pp.195-202, 2004.

M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The FEniCS Project version 1.5, Archive of Numerical Software, 2015.

I. Babu?ka, J. M. Melenk-e, and . Doi, The partition of unity method URL: https://doi.org/10, 4<727:: AID-NME86>3.3.CO4<727::AID-NME86>3.3.CO, pp.727-7581097, 1002.

I. Babu?ka and A. Miller, A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator, Computer Methods in Applied Mechanics and Engineering, vol.61, issue.1, pp.61-62, 1987.
DOI : 10.1016/0045-7825(87)90114-9

J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp, vol.61, pp.523-537, 1993.

J. Blechta, DOLFIN tools for a posteriori error estimation, version "paper- norms-nonlin-code-v1.0-rc3, 2016.


J. Blechta, J. Málek, and K. R. , On the classification of incompressible fluids, 2018.

J. Blechta, J. Málek, and M. Vohralík, Generalized Stokes flows of implicitly constituted fluids: a posteriori error control and full adaptivity, 2018.

D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl, Mech. Engrg, vol.198, pp.1189-1197, 2009.

S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, of Texts in Applied Mathematics, 2008.

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, of Springer Series in Computational Mathematics, pp.978-979, 1991.
DOI : 10.1007/978-1-4612-3172-1

A. Buffa and C. Giannelli, Adaptive isogeometric methods with hierarchical splines: Error estimator and convergence, Mathematical Models and Methods in Applied Sciences, vol.26, issue.01, pp.1-25, 2016.
DOI : 10.1016/j.cma.2011.09.004

M. Bulí?ek, P. Gwiazda, J. Málek, K. R. Rajagopal, and A. ?wierczewska-gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph, in Mathematical Aspects of Fluid Mechanics, LMS Lecture Notes Series, vol.402, pp.23-51, 2012.

M. Bulí?ek, P. Gwiazda, J. Málek, and A. ?wierczewska-gwiazda, On Unsteady Flows of Implicitly Constituted Incompressible Fluids, SIAM Journal on Mathematical Analysis, vol.44, issue.4, pp.2756-2801, 2012.
DOI : 10.1137/110830289

M. Bulí?ek and J. Málek, On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, in Recent developments of mathematical fluid mechanics, Adv. Math. Fluid Mech, pp.135-156

M. Bulí?ek, J. Málek, K. Rajagopal, and E. Süli, On elastic solids with limiting small strain: modelling and analysis URL: https, EMS Surv. Math. Sci, vol.1, pp.283-332, 2014.

C. Carstensen and S. A. Funken, Fully Reliable Localized Error Control in the FEM, SIAM Journal on Scientific Computing, vol.21, issue.4, pp.1465-1484, 1999.
DOI : 10.1137/S1064827597327486

C. Carstensen and R. Klose, A Posteriori Finite Element Error Control for the P-Laplace Problem, SIAM Journal on Scientific Computing, vol.25, issue.3, pp.792-814, 2003.
DOI : 10.1137/S1064827502416617

A. Chaillou and M. Suri, A posteriori estimation of the linearization error for strongly monotone nonlinear operators, Journal of Computational and Applied Mathematics, vol.205, issue.1, pp.72-87, 2007.
DOI : 10.1016/j.cam.2006.04.041

S. Chua and R. L. Wheeden, ESTIMATES OF BEST CONSTANTS FOR WEIGHTED POINCAR?? INEQUALITIES ON CONVEX DOMAINS, Proceedings of the London Mathematical Society, vol.93, issue.01, pp.93-197, 2006.
DOI : 10.1017/S0024611506015826

P. Ciarlet, J. , and M. Vohralík, Localization of global norms and robust a posteriori error control for transmission problems with sign-changing coefficients Accepted for publication. URL: https, M2AN Math. Model. Numer. Anal, 2018.
DOI : 10.1051/m2an/2018034

URL : https://hal.inria.fr/hal-01148476/file/transm%20%281%29.pdf

A. Cohen, R. Devore, and R. H. Nochetto, Convergence rates of AFEM with H ?1 data, Found, Comput. Math, vol.12, pp.671-718, 2012.
DOI : 10.1007/s10208-012-9120-1

