Extracting the Core Structural Connectivity Network: Guaranteeing Network Connectedness Through a Graph-Theoretical Approach

Demian Wassermann 1 Dorian Mazauric 2 Guillermo Gallardo-Diez 1 Rachid Deriche 1
1 ATHENA - Computational Imaging of the Central Nervous System
CRISAM - Inria Sophia Antipolis - Méditerranée
2 ABS - Algorithms, Biology, Structure
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We present a graph-theoretical algorithm to extract the connected core structural connectivity network of a subject population. Extracting this core common network across subjects is a main problem in current neuroscience. Such network facilitates cognitive and clinical analyses by reducing the number of connections that need to be explored. Furthermore, insights into the human brain structure can be gained by comparing core networks of different populations. We show that our novel algorithm has theoretical and practical advantages. First, contrary to the current approach our algorithm guarantees that the extracted core subnetwork is connected agreeing with current evidence that the core structural network is tightly connected. Second, our algorithm shows enhanced performance when used as feature selection approach for connectivity analysis on populations.
Type de document :
Communication dans un congrès
MICCAI 2016, Sep 2016, Athens, Greece. Medical Image Computing and Computer-Assisted Intervention -- MICCAI, 2016
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01333301
Contributeur : Demian Wassermann <>
Soumis le : mardi 12 juillet 2016 - 15:59:04
Dernière modification le : jeudi 11 janvier 2018 - 16:47:58

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01333301, version 2

Collections

Citation

Demian Wassermann, Dorian Mazauric, Guillermo Gallardo-Diez, Rachid Deriche. Extracting the Core Structural Connectivity Network: Guaranteeing Network Connectedness Through a Graph-Theoretical Approach. MICCAI 2016, Sep 2016, Athens, Greece. Medical Image Computing and Computer-Assisted Intervention -- MICCAI, 2016. 〈hal-01333301v2〉

Partager

Métriques

Consultations de la notice

273

Téléchargements de fichiers

275