On algebraic damping close to inhomogeneous Vlasov equilibria in multi-dimensional spaces

Abstract : We investigate the asymptotic damping of a perturbation around inhomogeneous stable stationary states of the Vlasov equation in spatially multi-dimensional systems. We show that branch singularities of the Fourier-Laplace transform of the perturbation yield algebraic dampings. In two spatial dimensions, we classify the singularities and compute the associated damping rate and frequency. This 2D setting also applies to spherically symmetric self-gravitating systems. We validate the theory using a toy model and an advection equation associated with the isochrone model, a model of spherical self-gravitating systems.
Type de document :
Article dans une revue
Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2013, 〈10.1088/1751-8113/46/22/225501〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01332789
Contributeur : Julien Barre <>
Soumis le : jeudi 16 juin 2016 - 14:50:11
Dernière modification le : vendredi 12 janvier 2018 - 01:50:58

Fichier

arxiv_version.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Julien Barre, Yoshiyuki Yamaguchi. On algebraic damping close to inhomogeneous Vlasov equilibria in multi-dimensional spaces. Journal of Physics A: Mathematical and Theoretical, IOP Publishing, 2013, 〈10.1088/1751-8113/46/22/225501〉. 〈hal-01332789〉

Partager

Métriques

Consultations de la notice

54

Téléchargements de fichiers

20