URL : http://www.math.umd.edu/%7Erhn/papers/pdf/afemH-1.pdf

L. Diening and C. Kreuzer, -Laplacian Equation, SIAM Journal on Numerical Analysis, vol.46, issue.2, pp.614-638, 2008.
DOI : 10.1137/070681508

L. Diening, C. Kreuzer, and E. Süli, Finite Element Approximation of Steady Flows of Incompressible Fluids with Implicit Power-Law-Like Rheology, SIAM Journal on Numerical Analysis, vol.51, issue.2, pp.984-1015, 2013.
DOI : 10.1137/120873133

URL : http://arxiv.org/pdf/1204.2145

L. Alaoui, A. Ern, and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.37-40, pp.2782-2795, 2011.
DOI : 10.1016/j.cma.2010.03.024

URL : https://hal.archives-ouvertes.fr/hal-00410471

A. Ern and J. Guermond, Theory and practice of finite elements, of Applied Mathematical Sciences, 2004.
DOI : 10.1007/978-1-4757-4355-5

A. Ern and M. Vohralík, Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs, SIAM Journal on Scientific Computing, vol.35, issue.4, pp.1761-1791, 2013.
DOI : 10.1137/120896918

URL : https://hal.archives-ouvertes.fr/hal-00681422

, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming , discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal, vol.53, p.1058, 2015.

L. C. Evans, Partial differential equations, 1998.

G. Francfort, F. Murat, and L. Tatar, Homogenization of monotone operators in divergence form with x-dependent multivalued graphs, Annali di Matematica Pura ed Applicata, vol.7, issue.3, pp.23-59, 2004.
DOI : 10.1007/978-94-010-1537-0

, Meshfree methods for partial differential equations VIII, Lecture Notes in Computational Science and Engineering, vol.115, 2015.

J. Hron, J. Málek, J. Stebel, and K. Tou?ka, A novel view on computations of steady flows of Bingham fluids using implicit constitutive relations, MORE preprint MORE, vol.08, 2017.

P. Jiránek, Z. Strako?, and M. Vohralík, A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers, SIAM Journal on Scientific Computing, vol.32, issue.3, pp.1567-1590, 2010.
DOI : 10.1137/08073706X

C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology, ESAIM: Mathematical Modelling and Numerical Analysis, vol.50, issue.5, pp.1333-1369, 2016.
DOI : 10.1093/acprof:oso/9780199679423.001.0001

V. Kulvait, J. Málek, and K. , Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies, Archives of Mechanics, p.69, 2017.

J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969.

J. M. Melenk and I. Babu?ka, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl URL: https://doi. org/10, Mech. Engrg, vol.139, issue.96, pp.289-31410, 1996.

J. Pape?, U. Rüde, M. Vohralík, and B. Wohlmuth, Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. HAL Preprint 01662944, submitted for publication URL: https, 2017.

J. Pape?, Z. Strako?, and M. Vohralík, Estimating and localizing the algebraic and total numerical errors using flux reconstructions URL: https: //link.springer.com/article, Numer. Math, vol.13810, pp.681-721, 2018.

S. Repin, of Radon Series on Computational and Applied Mathematics, 2008.

G. Strang and G. J. Fix, An Analysis of the Finite-Element Method, Journal of Applied Mechanics, vol.41, issue.1, 1973.
DOI : 10.1115/1.3423272

H. , Function spaces and wavelets on domains URL: https, EMS Tracts in Mathematics European Mathematical Society (EMS), vol.7, 2008.

A. Veeser, Approximating Gradients with Continuous Piecewise Polynomial Functions, Foundations of Computational Mathematics, vol.94, issue.3, pp.723-750, 2016.
DOI : 10.1007/s002110100308

URL : http://arxiv.org/pdf/1402.3945

A. Veeser and R. Verfürth, Explicit Upper Bounds for Dual Norms of Residuals, SIAM Journal on Numerical Analysis, vol.47, issue.3, pp.2387-2405, 2009.
DOI : 10.1137/080738283

, Poincaré constants for finite element stars, IMA J. Numer. Anal, vol.32, pp.30-47, 2012.

R. Verfürth, A posteriori error estimates for non-linear parabolic equations, 2004.

, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, 2013.