R. Bakshi, A. J. Thompson, M. A. Rocca, D. Pelletier, V. Dousset et al., MRI in multiple sclerosis: current status and future prospects, The Lancet Neurology, vol.7, issue.7, pp.615-625, 2008.
DOI : 10.1016/S1474-4422(08)70137-6

F. Barkhof, The clinico-radiological paradox in multiple sclerosis revisited, Current Opinion in Neurology, vol.15, issue.3, pp.239-245, 2002.
DOI : 10.1097/00019052-200206000-00003

A. Bitsch, J. Schuchardt, S. Bunkowski, T. Kuhlmann, and W. Brück, Acute axonal injury in multiple sclerosis: Correlation with demyelination and inflammation, Brain, vol.123, issue.6, pp.1174-1183, 2000.
DOI : 10.1093/brain/123.6.1174

P. A. Brex, O. Ciccarelli, J. I. O-'riordan, M. Sailer, A. J. Thompson et al., A Longitudinal Study of Abnormalities on MRI and Disability from Multiple Sclerosis, New England Journal of Medicine, vol.346, issue.3, pp.158-164, 2002.
DOI : 10.1056/NEJMoa011341

T. Brosch, L. Tang, Y. Yoo, D. Li, A. Traboulsee et al., Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation, IEEE Transactions on Medical Imaging, vol.35, issue.5, 2016.
DOI : 10.1109/TMI.2016.2528821

A. Buades, B. Coll, and J. M. Morel, A Review of Image Denoising Algorithms, with a New One, Multiscale Modeling & Simulation, vol.4, issue.2, pp.490-530, 2005.
DOI : 10.1137/040616024

URL : https://hal.archives-ouvertes.fr/hal-00271141

O. Commowick, P. Fillard, O. Clatz, and S. K. Warfield, Detection of DTI White Matter Abnormalities in Multiple Sclerosis Patients, Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'08), Part I, pp.975-982, 2008.
DOI : 10.1007/978-3-540-85988-8_116

URL : https://hal.archives-ouvertes.fr/inria-00502709

O. Commowick, A. Maarouf, J. Ferré, J. Ranjeva, G. Edan et al., Diffusion MRI abnormalities detection with orientation distribution functions: A multiple sclerosis longitudinal study, Medical Image Analysis, vol.22, issue.1, pp.114-123, 2015.
DOI : 10.1016/j.media.2015.02.005

URL : https://hal.archives-ouvertes.fr/inserm-01134107

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

A. Crimi, O. Commowick, A. Maarouf, J. C. Ferre, E. Bannier et al., Predictive Value of Imaging Markers at Multiple Sclerosis Disease Onset Based on Gadolinium- and USPIO-Enhanced MRI and Machine Learning, PLoS ONE, vol.23, issue.4, p.93024, 2014.
DOI : 10.1371/journal.pone.0093024.t003

URL : https://hal.archives-ouvertes.fr/hal-00971524

C. M. Dalton, D. T. Chard, G. R. Davies, K. A. Miszkiel, D. R. Altmann et al., Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes, Brain, vol.127, issue.5, pp.1101-1107, 2004.
DOI : 10.1093/brain/awh126

H. Deshpande, P. Maurel, and C. Barillot, Classification of multiple sclerosis lesions using adaptive dictionary learning, Computerized Medical Imaging and Graphics, vol.46, pp.2-10, 2015.
DOI : 10.1016/j.compmedimag.2015.05.003

URL : https://hal.archives-ouvertes.fr/hal-01151695

C. Fennema-notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-grethe et al., Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location, Human Brain Mapping, vol.23, issue.2, pp.99-113, 2006.
DOI : 10.1002/hbm.20161

D. Garcia-lorenzo, S. Prima, D. L. Arnold, D. L. Collins, and C. Barillot, Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis, IEEE Transactions on Medical Imaging, vol.30, issue.8, pp.1455-1467, 2011.
DOI : 10.1109/TMI.2011.2114671

URL : https://hal.archives-ouvertes.fr/inserm-00590724

E. Geremia, O. Clatz, B. H. Menze, E. Konukoglu, A. Criminisi et al., Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images, NeuroImage, vol.57, issue.2, pp.378-390, 2011.
DOI : 10.1016/j.neuroimage.2011.03.080

URL : https://hal.archives-ouvertes.fr/inria-00616194

R. Hédouin, O. Commowick, A. Stamm, and C. Barillot, Interpolation and Averaging of Multi-Compartment Model Images, Medical Image Computing and Computer-Assisted Intervention --MICCAI 2015, pp.354-362, 2015.
DOI : 10.1007/978-3-319-24571-3_43

