
HAL Id: hal-01334334
https://inria.hal.science/hal-01334334

Submitted on 20 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proceedings of ADG 2016
Julien Narboux, Pascal Schreck, Ileana Streinu

To cite this version:
Julien Narboux, Pascal Schreck, Ileana Streinu (Dir.). Proceedings of ADG 2016: Eleventh Interna-
tional Workshop on Automated Deduction in Geometry. , pp.224, 2016. �hal-01334334�

https://inria.hal.science/hal-01334334
https://hal.archives-ouvertes.fr

Julien Narboux
Pascal Schreck
Ileana Streinu (Eds.)

ADG2016
Eleventh International Workshop on

Automated Deduction in Geometry

University of Strasbourg, France, June 27-29, 2016

Julien Narboux
Pascal Schreck
Ileana Streinu (Eds.)

Automated Deduction

in Geometry

11th International Workshop, ADG 2016
Strasbourg, France, June 27-29, 2016

Preface

This volume contains the 14 papers and 3 invited talks
presented at ADG 2016: Eleventh International Work-
shop on Automated Deduction in Geometry held on June
26-28, 2016 in Strasbourg, France.

ADG is a forum facilitating the exchange of ideas,
presentation of new research results and demonstrations
of software tools lying at the intersection of geometry
and automated deduction. The selected papers, reviewed
by an international Program Committee, cover diverse
topics ranging from polynomial algebra, invariant and
coordinate-free methods, synthetic and logic approaches,
techniques for automated geometric reasoning from dis-
crete mathematics, symbolic and numeric methods for
geometric computation, geometric algorithms, geometric
constraint solving, experimental studies with automated
theorem provers, applications to mechanics, origami and
geometric modeling.

The previous ten workshops were held in Coimbra 2014,
Edinburgh 2012, Munich 2010, Shanghäı 2008, Ponteve-
dra 2006, Gainesville 2004, Linz 2002, Zurich 2000, Bei-
jing 1998, and Toulouse 1996.

The conference was organized by the Computer Graph-
ics and Geometry Group of ICube Laboratory (CNRS /
Université de Strasbourg).

We would like to thank the invited speakers and au-
thors for their contributions. We are very grateful to the
program committee members and referees for their exper-
tise which ensures the high scientific standard of ADG.
We also warmly thank all the local organizers for con-

tributing to the practical organisation so that the meet-
ing can be held smoothly. We thank the IGG team and
the ICube laboratory for helping us by sponsoring this
conference. Support from EasyChair is also gratefully ac-
knowledged.

June 13, 2016
Strasbourg

Julien Narboux
Pascal Schreck
Ileana Streinu

Program Committee

Michael Beeson San Jose State University
Francisco Botana University of Vigo
John Bowers James Madison University
Xiaoyu Chen Beihang University
Xiao-Shan Gao Academia Sinica
Tetsuo Ida University of Tsukuba
Filip Marić University of Belgrade
Pascal Mathis University of Strasbourg
Julien Narboux University of Strasbourg
Pavel Pech University of South Bohemia
Pedro Quaresma University of Coimbra
Tomas Recio Universidad de Cantabria
Pascal Schreck University of Strasbourg
Meera Sitharam University of Florida
Ileana Streinu Smith College
Dongming Wang Beihang University and CNRS
Bican Xia Peking University

Additional Reviewers

Fadoua Ghourabi Wenping Wang
Menghan Wang Jeremy Youngquist

Organizers

Pierre Boutry Pascal Mathis
David Braun Julien Narboux
Gabriel Braun Pascal Schreck
Nicolas Magaud Dan Song

Table of Contents

Invited Speakers

Geometrisation of Geometry 1

Predrag Janičić

Solving With Or Without Equations 15

Dominique Michelucci

Dependence of Axioms for Weak Geometries
Proved Syntactically . 21

Victor Pambuccian

Contributed Papers

Implementing Automatic Discovery in GeoGebra . 23

Miguel A. Abánades, Francisco Botana, Zoltán
Kovács, Tomás Recio and Csilla Sólyom-Gecse

Geodesic Star Unfolding . 32

Md. Ashraful Alam and Ileana Streinu

Geometric Deformations of Sodalite Frameworks . 44

Ciprian Borcea and Ileana Streinu

Computing the Straight Skeleton of a Simple
Polygon from its Motorcycle Graph in
Deterministic O(n.logn) Time 54

John C. Bowers

An Equivalence Proof Between Rank Theory
and Incidence Projective Geometry 62

David Braun, Nicolas Magaud and Pascal Schreck

From Hilbert to Tarski . 78

Gabriel Braun, Pierre Boutry and Julien Nar-
boux

Massic points, Bézier Curves and Conics: a Survey 97

Lionel Garnier and Jean-Paul Bécar

A New Formalization of Origami in Geometric
Algebra . 117

Tetsuo Ida, Jacques Fleuriot and Fadoua Ghourabi

Automatic Rewrites of Input Expressions in
Complex Algebraic Geometry Provers 137

Zoltán Kovács, Tomás Recio and Csilla Sólyom-
Gecse

Two ways of using Rabinowitsch trick for
imposing non-degeneracy conditions 144

Manuel Ladra, Pilar Páez-Guillán and Tomás
Recio

Portfolio Methods in Theorem Proving for
Elementary Geometry . 152

Vesna Marinković, Mladen Nikolić, Zoltán Kovács
and Predrag Janičić

On a Certain Class of Cubic Surfaces Related to
the Simson–Wallace Theorem 162

Pavel Pech

Automated Generation of Keywords from
Images for Geometric Information Search 172

Dan Song and Xiaoyu Chen

Formalization of a Surface Subdivision Allowing
a Region with Holes without Coordinates 190

Kazuko Takahashi, Sosuke Moriguchi and Mizuki
Goto

Geometrisation of Geometry?

Predrag Janičić1

Faculty of Mathematics, University of Belgrade, Serbia

Abstract. Coherent logic (CL) is a fragment of first-order logic suitable
for automation of proving process and also for formalization of various
mathematical theories, including geometry. This paper gives an overview
of several developments based on CL with geometry as the domain: au-
tomated theorem provers for CL, CL-based formalizations of geometry,
CL-based proof representation, links between CL and geometry construc-
tion problems, links between CL and geometrical illustrations, etc.

1 Introduction

Automated deduction in geometry has been around for more than sixty years now
and it still attracts a lot of attention for several reasons: it requires paradigmatic
reasoning that is very difficult to automate, progress in automated reasoning in
geometry often leads to ideas that influence other fields, there are practical appli-
cations in areas such as robotics, ... and, of course, it is very beautiful. Over the
decades, there were several ingenious insights into geometrical reasoning and also
links to algebra that led to new methods capable of solving many hard geometry
problems [9,10,22]. Still, after all that years and methods, there are no computer
programs capable of routinely solving all geometry problems explored in high-
school Euclidean geometry. Like in other related domains, there are important
issues and challenges concerning scope and efficiency, but in geometry it is also
readability of solutions that matters. While algebraic theorem provers for geom-
etry proved that they can efficiently solve a wide scope of geometry problems,
they cannot provide readable, understandable solutions in terms of synthetic
geometry. The same holds for resolution-based approaches. Some semi-synthetic
approaches (such as the area method or the full-angle method) provide proofs
that can be concise and intuitive, but not always (often their outputs involve
enormously large expressions).

In this paper, coherent logic, denoted by CL, is discussed. A number of
theories and theorems can be formulated directly and simply in CL, for in-
stance group theory, ring theory, category theory, the theory of fields, lattice
theory, a range of geometries, etc. Several authors independently point to CL
or similar fragments of first order logic as suitable for expressing (sometimes –
also automating) portions of standard mathematics, for instance, Ganesalingam
and Gowers in the context of automated generation of readable proofs [18],
Tarski in the context of his geometry [37], Avigad et.al. in the context of a

? Partly supported by the grant 174021 of the Ministry of Science of Serbia.

2 Predrag Janičić

new diagram-based axiomatic foundations of geometry [1], etc. In contrast to
resolution-based theorem proving, in CL the conjecture being proved is kept un-
changed and proved without using refutation, Skolemization and clausal form.
Thanks to this, CL can serve as a vehicle for producing, at least in some cases
and to some extent, human-readable synthetic geometry proofs (in the style of
forward reasoning) [4] with ”structure of ordinary mathematical arguments bet-
ter retained“ [16]. Moreover, since it allows (limited) existential quantification,
it allows building theorem provers with the scope that goes beyond universally
quantified fragment, typical for most available proving methods in geometry.
CL proofs can also be easily translated into input language of different proof
assistants and in a natural language form.

2 Coherent and Geometric Logic

A formula of first-order logic is said to be coherent if it has the following form:

A1(x) ∧ . . . ∧An(x)⇒ ∃y(B1(x,y) ∨ . . . ∨ Bm(x,y))

where universal closure is assumed, and where 0 ≤ n, 0 ≤ m, x denotes a
sequence of variables x1, x2, . . . , xk (0 ≤ k), Ai (for 1 ≤ i ≤ n) denotes an
atomic formula (involving zero or more variables from x), y denotes a sequence
of variables y1, y2, . . . , yl (0 ≤ l), and Bj (for 1 ≤ j ≤ m) denotes a conjunction
of atomic formulae (involving zero or more of the variables from x and y). If
n = 0, then the left hand side of the implication is assumed to be > and can be
omitted. If m = 0, then the right hand side of the implication is assumed to be
⊥ and can be omitted. There are no function symbols with arity greater than
zero. Coherent formulae do not involve negation. A coherent theory is a set of
sentences, closed under derivability, axiomatised by coherent formulae.1

An example of a coherent geometry axiom is (the intuitive meaning is obvi-
ous): point(A) ∧ point(B)⇒ ∃p(line(p) ∧ incident(A, p) ∧ incident(B, p)).

Every first-order theory has a coherent conservative extension [16,30], i.e.,
any first-order theory can be translated into coherent logic possibly with addi-
tional predicate symbols. This translation process is called “coherentisation” or,
sometimes, “geometrisation” [15]. There are several effective ways for translating
from FOL to CL (used for proving FOL formulae by coherent provers). Trans-
lations typically work by introducing new predicates symbols for subformulae
of the input. In translations, one FOL formula may give several CL formulae.
Translation of FOL formulae into CL involves elimination of negations: negations

1 A coherent formula is also known as a “coherent axiom”, “special coherent impli-
cation”, “geometric axiom”, “geometric sentence”, “basic geometric sequent” [16].
A coherent theory is sometimes called a “geometric theory” [23]. However, much
more widely used notion of “geometric formula” allows infinitary disjuctions (but
only over finitely many variables) [38]. Coherent formulae involve only finitary dis-
junctions, so coherent logic can be seen as a special case of geometric logic, or as a
first-order fragment of geometric logic.

