Online Model Selection for Restricted Covariance Matrix Adaptation

Youhei Akimoto 1 Nikolaus Hansen 1
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We focus on a variant of covariance matrix adaptation evolution strategy (CMA-ES) with a restricted covariance matrix model, namely VkD-CMA, which is aimed at reducing the internal time complexity and the adaptation time in terms of function evaluations. We tackle the shortage of the VkD-CMA—the model of the restricted covariance matrices needs to be selected beforehand. We propose a novel mechanism to adapt the model online in the VkD-CMA. It eliminates the need for advance model selection and leads to a performance competitive with or even better than the algorithm with a nearly optimal but fixed model.
Type de document :
Communication dans un congrès
J. Handl; E. Hart; P.R. Lewis; M. López-Ibáñez; G. Ochoa; B. Paechter. Parallel Problem Solving from Nature – PPSN XIV, Sep 2016, Edinburgh, United Kingdom. Springer Verlag, pp.3-13, LNCS
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01333840
Contributeur : Youhei Akimoto <>
Soumis le : lundi 20 juin 2016 - 00:34:29
Dernière modification le : jeudi 5 avril 2018 - 12:30:12

Fichier

akimoto2016ppsn.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01333840, version 1

Citation

Youhei Akimoto, Nikolaus Hansen. Online Model Selection for Restricted Covariance Matrix Adaptation. J. Handl; E. Hart; P.R. Lewis; M. López-Ibáñez; G. Ochoa; B. Paechter. Parallel Problem Solving from Nature – PPSN XIV, Sep 2016, Edinburgh, United Kingdom. Springer Verlag, pp.3-13, LNCS. 〈hal-01333840〉

Partager

Métriques

Consultations de la notice

350

Téléchargements de fichiers

300