Z. Hou, A Review on MR Image Intensity Inhomogeneity Correction, International Journal of Biomedical Imaging, vol.5, issue.4, part ii, pp.1-11, 2006.
DOI : 10.1155/IJBI/2006/49515

J. E. Iglesias, C. Y. Liu, P. M. Thompson, and Z. Tu, Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods, IEEE Transactions on Medical Imaging, vol.30, issue.9, pp.1617-1634, 2011.
DOI : 10.1109/TMI.2011.2138152

L. Kappos, D. Moeri, E. W. Radue, A. Schoetzau, K. Schweikert et al., Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis, The Lancet, vol.353, issue.9157, pp.964-969, 1999.
DOI : 10.1016/S0140-6736(98)03053-0

Z. Karimaghaloo, M. Shah, S. J. Francis, D. L. Arnold, D. L. Collins et al., Automatic Detection of Gadolinium-Enhancing Multiple Sclerosis Lesions in Brain MRI Using Conditional Random Fields, IEEE Transactions on Medical Imaging, vol.31, issue.6, pp.1181-1194, 2012.
DOI : 10.1109/TMI.2012.2186639

Y. Karpate, O. Commowick, and C. Barillot, Probabilistic one class learning for automatic detection of multiple sclerosis lesions, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015.
DOI : 10.1109/ISBI.2015.7163917

URL : https://hal.archives-ouvertes.fr/inserm-01127690

Y. Karpate, O. Commowick, and C. Barillot, Robust Detection of Multiple Sclerosis Lesions from Intensity-Normalized Multi-Channel MRI, SPIE Medical Imaging, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01127692

Y. Karpate, O. Commowick, G. Edan, and C. Barillot, Longitudinal Intensity Normalization in Multiple Sclerosis Patients. Miccai Workshop on Clinical Image-Based Procedures. Translational Research in Medical Imaging, pp.1-8, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01074699

E. Leray, J. Yaouanq, L. Page, E. Coustans, M. Laplaud et al., Evidence for a two-stage disability progression in multiple sclerosis, Brain, vol.133, issue.7, pp.1900-1913, 2010.
DOI : 10.1093/brain/awq076

X. Lladó, A. Oliver, M. Cabezas, J. Freixenet, J. C. Vilanova et al., Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches, Information Sciences, vol.186, issue.1, pp.164-185, 2012.
DOI : 10.1016/j.ins.2011.10.011

D. Ma, V. Gulani, N. Seiberlich, K. Liu, J. L. Sunshine et al., Magnetic resonance fingerprinting, Nature, vol.211, issue.7440, pp.187-192, 2013.
DOI : 10.2307/2532051

J. Maintz and M. Viergever, A survey of medical image registration, Medical Image Analysis, vol.2, issue.1, pp.1-36, 1998.
DOI : 10.1016/S1361-8415(01)80026-8

D. H. Miller, Biomarkers and surrogate outcomes in neurodegenerative disease: Lessons from multiple sclerosis, NeuroRX, vol.59, issue.Suppl 3, pp.284-294, 2004.
DOI : 10.1602/neurorx.1.2.284

O. 'riordan, J. I. Thompson, A. J. Kingsley, D. P. Macmanus, D. G. Kendall et al., The prognostic value of brain MRI in clinically isolated syndromes of the CNS. A 10-year follow-up, Brain, vol.121, issue.3, pp.495-503, 1998.
DOI : 10.1093/brain/121.3.495

J. H. Simon, L. D. Jacobs, M. K. Campion, R. A. Rudick, D. L. Cookfair et al., A longitudinal study of brain atrophy in relapsing multiple sclerosis, Neurology, vol.53, issue.1, pp.139-148, 1999.
DOI : 10.1212/WNL.53.1.139

A. Stamm, P. Perez, and C. Barillot, A new multi-fiber model for low angular resolution diffusion MRI, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.936-939, 2012.
DOI : 10.1109/ISBI.2012.6235710

URL : https://hal.archives-ouvertes.fr/inserm-00858205

N. Stikov, J. S. Campbell, T. Stroh, M. Lavelee, S. Frey et al., In vivo histology of the myelin g-ratio with magnetic resonance imaging, NeuroImage, vol.118, pp.397-405, 2015.
DOI : 10.1016/j.neuroimage.2015.05.023

K. Van-leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Transactions on Medical Imaging, vol.20, issue.8, pp.677-688, 2001.
DOI : 10.1109/42.938237

U. Vovk, F. Pernus, and B. Likar, A Review of Methods for Correction of Intensity Inhomogeneity in MRI, IEEE Transactions on Medical Imaging, vol.26, issue.3, pp.405-421, 2007.
DOI : 10.1109/TMI.2006.891486