Geometrisation of Geometry 3

can be kept in place and new predicates symbols for corresponding subformula
have to be introduced, or negations can be pushed down to atomic formulae [30].
In the latter case, for every predicate symbol R (that appears in negated form),
a new symbol R is introduced that stands for ¬R, and the following axioms are
introduced ∀x(R(x) ∧ R(x) ⇒ ⊥), ∀x(R(x) ∨ R(x)). In order to enable more
efficient proving, some advanced translation techniques are used. Elimination of
function symbols is also done by introducing additional predicate symbols.2

If a coherent formula can be classically proved from a set of coherent formulae,
then it can be also intuitionistically proved from that set (this statement is known
as the first-order Barr’s Theorem [16]). However, translation from FOL to CL is
not neccessarily constructive.

The problem of provability in coherent logic is semi-decidable. Coherent logic
admits a simple proof system, a sequent-based variants is as follows [35]:

Γ, ax,A1(a), . . . , An(a), B1(a, b) ∨ . . . ∨Bm(a, b) ` P
Γ, ax,A1(a), . . . , An(a) ` P emp (extended mp)

Γ,B1(c) ` P . . . Γ,Bn(c) ` P
Γ,B1(c) ∨ . . . ∨Bm(c) ` P cs (case split)

Γ,Bi(a, b) ` ∃y(B1(a,y) ∨ . . . ∨ Bm(a,y))
as (assumption)

Γ,⊥ ` P efq (ex falso quodlibet)

In the rules given above, it is assumed: ax is a formula A1(x)∧ . . .∧An(x)⇒
∃y(B1(x,y) ∨ . . . ∨ Bm(x,y)); a, b, c denote vectors of constants (possibly of
length zero); in the rule emp (extended modus ponens), b are fresh constants; x
and y denote vectors of variables (possibly of length zero); Ai(x) (Bi(x,y)) have
no free variables other than from x (and y); Ai(a) are ground atomic formulae;
Bi(a, b) and Bi(c) are ground conjunctions of atomic formulae; Φ denotes the
list of conjuncts in Φ if Φ is conjunction, and otherwise Φ itself. In the proving
process, the rules are read from bottom to top, i.e., by a rule application one
gets the contents (new subgoals) above the line.

For a set of coherent axioms AX and the statement A1(x) ∧ . . . ∧ An(x)⇒
∃y(B1(x,y)∨ . . .∨ Bm(x,y)) to be proved, within the above proof system one
has to derive the following sequent (where a denotes a vector of new simbols of
constants): AX,A1(a) ∧ . . . ∧An(a) ` ∃y(B1(a,y) ∨ . . . ∨ Bm(a,y)).

Any coherent logic proof can be represented in the following simple way (emp
is used zero or more time, cs involves at least two other proof objects):

proof ::= emp∗
(
cs
(
proof ≥2

)
| as | efq

)

2 Elimination of function symbols is sometimes called anti Skolemization [13].

4 Predrag Janičić

3 Automated Theorem Proving for CL

There are several semi-decision proving procedures for coherent logic and there
are several implemented automated provers. To our knowledge, the first CL
automated theorem prover was developed in Prolog by Janičić and Kordić [21]
and was used for one fixed axiomatization of Euclidean geometry – an axiom
system closely related to Borsuk’s one [7]. This prover, based on forward chaining
and iterative deepening, was later reimplemented in C++ to give a more efficient
and generic theorem prover ArgoCLP [36] that produces both natural language
proofs (formatted in LATEX or in HTML) and object level proofs in the Isabelle
form [29]. Bezem developed in Prolog a CL prover based on depth-first search
that can generate proof objects in Coq [4]. This prover was used for proving
Hessenberg’s theorem of projective plane geometry (that states that Pappus
axiom implies Desargues axiom), by proving a number of lemmas [5]. Fisher
developed a prover GeologUI with graphical interface [17]. Berghofer developed
(using shallow embedding) an internal prover for CL in ML to be used within
the system Isabelle. None of these provers uses backjumps or lemma learning.
De Nivelle implemented a theorem prover Geo for logic close to coherent logic,
that uses a mechanism for learning lemmas of somewhat restricted form [13]. All
of these systems perform only ground reasoning. A prover Calypso [28] supports
lemma learning and introduces non-ground reasoning in automated proving for
CL. For lemma learning, the latter two systems use ideas from CDCL SAT
solving [6].

The prover ArgoCLP can be used for proving geometry statements in several
contexts (more details are given in the following sections). In generated proofs,
the prover brings back the eliminated negation symbols. The proofs that Argo-
CLP generates are automatically simplified by elimination of redundant steps
and using the reductio ad absurdum form [24]. An example of a proof of a theo-
rem from Hilbert’s geometry [19] is given below (a corresponding proof for the
system Isabelle can also be generated).

Theorem: Assuming that α 6= β, the line p is incident to the plane α, the line p is
incident to the plane β, the point A is incident to the plane α, and the point A is
incident to the plane β, show that the point A is incident to the line p.

Proof:

Let us prove that the point A is incident to the line p by reductio ad absurdum.

1. Assume that the point A is not incident to the line p.

2. There exist a point B and a point C such that the point B is incident to the
line p, B 6= C and the point C is incident to the line p (by axiom ax I3a).

3. From the facts that the line p is incident to the plane α, and the point B is
incident to the line p, it holds that the point B is incident to the plane α (by
axiom ax D11).

4. From the facts that the line p is incident to the plane β, and the point B is
incident to the line p, it holds that the point B is incident to the plane β (by axiom
ax D11).

Geometrisation of Geometry 5

5. From the facts that B 6= C, the point B is incident to the line p, the point C
is incident to the line p, and the point A is not incident to the line p, it holds that
the points B, C and A are not collinear (by axiom ax D1a).

6. From the facts that the line p is incident to the plane α, and the point C is
incident to the line p, it holds that the point C is incident to the plane α (by axiom
ax D11).

7. From the facts that the line p is incident to the plane β, and the point C is
incident to the line p, it holds that the point C is incident to the plane β (by axiom
ax D11).

8. From the facts that the points B, C and A are not collinear, it holds that the
points A, B and C are not collinear (by axiom ax ncol 231).

9. From the facts that the points A, B and C are not collinear, the point A is
incident to the plane α, the point B is incident to the plane α, the point C is
incident to the plane α, the point A is incident to the plane β, the point B is
incident to the plane β, and the point C is incident to the plane β, it holds that
α = β (by axiom ax I5).

10. From the facts that α = β, and α 6= β we get a contradiction.

Contradiction.

Therefore, it holds that the point A is incident to the line p.

This proves the conjecture.

Theorem proved in 10 steps and in 4.56 s.

4 CL Vernacular

Automated provers for coherent logic such as ArgoCLP export proofs in some
custom format(s). However, it would be beneficial if there is an output format
supported by various CL provers that can be further used for generating proofs in
different target languages. Following this motivation, a new proof representation
and a corresponding format for coherent logic were developed [35].

De Bruijn used a syntagm mathematical vernacular3 in 1980’s within his
formalism proposed for trying to “put a substantial part of the mathematical
vernacular into the formal system” [12]. Several authors later modified or ex-
tended de Bruijn’s framework. Wiedijk follows de Bruijn’s motivation [41], but
he also notices: “It turns out that in a significant number of systems (proof assis-
tants) one encounters languages that look almost the same. Apparently there is
a canonical style of presenting mathematics that people discover independently:
something like a natural mathematical vernacular. Because this language ap-
parently is something that people arrive at independently, we might call it the
mathematical vernacular.” The language discussed by Wiedijk is actually closely
related to a proof language of coherent logic. CL can naturally express a number
of mathematical theories, including different geometries. A proof representation

3 Vernacular is the everyday, ordinary language (in contrast to the official, literary
language) of the people of some country or region.

6 Predrag Janičić

called “coherent logic vernacular” [35] can link different proof formats and pre-
sentations. CL vernacular is simple, yet expressive proof representation with only
a few inference rules, shown in Section 2, supported.

The proposed proof representation is accompanied by a corresponding XML
format, specified by a DTD Vernacular.dtd. As an illustration, here are some
fragments of this DTD file:

...

<!--******** Theory **************-->

<!ELEMENT theory (theory_name, signature, axiom*) >

<!ELEMENT theory_name (#PCDATA)>

<!ELEMENT signature (type*, relation_symbol*, constant*) >

<!ELEMENT relation_symbol (type*)>

<!ATTLIST relation_symbol name CDATA #REQUIRED>

<!ELEMENT type (#PCDATA)>

<!ELEMENT axiom (cl_formula)>

<!ATTLIST axiom name CDATA #REQUIRED>

...

The above fragment describes the notion of theory. A file describing a theory
could be shared among several files with theorems and proofs. The following
fragment describes the notion of a theorem and a proof:

...

<!--******** Theorem **************-->

<!ELEMENT theorem (theorem_name, cl_formula, proof+)>

<!ELEMENT theorem_name (#PCDATA)>

<!ELEMENT conjecture (name, cl_formula)>

<!--******** Proof **************-->

<!ELEMENT proof (proof_step*, proof_closing, proof_name?)>

<!ELEMENT proof_name EMPTY>

<!ATTLIST proof_name name CDATA #REQUIRED>

<!--******** Proof steps **************-->

<!ELEMENT proof_step (indentation,extended_modus_ponens)>

<!ELEMENT proof_closing (indentation, (case_split|efq|from),

(goal_reached_contradiction|goal_reached_thesis))>

...

The XML format is supported by a suite of XSL transformations for gen-
erating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in
a natural language form (formatted in LATEX or in HTML). The XML docu-
ments themselves can be read by a human, but much better alternative is using
translation to human readable proofs in natural language. Proofs (for Coq and
Isabelle/Isar) that are produced from XML documents are also fairly readable.
The developed XSLT style-sheets are rather simple and short — each is only
around 500 lines long. This shows that transformations for other target lan-
guages (other theorem provers, like Mizar and HOL light, LATEX with other

Geometrisation of Geometry 7

natural languages, MathML, OMDoc or TPTP) can easily be constructed, thus
enabling wide access to a single source of mathematical contents.

Automated theorem provers

ArgoCLP

XML DTD

Interactive theorem provers

Isar Coq ... LATEX HTML

Fig. 1. Architecture of the presented framework

The automated theorem prover for coherent logic ArgoCLP can export proofs
in the form of the XML files that conforms to this DTD (while reads an input
theory and the conjecture given in the TPTP4 form). The overall architecture
of the framework is shown in Figure 1.

As an illustration, below are given proofs of one theorem (4.19) from Tarski’s
book on geometry [34], in natural language and in the Coq form (generated
from XML representation produced by ArgoCLP) ((A,B) ∼= (C,D) is an infix
notation for cong(A,B,C,D) and it denotes that the pairs of points (A,B) and
(C,D) are congruent, bet(A,B,C) denotes that the point B is between the points
A and C, col(A,B,C) denotes that the points A, B and C are collinear).

Theorem: Assuming that bet(A,B,C) and AB ∼= AD and CB ∼= CD it holds
that B = D.

Proof:

1. It holds that bet(B,A,A) (using th 3 1).

2. From the fact(s) bet(A,B,C) it holds that col(C,A,B) (using ax 4 10 3).

3. From the fact(s) AB ∼= AD it holds that AD ∼= AB (using th 2 2).

4. It holds that A = B or A 6= B.

5. Assume that: A = B.

6. From the fact(s) AD ∼= AB and A = B it holds that AD ∼= AA.

7. From the fact(s) AD ∼= AA it holds that A = D (using ax 3).

8. From the fact(s) A = B and A = D it holds that B = D.

9. The conclusion follows from the fact(s) B = D.

10. Assume that: A 6= B.

11. It holds that A = C or A 6= C.

12. Assume that: A = C.

4 http://www.cs.miami.edu/~tptp/

8 Predrag Janičić

13. From the fact(s) bet(A,B,C) and A = C it holds that bet(A,B,A).

14. From the fact(s) bet(A,B,A) and bet(B,A,A) it holds that A = B (using
th 3 4).

15. From the fact(s) A 6= B and A = B we get contradiction.

16. Assume that: A 6= C.

17. From the fact(s) A 6= C it holds that C 6= A.

18. From the fact(s) C 6= A and col(C,A,B) and CB ∼= CD and AB ∼= AD
it holds that B = D (using th 4 18).

19. The conclusion follows from the fact(s) B = D.

20. The conclusion follows in all cases.

21. The conclusion follows in all cases.

QED

Theorem th 4 19 : ∀ (A:point) (B :point) (C :point) (D :point), (bet A B C ∧ cong
A B A D ∧ cong C B C D) → B = D.
Proof.
intros.
assert (bet B A A) by applying (th 3 1 B A) .
assert (col C A B) by applying (ax 4 10 3 A B C) .
assert (cong A D A B) by applying (th 2 2 A B A D) .
assert (A = B ∨ A 6= B) by applying (ax g1 A B) .
by cases on (A = B ∨ A 6= B).
- {
assert (cong A D A A) by (substitution).
assert (A = D) by applying (ax 3 A D A) .
assert (B = D) by (substitution).
conclude.
}

- {
assert (A = C ∨ A 6= C) by applying (ax g1 A C) .
by cases on (A = C ∨ A 6= C).
- {
assert (bet A B A) by (substitution).
assert (A = B) by applying (th 3 4 A B A) .
assert (False) by (substitution).
contradict.
}

- {
assert (C 6= A) by (substitution).
assert (B = D) by applying (th 4 18 C A B D) .
conclude.
}
}

Qed.

Geometrisation of Geometry 9

5 CL-based Formalizations of Geometry

Large portions of geometry can be expressed in coherent logic, or can be rela-
tively easily transformed into coherent logic. This is supported by a study [14]
of the book on foundations of geometry Metamathematische Methoden in der
Geometrie, by Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski [34].
This book has been a subject of several automation and formalization projects,
using automated theorem proving [2,3,31] or interactive theorem proving [8,27].
Geometry in this book is expressed in terms of first-order logic with equality,
without sorts (the only primitive objects are points) and with two primitive
predicate symbols written (in prefix form) as cong (for congruence) and bet (for
betweeness). There are only eleven axioms (it is assumed that all axioms are
universally closed):

Axiom A1: cong(A,B,B,A)
Axiom A2: cong(A,B, P,Q) ∧ cong(A,B,R, S) ⇒ cong(P,Q,R, S)
Axiom A3: cong(A,B,C,C) ⇒ A = B
Axiom A4: ∃X (bet(Q,A,X) ∧ cong(A,X,B,C))
Axiom A5: A 6= B ∧ bet(A,B,C) ∧ bet(A′, B′, C ′) ∧ cong(A,B,A′, B′) ∧

cong(B,C,B′, C ′) ∧ cong(A,D,A′, D′) ∧
cong(B,D,B′, D′) ⇒ cong(C,D,C ′, D′)

Axiom A6: bet(A,B,A) ⇒ A = B
Axiom A7: bet(A,P,C) ∧ bet(B,Q,C) ⇒ ∃X (bet(P,X,B) ∧ bet(Q,X,A))
Axiom A8: ∃A ∃B ∃C (¬bet(A,B,C) ∧ ¬bet(B,C,A) ∧ ¬bet(C,A,B))
Axiom A9: P 6= Q ∧ cong(A,P,A,Q) ∧ cong(B,P,B,Q) ∧

cong(C,P,C,Q) ⇒ (bet(A,B,C) ∨ bet(B,C,A) ∨ bet(C,A,B))
Axiom A10: bet(A,D, T) ∧ bet(B,D,C) ∧ A 6= D ⇒
∃X ∃Y (bet(A,B,X) ∧ bet(A,C, Y) ∧ bet(X,T, Y))

Axiom A11 (continuity): ∀Φ ∀Ψ ∃A ∀X ∀Y ((X ∈ Φ∧Y ∈ Ψ ⇒ bet(A,X, Y))
⇒ ∃B ∀X ∀Y (X ∈ Φ ∧ Y ∈ Ψ ⇒ bet(X,B, Y))

One goal of the study was analysis of how many theorems from such book can
be proved by coherent logic prover ArgoCLP supported by resolution theorem
provers [14]. The process of coherentisation of the theorems was straightforward
(and included eliminating sets that were used in the book only as a syntactic
sugar, for the sake of clarity and conciseness). From the original 179 theorems,
the process gave 238 coherent formulae (while 5 schematic theorems involving
n-tuples were considered only for n = 2).

Given all the axioms and the theorems from the book in coherent form and
written in the TPTP format, the proving process went as follows.

– Given a theorem to be proved, all axioms and theorems that precede it (in the
book) are passed to resolution provers (Vampire [32], E [33], or SPASS [39]).

– If one or more resolution provers proves the conjecture, the smallest list of
used axioms/theorems (returned by the resolution prover) is used for proving
the conjecture again, in the same manner. This process is repeated until the
list of used axioms/theorems remains unchanged between two consecutive
iterations.

10 Predrag Janičić

– With the obtained list of axioms, ArgoCLP prover is invoked, and (if suc-
cessful) the proof is exported in the CL vernacular XML format.

ArgoCLP supported by resolution provers proved (in the above way) 37%
of the theorems from chapters 1 to 12 of the book completely automatically.
This performance was reached in the scenario that mimics humans doing math-
ematics: even if one cannot prove some theorem, he/she proceeds with further
theorems and uses even those theorems that were unproven. In a more strict
formalization scenario, in which only theorems that were already automatically
proved could be used, the framework proved 17% of the theorems.

One of the outputs of the proving framework within the above study was a
digital version of the book, with all axioms, definitions, theorems, and generated
proofs filled-in, all in the natural language form.

6 Coherent Logic and Construction Problems

Almost all automated theorem provers for geometry focus on universally quanti-
fied statements. However, statements of the form ∀∃ naturally arise in geometry.
One source of such statements are construction problems. Popular geometry
theorem provers (like those based on Wu’s method) can be used for showing cor-
rectness of a solution for a construction problem, however, they cannot provide
a full answer: they can (at least for some constructions) prove statements such
as if some points meet some conditions, then it holds that.... However, it is not
answered whether such points exist, and if yes – under what conditions.

For a construction problem, roughly said, the task is to prove constructively a
theorem of the following form (where x and y denote vectors of objects – points,
lines, rays, etc):

∀x∃y Ψ(x;y)

The above subsumes two claims: that the problem is solvable (say, by ruler
and compass) and that a particular construction (that witnesses ∃y Ψ(x;y)) is
correct. There could be given some constraints imposed on the given objects x
— some construction problems do not have solutions and some problems have
solutions only under some additional conditions, not known in advance. So, one
typically has to discover5 Φ(x) (for the given Ψ(x;y)) and to prove:

∀x(Φ(x)⇒ ∃y Ψ(x;y))

The above claims that solution exists under some conditions. But one may claim
even more:

∀x(Φ(x)⇒ ∃y Ψ(x;y) ∧ ¬Φ(x)⇒ ¬∃y Ψ(x;y))

5 In solving specific classes of construction problems, some goal conditions may be
assumed. For instance, in solving triangle construction problems, an implicit goal
condition is that the constructed points A, B, and C are not collinear.

Geometrisation of Geometry 11

The above gives a complete characterization of solvability: it states that solution
exists under some conditions Φ(x) and solution does not exist otherwise.

Let us, for example, consider the contruction problem 4 from Wernick’s list
[40]: Given points A, B, and G, construct a triangle ABC, such that G is the
centroid of ABC. A careful analysis leads to the theorem that gives a clear
characterization of solvability:

∀A,B,G (¬collinear(A,B,G)⇔
∃C.(¬collinear(A,B,C) ∧ centroid(G,A,B,C)))

which can be trivially transformed into two coherent formulae.
The system ArgoTriCS [26] is able to automatically find constructions for

almost all solvable Wernick’s and Connelly’s [11] problems. It uses algebraic
provers for proving correctness of solutions (under assumption that the con-
structed object do exist) and the prover ArgoCLP for showing statements that
give characterizations of solvability [25]. The prover ArgoCLP is not powerful
enough to prove needed theorems and it uses facts used by ArgoTriCS in the
generated solution for the construction problem.

7 Coherent Logic and Geometric Illustrations

In geometry and in the whole of mathematics, illustrations are often very valu-
able, but almost always just an informal content, provided to support intuition
and understandability of proofs. Links between proofs and associated illustra-
tion are typically very loose: proofs do not rely on illustrations, illustrations are
not derived from proofs. However, proofs in coherent logic can be used, in some
cases, for automated generation of illustrations.6 The idea is not to instruct a
CL prover to generate illustrations, but to use proofs themselves (represented,
say, as discussed in Section 4) and generate illustrations from them directly.

In each substantial step of a CL proof, one formula (axiom or a lemma) of
the following form is used:

A1(x) ∧ . . . ∧An(x)⇒ ∃y(B1(x,y) ∨ . . . ∨ Bm(x,y)).
Each axiom (or potentially used lemma) with m > 0 (i.e., each axiom that

introduce news objects) need to have an associated illustration rule. For instan-
tiated x interpreted in some model (e.g., Cartesian plane), there should be a
rule for determining y. In some cases, such y are determined uniquely, and in
some cases there are degrees of freedom. These rules should be formulated in a
language that can serve as a specification language for illustrations. One such
language is geometry language GCLC [20]. For example, an axiom for any two
points A and B, there is a point C such that bet(A,B,C) can be modelled in
GCLC in the following way:

random r

expression r’ {1+r}

towards C A B r’

6 This idea has not been implemented yet.

12 Predrag Janičić

where random choses a non-negative pseudorandom real number r, the second
line gives a number r’ such that r’ ≥ 1, and the third line determines C (a
concrete point in Cartesian plane) given two (concrete points) A and B. When
the case split rule is applied, only one case is illustrated (so, one proof has only
one illustration). This process is straightforward and yields illustration for each
proof (with all axioms properly processed). However, there is still one initial
challenge. If the conjecture being proved has the form: ∀x(Φ(x)⇒ ∃y Ψ(x;y))
in order to be illustrated, one must have initial objects x meeting conditions
Φ(x). So, the first step is to prove that Φ(x) is consistent (if it is not, the
statement is trivially valid), i.e., to prove ∃x Φ(x). A constructive proof of this
conjecture will give one model for Φ(x) and will serve as a basis for an illustration
for the main proof. Note that this step may not be easy and it actually involves
solving a geometry construction problem.

8 Conclusions

Coherent logic has several applications in automated deduction in geometry:
in producing human-readable proofs, in producing machine verifiable proofs, in
proving statemens of the form ∀∃, in producing illustrations automatically from
proofs, etc. However, there are still potentials to be used. For instance, theorem
provers for coherent logic have been so far used for fully automated proving of
only low-level conjectures (with proofs close to the axiomatic level). It would be
interesting to construct suitable sets of geometry lemmas that can be used in
proving higher-level conjectures.

Acknowledgements The author is grateful to Marc Bezem, Vesna Marinković,
Mladen Nikolić, and Sana Stojanović Ður�ević for their feedback on earlier ver-
sions of this paper.

References

1. Jeremy Avigad, Edward Dean, and John Mumma. A formal system for Euclid’s
Elements. The Review of Symbolic Logic, 2009.

2. Michael Beeson. Proof and computation in geometry. In Automated Deduction in
Geometry - 9th International Workshop, volume 7993 of Lecture Notes in Computer
Science, pages 1–30. Springer, 2013.

3. Michael Beeson and Larry Wos. OTTER proofs in tarskian geometry. In Auto-
mated Reasoning - 7th International Joint Conference, IJCAR 2014, Held as Part
of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014.
Proceedings, volume 8562 of Lecture Notes in Computer Science, pages 495–510.
Springer, 2014.

4. Marc Bezem and Thierry Coquand. Automating coherent logic. In Geoff Sutcliffe
and Andrei Voronkov, editors, 12th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning — LPAR 2005, volume 3835 of
Lecture Notes in Computer Science. Springer-Verlag, 2005.

Geometrisation of Geometry 13

5. Marc Bezem and Dimitri Hendriks. On the Mechanization of the Proof of Hes-
senberg’s Theorem in Coherent Logic. Journal of Automated Reasoning, 40(1),
2008.

6. Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook
of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

7. Karol Borsuk and Wanda Szmielew. Foundations of Geometry. Norht-Holland
Publishing Company, Amsterdam, 1960.

8. Gabriel Braun and Julien Narboux. From Tarski to Hilbert. In Tetsuo Ida and
Jacques Fleuriot, editors, Automated Deduction in Geometry 2012, Edinburgh,
United Kingdom, September 2012.

9. Shang-Ching Chou. Mechanical Geometry Theorem Proving. D.Reidel Publishing
Company, Dordrecht, 1988.

10. Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Machine Proofs in
Geometry. World Scientific, Singapore, 1994.

11. Harold Connelly. An Extension of Triangle Constructions from Located Points.
Forum Geometricorum, 9:109–112, 2009.

12. Nicolaas Govert de Bruijn. The mathematical vernacular, a language for mathe-
matics with typed sets. In Dybjer et al., editor, Proceedings of the Workshop on
Programming Languages, 1987.

13. Hans de Nivelle and Jia Meng. Geometric resolution: A proof procedure based on
finite model search. In Automated Reasoning, Third International Joint Confer-
ence, IJCAR, volume 4130 of Lecture Notes in Computer Science, pages 303–317.
Springer, 2006.

14. Sana Stojanović Djurdjević, Julien Narboux, and Predrag Janičić. Automated gen-
eration of machine verifiable and readable proofs: A case study of tarski’s geometry.
Annals of Mathematics and Artificial Intelligence, 74(3-4):249–269, 2015.

15. Roy Dyckhoff. Coherentisation of first-order logic. In Automated Reasoning
with Analytic Tableaux and Related Methods - 24th International Conference,
TABLEAUX 2015, volume 9323 of Lecture Notes in Computer Science, pages 3–5.
Springer, 2015.

16. Roy Dyckhoff and Sara Negri. Geometrization of first-order logic. The Bulletin of
Symbolic Logic, 21:123–163, 2015.

17. John Fisher and Marc Bezem. Skolem machines and geometric logic. In Cliff B.
Jones, Zhiming Liu, and Jim Woodcock, editors, 4th International Colloquium on
Theoretical Aspects of Computing — ICTAC 2007, volume 4711 of Lecture Notes
in Computer Science. Springer-Verlag, 2007.

18. Mohan Ganesalingam and William Timothy Gowers. A fully automatic problem
solver with human-style output. CoRR, abs/1309.4501, 2013.

19. David Hilbert. Grundlagen der Geometrie. Leipzig, 1899.
20. Predrag Janičić. Geometry Constructions Language. Journal of Automated Rea-

soning, 44(1-2):3–24, 2010.
21. Predrag Janičić and Stevan Kordić. EUCLID — the geometry theorem prover.

FILOMAT, 9(3):723–732, 1995.
22. Predrag Janičić, Julien Narboux, and Pedro Quaresma. The area method: a reca-

pitulation. Journal of Automated Reasoning, 48(4):489–532, 2012.
23. Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: a first in-

troduction to topos theor. Springer-Verlag, 1992.
24. Vesna Marinkovic. Proof simplification in the framework of coherent logic. Com-

puting and Informatics, 34(2):337–366, 2015.

14 Predrag Janičić

25. Vesna Marinkovic, Predrag Janicic, and Pascal Schreck. Computer theorem proving
for verifiable solving of geometric construction problems. In Automated Deduction
in Geometry - 10th International Workshop, Revised Selected Papers, volume 9201,
pages 72–93. Springer, 2015.

26. Vesna Marinković and Predrag Janičić. Towards Understanding Triangle Con-
struction Problems. In J. Jeuring et al., editor, Intelligent Computer Mathematics
- CICM 2012, volume 7362 of Lecture Notes in Computer Science. Springer, 2012.

27. Julien Narboux. Mechanical theorem proving in Tarski’s geometry. In Proceedings
of Automatic Deduction in Geometry 06, volume 4869 of Lecture Notes in Artificial
Intelligence, pages 139–156. Springer-Verlag, 2007.

28. Mladen Nikolić and Predrag Janičić. CDCL-based abstract state transition system
for coherent logic. In J. et.al. Jeuring, editor, Intelligent Computer Mathematics -
CICM 2012, volume 7362 of Lecture Notes in Computer Science. Springer, 2012.

29. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle
HOL: a Proof Assistant for Higher-Order Logic. Springer, 2005. url:
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle/doc.

30. Andrew Polonsky. Proofs, Types and Lambda Calculus. PhD thesis, University of
Bergen, 2011.

31. Art Quaife. Automated development of tarski’s geometry. Journal of Automated
Reasoning, 5(1):97–118, 1989.

32. Alexandre Riazanov and Andrei Voronkov. The design and implementation of
vampire. AI Communications, 15(2-3):91–110, 2002.

33. Stephan Schulz. E - a brainiac theorem prover. AI Communications, 15(2-3):111–
126, 2002.

34. Wolfram Schwabhuser, Wanda Szmielew, and Alfred Tarski. Metamathematische
Methoden in der Geometrie. Springer-Verlag, Berlin, 1983.

35. Sana Stojanovic, Julien Narboux, Marc Bezem, and Predrag Janicic. A vernacular
for coherent logic. In Intelligent Computer Mathematics, volume 8543 of Lecture
Notes in Computer Science, pages 388–403. Springer, 2014.

36. Sana Stojanović, Vesna Pavlović, and Predrag Janičić. A coherent logic based ge-
ometry theorem prover capable of producing formal and readable proofs. In Pascal
Schreck, Julien Narboux, and Jürgen Richter-Gebert, editors, Automated Deduc-
tion in Geometry, volume 6877 of Lecture Notes in Computer Science. Springer,
2011.

37. Alfred Tarski and Steven Givant. Tarski’s system of geometry. The Bulletin of
Symbolic Logic, 5(2), June 1999.

38. Steven Vickers. Geometric logic in computer science. In Theory and Formal Meth-
ods, Workshops in Computing, pages 37–54. Springer, 1993.

39. Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin
Suda, and Patrick Wischnewski. Spass version 3.5. In Automated Deduction -
CADE-22 Proceedings, volume 5663 of Lecture Notes in Computer Science, pages
140–145. Springer, 2009.

40. William Wernick. Triangle constructions vith three located points. Mathematics
Magazine, 55(4):227–230, 1982.

41. Freek Wiedijk. Mathematical Vernacular. Unpublished note. http://www.cs.ru.
nl/~freek/notes/mv.pdf, 2000.

Solving With Or Without Equations

Dominique Michelucci

LE2I UMR6306, CNRS, Arts et Métiers,
Bourgogne Franche-Comté University, Dijon, France

1 Equations versus algorithms, back and forth

The pentahedron problem (§2) shows the proximity between Geometric Theorem
Proving (GTP) and Geometric Constraint Solving (GCS). However, the two
fields separate, due to specificities of GCS (§3), which prefers algorithms to
equations. Yet GCS still benefits from symbolic tools, like DAG (§4), and dual
numbers (§5). Finally, §6 conjectures that algorithms can be converted to systems
of equations.

E

A

D

F

C

B

I

A C

I

F
D

B

E

I

A C

B

F D

E E
F

B

C

D

A

I

A

B

C

D

E

F

I

Fig. 1. Pentahedra. 6 vertices, 5 faces, 9 edges. The lengths of all edges is known.

2 The Pentahedron problem

The pentahedron problem Fig.1 [1] is to find compatible coordinates for its 6
vertices ABCDEF . The planarity of the 3 quadrilateral faces provides 3 con-
straints, and the specified lengths of the 9 edges provide 9 other constraints. This
problem is well-constrained, up to 3D location and orientation. It is easy to solve
for the triangle ABC and to pin it in the Oxy plane. Then it remains a poly-
nomial system in 9 equations and 9 unknowns, the 3D coordinates of D,E, F .
This system can be solved, slowly, with an interval solver. A much better for-
mulation remarks that lines AD,BE,CF must be concurrent. Either they meet
at a common point I, or they are parallel. In the first case, the 3 lengths of
ID, IE, IF can be used as 3 unknowns xID, xIE , xIF of a smaller, and intrinsic

16 Dominique Michelucci

(coordinate-free) system of 3 equations and 3 unknowns: the law of cosines gives

the 3 equations, one per quadrilateral face; e.g., let α = D̂IE = ÂIB; then

cosα =
x2
ID + x2

IE − l2DE

2xIDxIE
=

(xID + lAD)2 + (xIE + lBE)
2 − l2AB

2(xID + lAD)(xIE + lBE)

gives the equation in xID, xIE for the quadrilateral face ABED. This system
is solved 42 times faster than the previous one. In the second case, the point I
is at infinity and a simple geometric construction shows that there are always
pentahedra with parallel edges AD,BE,CF , except when some triangular or
tetrahedric inequality is violated. Finally, there are 6 spurious roots, where the
pentahedron is flat, so edges AD,BE,CF need not be concurrent.

This problem illustrates many common issues to GCS and GTP: what is
the dimension of the manifold solution? Are there points at infinity? What is
the best way to pose equations? Are there any degenerate solutions, and what
is the topological dimension of the degenerate manifold? Indeed, in GTP, non
degeneracy conditions (the triangle must not be flat, vertices must be distinct,
etc) have to be specified in order to prove theorems. This example also shows
that GCS and GTP are close while all constraints are incidence, or distance,
or angle constraints between flats: points, lines, planes. But the latter are not
sufficient in CADCAM.

3 Specificities of GCS for CADCAM

The first specificity in GCS is the inaccuracy issue. The nullity of a number, the
equality of two numbers are no more decidable. The computation of the rank of
a set of vectors, or of a Jacobian, is no more guaranteed. The distinction between
x > 0 and x ≥ 0 becomes irrelevant. The equivalence x 6= 0 ⇔ ∃y |xy − 1 = 0
used in Gröbner bases becomes irrelevant as well.

Another specificity is the need for optimization and algorithms.
For example, there are many orthogonal projections of a point on a non linear

curve or surface but for distance constraints, only one is relevant. First order
conditions, like KKT (Karush-Kuhn-Tucker), are necessary but not sufficient to
fully characterize solutions. Solving KKT equations provides a superset of the
roots, and spurious ones (saddle points, local optima) must be cancelled with
some algorithm.

When computing the orthogonal projection of a point p to a composite object
(e.g., the union of a line and a conic), often used in CADCAM, the relevant
system of equations depends on the location of p. Again, some optimization
problem occurs. For the orthogonal projection on a part of an object, like a
segment, optimization can be avoided, but an algorithm and some if-then-else
are more convenient than equations.

CADCAM systematically uses piecewise polynomials (box splines, bsplines,
etc). They are not polynomials and standard tools of Computer Algebra (Gröbner
bases, Wu-Ritt method, resultants, GCD, fundamental theorem of algebra, Sturm’s
theorem, etc) no more apply. Idem for NURBS and piecewise rational functions.

Solving With Or Without Equations 17

Finally, Computer Graphics and CADCAM use algorithmic shapes, called
features or parametric objects, like staircases, gears and sprockets, etc. The
number of steps in a staircase is an integer (thus diophantine equations occur)
and depend on parameter values of length and height: the number of unknowns
and equations depend on parameter values. In passing, there is some similarity
with Steiner’s porism, or Poncelet’s porism, in GTP.

Worse, subdivision curves and subdivision surface have invaded Computer
Graphics: designers interactively define a coarse mesh, and a procedure rounds
vertices and edges. Most of the time, there is no equation for the limit surface.

Sometimes, equations are available but too huge to be symbolically expanded,
e.g., det(M(X)) = 0. Of course, a numerical algorithm can still be used to
compute det(M(V)) for a given numerical vector V . Another example is given
by intersection curves between rational surfaces: they are not rational but all
geometric modelers approximate them with rational curves.

4 DAGs

Gouaty et al [2] solve such geometric constraints for CADCAM: equations are
replaced with algorithms. Constraints are represented with DAGs (Directed
Acyclic Graph). DAG is a popular data structure in Dynamic Geometry soft-
wares (where they are called Straight Line Programs) and in Computer Alge-
bra. In CADCAM, DAGs involve spline or NURBS functions, algorithms (for
rounding, for orthogonal projection), subdivision surfaces and other algorithmic
shapes. They are no more convertible into polynomials, and it is no more possi-
ble to compute the DAG of the derivative of a given DAG. But these DAG keep
some interesting features: they still can be evaluated for given values of param-
eters, thus it is still possible to solve; DAG can be interactively specified and
modified by users or designers who are not computer scientists, thus users can
still pose their problems; probabilistic tests for nullity or equality (up to some
tolerance) are still possible; and finally, exact computations (up to floating point
precision) of derivatives are still possible, after all, with dual numbers. This is
interesting because derivatives computed with finite differences are inaccurate,
which hampers the convergence of numeric solvers close to the solution.

5 Dual numbers

The idea is to attach an infinitesimal number ǫi to each unknown xi, with the
rule ǫ2i = ǫiǫj = 0. The addition is straightforward. The product, for one ǫ, is
given by:

(a+ b ǫ) × (a′ + b′ ǫ) = aa′ + (ab′ + ba′) ǫ
↓ ↓ ↓(

a 0
b a

)
×

(
a′ 0
b′ a′

)
=

(
aa′ 0
ba′ + ab′ aa′

) (1)

18 Dominique Michelucci

and it is generalizable to many ǫi. The bijection between dual numbers and ma-
trices is an isomorphism: the matrice of the opposite (inverse) of a dual number
is the opposite (inverse) of the matrice of the dual number. Other rules are:

1

a+ b ǫ
=

1

a
− b

a2
ǫ when a 6= 0 (2)

thus bǫ has no inverse (the associated matrice is not invertible). This rule is a
special case of:

(a+ bǫ)k = ak + kak−1b ǫ (3)

If P is a polynomial, then P (xv + ǫ) where xv is a floating-point number,
gives P (xv) and the derivative P ′(xv):

P (xv + ǫ) = a(xv + ǫ)3 + b(xv + ǫ)2 + c(xv + ǫ) + d
= a(x3

v + 3x2
v ǫ) + b(x2

v + 2xv ǫ) + c(xv + ǫ) + d
= (ax3

v + bx2
v + cxv + d) + (3ax2

v + 2bxv + c) ǫ
= P (xv) + P ′(xv) ǫ

(4)

It extends to multivariate polynomials: either we have only one ǫ and two eval-
uations are needed:

Q(xv + ǫ, yv) = Q(xv, yv) +Q′
x(xv, yv)ǫ

Q(xv, yv + ǫ) = Q(xv, yv) +Q′
y(xv, yv)ǫ

(5)

or each variable is attached its own ǫ and one evaluation suffices:

Q(xv + ǫx, yv + ǫy) = Q(xv, yv) +Q′
x(xv, yv)ǫx +Q′

y(xv, yv)ǫy

Dual numbers extend to non polynomial functions:

exp(a+ b ǫ) = ea + bea ǫ

cos(a+ bǫ) = cos(a)− b sin(a) ǫ

sin(a+ bǫ) = sin(a) + b cos(a) ǫ

tan(a+ bǫ) = tan(a) + b(1 + tan2(a)) ǫ

|a+ bǫ| = |a|+ (sgn(a)b+ (1− sgn(a)2)|b|) ǫ

Dual numbers permit to compute the derivative of D(X) = det(M(X)), for
square matrices M(X), even if entries of M are piecewise polynomials, or algo-
rithms: just replace floating point numbers with dual numbers and then use any
standard numerical method (Gauss pivot, LUP). There are also formulas.

Lemma: det(I + ǫM) = 1 + Trace(M) ǫ, where M ∈ Rn,n. Proof:

det(I + ǫM) = (1 +M11ǫ)(1 +M22ǫ) . . . (1 +Mnnǫ) +R = 1 + Trace(M) ǫ+R

where R represents other perfect matchings in I + ǫM . But other matchings use
at least two off-diagonal entries in I+ǫM , thus are multiples of ǫ2, thus are zero.

Solving With Or Without Equations 19

When A is inversible, det(M(x+ ǫ)) = det(A+ ǫB) is:

det(A+ ǫB) = det(A(I + ǫA−1B))
= det(A) det(I + ǫA−1B)
= det(A)(1 + Trace(A−1B) ǫ)

(6)

When A is not inversible, we use its SVD : A = UΣV t (with Σ diagonal and
U, V unitary):

det(A+ ǫB) = det(UΣV t + ǫB)
= det(U(ΣV t + ǫU tB))
= det(U(Σ + ǫU tBV)V t)
= det(Σ + ǫU tBV)

(7)

equals the product of diagonal entries of Σ + ǫU tBV . It is 0 when there are at
least two null singular values in Σ. Otherwise it is

(σ1 + k1ǫ) . . . (σn−1 + kn−1ǫ)(0 + knǫ) = 0 + σ1 . . . σn−1kn ǫ (8)

The extension to many ǫ is lengthy but easy.
Dual numbers provide exact (up to floating point precision) derivatives even

when equations are not available and are replaced with algorithms. Thus they
make possible to use Newton method for solving, Euler method for following an
homotopy curve, BFGS method for optimizing.

It is possible to compute Taylor expansions beyond degree 1 (using ǫ4 = 0),
which eases Runge Kutta method for homotopy. It has a cost, reducible with
the sparsity of ǫ expansions. ǫ expansions are sortable [3] with compatible orders
used in Gröbner bases.

In passing, an algebraic construction φ starting from R gives the quaternions,
which represent 3D rotations. If φ is applied to R + ǫR, it gives biquaternions,
aka dual quaternions, which represent both 3D rotations and translations.

6 From algorithms to systems of equations

Algorithms are more convenient than equations to express constraints. But
maybe algorithms can be automatically converted into systems of equations,
and algorithms are just a convenience to pose equations?

Let a ∈ R, and s = sgn(a) be the sign of a: a = 0 ⇒ s = 0, a 6= 0 ⇒ s = |a|/a.
Then the system of equations below is such that S(a, s) = 0 ⇔ s = sgn(a).





0 = s3 − s ⇔ s ∈ {0,−1, 1}
0 = a− sy2 ⇔ y2 = |a| except when a = 0
0 = y2z − 1 ⇔ y2 6= 0 Remark that 0 = yz − 1 also works

The reader can check that when a > 0, there is only one real solution y2 =
|a| = a, s = 1, z = 1/a. When a < 0, there is only one real solution y2 =
|a| = −a, s = −1, z = −1/a. Finally, if a = 0, then s = 0 and y2 is free; for
uniqueness, add the equation: (1 − s2)(y − 1) = 0. It changes nothing if a 6= 0.

20 Dominique Michelucci

Otherwise, if a = 0, the only real solution is s = 0, y = z = 1. Then it is easy to
build systems S(a,R) for defining |a|, the positive (negative) part a+ (a−), etc:

R = |a| = sa
R = a+ = max(0, a) = (a+ |a|)/2 = (a+ sa)/2
R = a− = min(0, a) = a−max(0, a) = (a− |a|)/2 = (a− sa)/2
R = max(a, b) = (a+ b)/2 + |b− a|/2
R = min(a, b) = (a+ b)/2− |b− a|/2

Then we can convert the if-then-else instruction: F = (if x > 0 then P else
if x < 0 then N else Z) into equations:

F = sgn(x+)P + sgn(x−)N + (1− (sgn(x+) + sgn(x−))Z

For translating the arithmetic constraint x ∈ Z into equations, we can use
the equation sin(πx) = 0, which indeed describes Z, but it is not algebraic. An
algebraic system is: x = x0+2x1+ . . . 2nxn and xi(1−xi) = 0 for all i ∈ [[0, n]].
The system has logarithmic size in 2n, but it describes only integers in [[0, 2n−1]].
The naive representation: x(x− 1) . . . (x− 2n − 1) = 0 is exponential size.

After functional programming, assignments and iterations are useless. It is
sufficient to consider fixpoints : F (F (...(X))), where F is some algorithm. As-
sume the program Y = F (X) is represented with some system of equations:
S(X,Y) = 0. Then fixpoints of F are solutions of the system S(X,X) = 0. The
latter clearly shows that the sizes of X and Y must be equal. It is untrue for
some algorithm F , e.g., for subdivision curves, the size of Y is twice the size of
X.

We only sketched this conversion: we did not treat the conversion of function
calls, or of data structures like Lisp pairs. Assume this conversion is possible un-
der mild assumption. Then Computer Algebra applies to resulting polynomial
systems, e.g., ideals and radicals concepts become relevant for piecewise polyno-
mials after all. We can deduce equations from algorithms, e.g., for the distance
between a point and a segment, or for canceling spurious roots. Thus algorithms
are just a convenient way to pose equations. Is it possible to find (Gröbner bases
of) polynomial preconditions for the algorithm to work, and to fail?

References

1. Barki, H., Cane, J.M., Garnier, L., Michelucci, D., Foufou, S.: Solving the pentahe-
dron problem. Computer-Aided Design 58, 200–209 (2015)

2. Gouaty, G., Fang, L., Michelucci, D., Daniel, M., Pernot, J.P., Raffin, R., Lanquetin,
S., Neveu, M.: Variational geometric modeling with black box constraints and dags.
Computer-Aided Design 75, 1–12 (2016)

3. Michelucci, D.: An epsilon-arithmetic for removing degeneracies. In: 12th Sympo-
sium on Computer Arithmetic. p. 230. IEEE (1995)

Dependence of Axioms for Weak Geometries
Proved Syntactically

Victor Pambuccian

School of Mathematical and Natural Sciences (MC 2352)
Arizona State University - West Campus

P. O. Box 37100
Phoenix, AZ 85069-7100

U.S.A. pamb@asu.edu

Abstract. This talk will focus on two separate topics. The first one
concerns the geometry of point-reflections, and the various axioms that
one can add to an axiom system for point-reflections valid in absolute
geometry to get a hierarchy of geometries that are intermediate between
absolute an affine geometry. The language in which the axioms are ex-
pressed is a one-sorted one, with variable to be interpreted as ‘points’,
with two binary operation symbols, σ — with σ(ab) standing for the re-
flection of b in a — and µ — with µ(ab) standing for the midpoint of ab.
All statements considered are universal. The dependencies and indepen-
dencies involved were all established with the aid of Tipi, an aggregate
of automatic theorem provers designed by Jesse Alama. The results were
published in [1]. Several open problems remain.
The second part is a walk through results known to be true, regarding
statements that are known to be equivalent to established axioms, but
for which we have only algebraic proofs, or even proofs using Tarski’s
principle and other deep model-theoretical results. The challenge would
be to find syntactic proofs by means of automatic theorem provers. Ex-
amples are: Szmielew’s [7] proof that the circle axiom implies the Pasch
axiom in a certain axiom system for semi-ordered Euclidean geometry,
the fact that the Erdős-Mordell theorem is equivalent to the statement
that the angle sum in a triangle is not larger than two right angles,
proved in [4], the fact that the distances from a point to the vertices
of an equilateral triangle satisfy the generalized triangle inequality is
equivalent to the same statement that the angle sum in a triangle is
not larger than two right angles, proved in [2] and [6], the equivalence
of Lagrange’s axiom with Bachmann’s Lotschnittaxiom (stating that a
quadrilateral with three right angles closes), proved in [5], or the equiva-
lence of the Lotschnittaxiom with the universal statement “In an isosceles
triangle with base angles of 45◦, the altitude to the base is smaller than
the base” (proved in [3]).

References

1. Alama, J., Pambuccian, V.: From absolute to affine geometry in terms of point-
reflections, midpoints, and collinearity, Note di Matematica, 36: 11–24 (2016).

22 Victor Pambuccian

2. Barbilian, D. : Exkurs über die Dreiecke, Bulletin Mathématique de la Société des
Sciences Mathématiques de Roumanie 38: 3–62 (1936).

3. Pambuccian, V.: Zum Stufenaufbau des Parallelenaxioms, Journal of Geometry, 51:
79-88 (1994).

4. Pambuccian, V.: The Erdős-Mordell inequality is equivalent to non-positive curva-
ture Journal of Geometry, 88: 134 139 (2008).

5. Pambuccian, V.: On the equivalence of Lagrange’s axiom to the Lotschnittaxiom,
Journal of Geometry, 95: 165–171 (2009).

6. Pambuccian, V.: On a paper of Dan Barbilian, Note di Matematica, 29: 29–31 (2009).
7. Szmielew, W.: The Pasch axiom as a consequence of the circle axiom, Bulletin

de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, As-
tronomiques et Physiques, 18: 751–758 (1970).

Implementing Automatic Discovery in GeoGebra
Extended Abstract

Miguel A. Abánades1, Francisco Botana2, Zoltán Kovács3,
Tomás Recio4 and Csilla Sólyom-Gecse5

1 Depto. de Economía Financiera y Contabilidad e Idioma Moderno
Universidad Rey Juan Carlos, Madrid

miguelangel.abanades@urjc.es
2 Depto. de Matemática Aplicada I, EE Forestal, Campus A Xunqueira

Universidade de Vigo, Pontevedra
fbotana@uvigo.es

3 Private University College of Education of the Diocese of Linz, Austria
zoltan@geogebra.org

4 Depto. de Matemáticas, Estadística y Computación
Universidad de Cantabria, Santander

tomas.recio@unican.es
5 Babeş-Bolyai University, Cluj-Napoca, Romania

solyom-csilla@yahoo.com

Abstract. A prototype for the automatic discovery and derivation
of elementary geometry statements, based on the implementation of
computational algebraic geometry methods onto the dynamic geome-
try program GeoGebra, is presented. The emphasis is placed on the di-
verse mathematical and educational challenges posed by the—apparently
straightforward—application of some well known algorithms onto the Ge-
oGebra framework.

Keywords: Automatic Theorem Proving, Automatic Theorem Discovery, Au-
tomatic Theorem Deduction, Computational Algebraic Geometry, Elementary
Geometry, Dynamic Geometry Software, GeoGebra

1 Automatic Discovery in GeoGebra
In this paper we address the automatic discovery and derivation of elementary
geometry statements onto the dynamic geometry program GeoGebra, by im-
plementing the computational algebraic geometry methods described in [3]. We
refer the reader to such work for technical details about the main concepts and
algorithms. We remark that the considered methods are constrained to work un-
der an algebraically closed field of coordinates, e.g. the field of complex numbers;
the validity of the output on the real plane is subject to future development.

Since September 2014, with the launching of version 5.0, GeoGebra includes
proving capabilities based on symbolic algebraic computations through the com-
mand Prove[<Boolean Expression>]6, where a Boolean expression is a GeoGe-
6 See https://www.geogebra.org/wiki/en/Prove_Command for documentation.

24 Abánades, Botana, Kovács, Recio and Sólyom-Gecse

bra statement with possible logical values true/false (e.g. AreCollinear(E,F,G)
for points E, F, G in a diagram). Alternatively, in GeoGebra, one can check
whether a Boolean expression is true or not simply by typing the said expres-
sion in the command line. In this case, GeoGebra uses the numerical coordi-
nates of all the basic elements in the construction to compute the value of the
given Boolean expression. However, the Prove command assigns symbolic co-
ordinates (i.e. variables x, y, u, v, . . .) to the free and semi-free points in the
construction, and uses symbolic methods to determine whether the proposed
statement is true or false in general. This way Prove[<Boolean Expression>]
returns whether the given Boolean expression is true or false for any numer-
ical instance of the construction. For example, if we start with a triangle
ABC and the intersection point O of the altitudes from points A, B and type
Prove[ArePerpendicular[Line(O,C),Line(A,B)]] we obtain true, meaning
that for any triangle, its three altitudes share one point (more details in [1]).

The new feature we are reporting here, that of automatic discovery in GeoGe-
bra, requires that the user first constructs a geometric diagram with GeoGebra’s
drawing tools or drawing commands. Although theoretically all algebraic con-
structions (i.e. those composed of elements that can be expressed by polynomial
equations) can serve as initial data for GeoGebra’s discovery tool, technical rea-
sons, mainly related to computational time limitations, restrict the applicability
of the tool for complicated constructions. Moreover, it is important to note that
non-algebraic elements, such as the graph of a sine function, fall out of the scope
of the method, algebraic in nature.

After constructing a geometric diagram the user needs to type the command
LocusEquation[<Boolean Expression>, <FreePoint>]7 with two parameters:
the sought thesis T (which must be a Boolean expression) and a free point P ‘sup-
porting’ the discovery. Remark this is a drastically new functionality, available
in GeoGebra, version 5.0.213.0, since March 2016, of the preexisting command
LocusEquation. We have decided to extend the features of the command rather
than adding a new name to the long list of GeoGebra commands.

The Boolean expression defining the discovery plays the part of the extra
condition that we require our diagram to satisfy. The coordinates of the free
point P , second parameter of the command LocusEquation, are those the sought
extra hypothesis will deal with. That is, the symbolic coordinates of P will be the
variables of the polynomials conforming the necessary conditions obtained as a
result of the discovery process. As a result, LocusEquation[T,P] will produce a
set V (providing its implicit equation) such that “if T is true then P ∈ V ”. Notice
that this set can be empty (if the result of the algorithmic elimination yields the
polynomial equation 1 = 0, or it can be the whole plane, if the equation is 0 = 0.

7 See https://www.geogebra.org/manual/en/LocusEquation_Command.

Automatic Discovery in GeoGebra 25

For instance, let the constructed geometrical figure consist of the following
steps:

Step Textual description Tool Icon Command

1. Let A be a free point. Point A=(1,2)

2. Let B be a free point. Point B=(3,4)

3. Let C be the midpoint
of segment AB.

Midpoint
or Cen-
ter

C=Midpoint[A,B]

4. Let a be the segment
AC.

Segment a=Segment[A,C]

5. Let D be a free point. Point D=(5,6)

6. Let b be the segment
BD.

Segment b=Segment[B,D]

Now (as step 7) the user types LocusEquation[a==b,D] to learn how to
choose point D in order for the construction to satisfy the extra condition a = b.
Clearly, the output must be the circle with center B and radius a. That is, if
the sought thesis a = b holds, then D has to be an element of this circle. In
this particular case the implicit curve c : −x2 + 6x − y2 + 8y = 23 is drawn by
GeoGebra, which can be rewritten as (x− 3)2 + (y − 4)2 =

√
22.

It is crucial to highlight that points A and B are fixed in this example when
obtaining the implicit locus, but D is considered a free point. This means that
the numeric coordinates of A and B were used during the computations, but
the initial numeric coordinates of D were ignored, and the symbolic coordinates
(x, y) for D were used instead. That is, GeoGebra computed the (polynomial)
conditions that the symbolic coordinates of point D = (x, y) have to satisfy in
order for the expression a = b to be true for the particular case when A = (1, 2)
and B = (3, 4).

The implicit curve element newly obtained as a result of the discovery process
behaves interactively as any GeoGebra element. When changing the coordinates
of A or B, say making B = (0,−1), the implicit curve will be recomputed
and c : −2x2 − 2y2 − 4y = −3 will be obtained (which can be rewritten as
(x− 0)2 + (y + 1)2 =

(√
10/2

)2). Since the computation is very fast—enough for
GeoGebra to compute the implicit curve in a large number of cases while the
user drags point B from (3, 4) to (0,−1)—the visual result is that the drawn
curves are circles in all particular cases. Thus the user can visually conclude that
the implicit locus is always a circle, independently of the input fixed points A
and B (see Fig. 1).

26 Abánades, Botana, Kovács, Recio and Sólyom-Gecse

Fig. 1. Dragging point B from (3, 4) to (0, −1) and conjecturing that the implicit locus
is always a circle. (Here tracing was enabled for the point B and also for the implicit
locus c.)

As mentioned above, the LocusEquation[T,P] command produces extra nec-
essary conditions, say H ′, over P for T to be true for the initial construction.
To formally check that the found necessary conditions are also sufficient, the
user needs to use the Prove command with T as thesis for the geometric dia-
gram modified so that P satisfies H ′. For instance, in the example above, we
have obtained ‘H ′ = D is in the circle with center B and radius a’, so to prove
the conjecture ‘a = b if H ′’ we would type Prove[a==b] for the construction
modified so that D is defined to be in the circle with center B and radius a.

Technically speaking, the implementation of LocusEquation uses GeoGe-
bra’s theorem proving subsystem to translate the geometric construction into a
complex algebraic geometry model and also to obtain an algebraic equation as
a representation of the algebraic variety, hence all tools with proof capabilities
can also be used to obtain an implicit locus [4].

1.1 Examples

https://www.geogebra.org/book/title/id/mbXQuvUV points to a GeoGebra-
Book where we describe some examples of use of the LocusEquation command
in GeoGebra. They show how we can (re-)discover and generalize geometric re-
sults while pointing out some precautions that one has to keep in mind while
using this automated geometric discovery tool.

Automatic Discovery in GeoGebra 27

Example Discovering the Simson-Wallace theorem in the above GeoGe-
braBook shows how LocusEquation can be used to discover highly non-
trivial geometric results. In particular, the classical Wallace-Simson theorem
is (re-)discovered.

In example A generalization of the right triangle altitude theorem, a natural
generalization of the known right triangle altitude theorem is obtained for non-
right triangles.

The examples in Dependency of locus sets on the initial construction 1–2 em-
phasize the key idea of the dual symbolic-numeric nature of the protocol behind
LocusEquation. They show how the numeric nature of the protocol material-
izes in a subtle dependence of the produced necessary conditions on the initial
(numeric) coordinates of the basic elements in the construction; in such a way
that for some initial construction we might find that the sought locus is a line,
while for other initial configuration it is a circle. An example is also provided in
this section that deals with the important special cases in which a property is
never/always true. It shows how the answer by GeoGebra in these cases takes
the form of a trivially false/true equation.

Being LocusEquation based on algebraic methods, it can sometimes pro-
duce sensible conditions from an algebraic point of view that are geometrically
meaningless. That is the case of most of the instances associated to the locus set
in example Degenerate cases and necessary not-sufficient conditions, producing
geometrically degenerate situations due to the coincidence of two points.

2 Further developments

We think that featuring automatic discovery tools, in the generalized sense we
have described in section 1, combined with automatic proving, in a widely acce-
sible Dynamic Geometry programa such as GeoGebra, is an interesting feature,
deserving some consideration in the realm of mathematics education, for in-
stance, in the context of intelligent tutoring. The previous list of examples shows,
on the one hand, the power of the implemented tool; and, on the other hand, the
subtleties and limitations that are, sometimes, involved in its use. What follows
are some reflections on further developments we are currently working on.

2.1 Extending the number of discovery points

Firstly, while the proposed protocol for discovery is naturally aimed to search for
necessary conditions involving more than one point, the LocusEquation com-
mand only accepts exactly one point, thus severely limiting the scope of discov-
ery. If necessary conditions on a construction are to be discovered, and there
is exactly one point involved in the discovery, the result, if found, returns an
implicit curve, which can be plotted, thus graphically suggesting the conjecture.
Nevertheless, it is easy to pose questions where there are several (and not neces-
sarily free) points a priori unknown on which the discovery is to be performed.
Consider, for instance, a triangle ABC and the midpoints D and E of sides

28 Abánades, Botana, Kovács, Recio and Sólyom-Gecse

AB and AC, respectively. If one asks for the locus of C such that side AC is
perpendicular to line DE, GeoGebra returns the circle with diameter AB, that
coincides with the circle circumscribed to triangle ABC, when C lies in the lo-
cus. But, relaxing point D to just lie on side AB, the LocusEquation command
does not give any answer. Point D is not a free point in the construction, thus
its coordinates are not replaced by their actual numeric values. One of its coor-
dinates is a constant, and the other one can have any value. So, the algebraic
machinery would return 0 as discovery result, meaning that vertex C can be
placed in any part of the plane in order to satisfy the required perpendicular-
ity. The set of points to be discovered should include D, violating the actual
syntax of LocusEquation command. In such a case, that is, trying to discover
conditions on C and D in order to get the perpendicularity, a possible command
could be Discover[ArePerpendicular[AC,DE],{C,D}]. The algebraic output
for this multi-point discovery, being A(0, 0) and B(1, 0), consists of a pair of
polynomials, where C(x1, x2) and D(x3, x4):

x4,

x2
1 + x2

2 − 2x1x3.

Thus, point D lies on side AB, as it was defined, and point C lies on a
circle centered at D and passing through A (see Fig. 2). Nevertheless, currently
GeoGebra has no means to translate this algebraic result into a meaningful
assertion.

Fig. 2. What is the locus of C such that line AC is perpendicular to line DE?

Automatic Discovery in GeoGebra 29

This example shows that, in some sense, what we are considering as an exten-
sion of the LocusEquation command, is the possibility of pointing out several
coordinates for discovery (such as one for the semi-free point D and two coordi-
nates for C), not just the two of the single point P , whose locus we are searching
for. Moreover, we should also include, in the extended discovery features, the pos-
sibility to find the locus, not only of points, but also of some geometric objects
such as lengths, distances, areas, etc. I.e. we could be asking for the polynomial
equation that a length or a distance must satisfy if some thesis is to become
true.

In particular this could be very useful for automatic derivation, since it can
be considered as a discovery in a context in which there is not a new thesis,
but we would like to obtain conclusions from the construction in terms of some
specific variables. Say, to discover the relation between the lengths of the sides
of a triangle and its area, a sort of “locus” of the lengths and the area.

2.2 Handling directly entered algebraic inputs

The theorem proving subsystem is designed to work with geometric inputs like
parallel lines, perpendiculars, intersection of circles, and so on, but not to handle
algebraic descriptions like y = x2 to define a parabola. This means that a directly
entered input equation of a geometric curve cannot be handled at the moment.
On the other hand, an algebraic equation is considered to be the natural way for
its output, so that the result of the LocusEquation command is internally always
an algebraic equation (which is visualized by another subsystem in GeoGebra),
independently from computing which type of locus (explicit or implicit).

As a result, unfortunately, the algebraic output cannot be used as another
input for the theorem proving subsystem at the moment. This means that, from
the perspective of automated proving, the user cannot directly investigate the
implicit curve created by the LocusEquation command. It requires to make a new
construction, including the conjectural locus, and then use the Prove command.
To simplify this issue, the theorem proving subsystem has to be extended to
make it possible to handle direct algebraic inputs as well. See https://jira.
geogebra.org/browse/TRAC-3596 for more on this.

2.3 3D loci

A further step is to generalize locus computations to work in 3 dimensions.
There are no theoretical issues concerning this, but computationally we cannot
expect fast results for the moment. In general the number of coordinates are 50%
more than for the 2D case, and this will increase the number of variables by 50%.
Considering that the underlying computer algebra system uses Gröbner bases for
manipulating the polynomials, and in worst case it is doubly exponential in the
number of variables, we cannot be optimistic for the general case. Nevertheless,
technically it is still possible to generalize the current 2D implementation to be
3D ready to harness GeoGebra’s attracting features to visualize 3D objects.

30 Abánades, Botana, Kovács, Recio and Sólyom-Gecse

2.4 Enlarging Boolean expressions

A more promising possibility for further improvement is to enable us-
ing disjunctions for Boolean expressions as the first parameter of the
LocusEquation command. Clearly, for an arbitrary disjunction A or
B, LocusEquation[A||B,...] should be the same as the union of
LocusEquation[A,...] and LocusEquation[B,...], and algebraically the
product of the two locus equation polynomials will describe the polynomial of
the union. On the other hand, a similar strategy for conjunctions may be tech-
nically more difficult, because a symbolically reliable display of the intersection
of two algebraic curves is a more challenging task.

2.5 Unification parts of the source code

GeoGebra supports symbolic computation of explicit locus equations since ver-
sion 4.2 (December 2012) by the result of the collaborative work of some of
the authors and other researchers (see [2]). Independently from that research,
another module of GeoGebra was started in 2011 by the joint work of the au-
thors and other developers, namely the theorem proving subsystem including
the Prove command. It was published in version 5.0 (September 2014) and is
being improved continuously since then. The implicit locus equation command—
presented in this paper—uses the same module.

The two subsystems were developed separately and have no common parts.
Meanwhile the first module was not improved any longer, but recently it turned
out that unifying the codebases of the two projects is achievable. Such a unifi-
cation would be fruitful to avoid double implementation of translating geometry
statements into algebraic equations, so that user experiments may be extended
also for the explicit locus equations by harnessing many advanced features of
the second module, including direct definition of conic sections or geometric
inversion.

Fortunately, the GeoGebra Team decided to officially support this work
from 2016 and the codebase has been started to be merged. See https:
//jira.geogebra.org/browse/GGB-641 for details. We expect fruitful results
shortly.

Acknowledgement

First, second and fourth authors are partially supported by the Spanish Re-
search Project ‘Construcciones algebro-geométricas: fundamentos, algoritmos y
aplicaciones’ (MTM2014-54141-P).

References
1. F. Botana, M. Hohenwarter, P. Janičić, Z. Kovács, I. Petrović, T. Recio, S.

Weitzhofer: Automated theorem proving in GeoGebra: Current achievements,
Journal of Automated Reasoning 55: 39–59, 2015.

Automatic Discovery in GeoGebra 31

2. F. Botana, Z. Kovács: A Singular web service for geometric computations, Annals
of Mathematics and Artificial Intelligence 74(3-4): 359–370, 2015.

3. G. Dalzotto and T. Recio: On protocols for the automated discovery of theorems
in elementary geometry, Journal of Automated Reasoning 43(2): 203–236, 2009.

4. Z. Kovács, C. Sólyom-Gecse: GeoGebra Tools with Proof Capabilities. http://
arxiv.org/abs/1603.01228. March, 2016.

Geodesic Star Unfolding

Md. Ashraful Alam1 and Ileana Streinu1,2

1 Computer Science Department, University of Massachusetts Amherst, Amherst,
MA 01003, USA

2 Computer Science Department, Smith College, Northampton, MA 01063, USA

Abstract. If we draw a non-crossing tree on the surface of a convex
polyhedral surface in R3 such that it touches all the vertices of the poly-
hedron, and then cut along the tree edges, the resulting surface can be
unfolded onto the Euclidean plane, possibly with overlap. A well studied
case, called star unfolding, cuts along the shortest paths from a source
point to all vertices. This is one of the few instances that guarantees
a non-overlapping unfolding of the flat polygonal surface resulting from
the cutting. In this paper, we introduce geodesic star unfolding, a gen-
eralization that allows cuts along arbitrary geodesics from the source
point to the polyhedral vertices, rather than just the shortest paths. We
discuss a number of geometric properties that transfer from the shortest-
path version, and others (such as non-overlapping) that do not. Some of
these properties were identified via experimentation with an interactive
Mathematica implementation.

1 Introduction

In this paper we introduce a new type of polyhedral unfolding, called geodesic
star unfolding, and initiate the study of its properties. We focus on the compar-
ison to the well studied case when the geodesics are all shortest paths. Several
distinguishing properties are presented via examples obtained by experimenta-
tion with an interactive Mathematica implementation.

Fig. 1. A classical example of an edge un-
folding obtained by cutting the tetrahedron
along a spanning tree of its 1-skeleton.

Unfolding. Let P be a convex poly-
hedron in R3 on whose surface we
draw a collection of non-crossing
geodesic arcs forming a tree and
touching all the vertices of the poly-
hedron (this is called a cut tree). If we
cut the surface along the tree edges,
we obtain an intrinsically flat surface
with boundary which is topologically
a disk. An unfolding is obtained by

immersing the cut surface into the 2D plane such that it is locally non-
overlapping. The boundary becomes a planar polygon which, in general, may
not be simple (i.e. may be self-intersecting) due to global self-overlaps of the
immersed unfolded surface.

Geodesic Star Unfolding 33

Non-overlapping unfoldings. Different types of unfoldings are distinguished
by the choice of the cut tree. The edge unfolding, illustrated in Fig. 1 for a
tetrahedron, uses a spanning tree of the 1-skeleton of the polyhedron. An edge
unfolding is often non-overlapping, as in Fig. 1, but this does not always happen;
self-overlapping examples are presented in [7, 10]. A long standing open question
is whether every convex polyhedron has some edge unfolding to a simple, non-
overlapping polygon. Experimental evidence points to a positive answer, yet a
proof or counter-example remain elusive. However, there exist specific kinds of
unfoldings which are always non-overlapping: (shortest-path) star unfolding and
source unfolding [5]. In this paper we introduce a generalization of star unfolding;
the ultimate goal is to identify critical properties that could help prove global
non-self-overlap in general unfoldings.

Fig. 2. A tetrahedron with the shortest
paths from a source vertex, and the corre-
sponding sp-star unfolding polygon. Source
and polyhedral vertices are colored in
white, resp. black.

Shortest-path star unfolding. This
type of unfolding is obtained by
choosing a point s (the source vertex)
on the surface of the polyhedron P
and cutting along the shortest paths
(on the surface) from s to all vertices
v1, v2, . . . , vn of P , as in Fig. 2. Since
the cut tree is a star, this is known in
the literature as a star unfolding of P .
To distinguish it from the generaliza-
tion introduced in this paper, we will
refer to it as the shortest-path star un-

folding, shortly sp-star unfolding. It is also known as Alexandrov unfolding [8],
and it was first mentioned in [4]. A detailed exposition can be found in [6].The
non-overlapping property of the shortest path star unfolding was studied in [5]
and a number of applications appear in [1]. Building on these results, we gave in
[2] a complete characterization of those polygons which arise as sp-star unfold-
ings.

Fig. 3. One of the shortest paths on the
tetrahedron from Fig. 2 is replaced by
a geodesic. The dotted line indicates the
geodesic which is not a shortest path.

Geodesic star unfolding. We gen-
eralize the sp-star unfolding by cut-
ting along a star-tree whose edges are
non-crossing geodesics (i.e. not neces-
sarily the shortest geodesics) from the
source vertex. We refer to this more
general setting as a geodesic star un-
folding (shortly, star unfolding in this
paper) and use the term geodesic star
unfolding polygon to refer to its polyg-
onal boundary.

Contributions. Since geodesic star unfoldings are relaxed versions of sp-star
unfoldings, one might anticipate some properties similar to those of the sp-
star unfolding, as well as differences. In particular, are they always non-self-

34 Md. Ashraful Alam and Ileana Streinu

overlapping? As a first contribution, we characterize the polygons arising as
geodesic star unfoldings. We obtain self-overlapping counter-examples through
experimentats using an interactive Mathematica implementation of geodesic and
sp-star unfoldings, based on their corresponding characterizations.

We also address the following reconstruction problem: given an ordered set of
points on the plane, construct a geodesic star unfolding of a convex polyhdron
whose source vertices are placed at the given points. Such a reconstruction algo-
rithm can be used to generate polyhedral metrics (in the sense of Alexandrov)
without going through 3D, i.e. not by generating polyhedra and somehow cut-
ting their surfaces, but by directly generating a 2D polygon which corresponds
to an unfolding of (a unique) 3D convex polyhedron. As a second contribution,
we identify a family of points which are guaranteed to support geodesic star
unfoldings.

2 Preliminaries

Polygons and polyhedra. For our purposes, a 2D polygon is a region in R2

bounded by a simple (non self-intersecting) polygonal cycle joining an ordered
sequence of points p1, · · · , pn. The polygon is convex when it coincides with the
convex hull of its vertices, i.e. when a line segment connecting any of its two
points lies fully inside its region; otherwise, it is non-convex. A 3D polygon is
flat if it lies in a plane.

Fig. 4. The face angles of one vertex of the
cube. The curvature at this point is 2π mi-
nus the sum of the face angles. When the
surface is cut at this vertex and flattened
in 2D, this curvature is the angle deficit at
the corresponding interior vertex of the un-
folding polygon.

A 3D polyhedron is the region in R3

bounded by a finite number of flat
polygons called faces such that: (a) if
two faces intersect, then it is only at
a common edge or a vertex, (b) ev-
ery edge of every face is an edge of
exactly one other face, and (c) faces
surrounding each vertex form a sim-
ple cycle. A polyhedron is convex if
a line segment connecting any of its
two points lies entirely in its interior.
Convex polygons, resp. polyhedra can
also be characterized as bounded re-
gions obtained by intersecting a finite

number of half-planes, resp. half-spaces. The boundary of a polyhedron is a
surface of some genus. In this paper we work only with convex polyhedra P .

The Gaussian curvature (shortly, curvature) of a point p on a polyhedral surface
is the angle deficit at p, i.e. 2π minus the sum of the face angles incident to it
(Fig. 4). The vertices of a convex polyhedron have positive curvature, and the
points on the faces and edges have zero curvature. The total Gaussian curvature
is the sum of all vertex curvatures. For a surface with spherical topology, this is
always 4π.

Geodesic Star Unfolding 35

Polyhedral metric and Alexandrov’s Theorem. A polyhedral metric is a
collection of (one or more) planar polygonal pieces together with rules for glueing
them, along pieces of their boundaries, into an intrinsic surface with the topology
of a sphere. The glueing may result in a finite set of points of non-zero intrinsic
(Gaussian) curvature, called the vertices of the surface. The metric is convex if
the sum of the surface angles at each vertex is at most 2π, i.e. if the curvature
is positive. The following classical result provides the connection with convex
polyhedra.

Theorem 1. (A.D. Alexandrov’s theorem [3]) For every convex polyhedral
metric, there exists a unique convex polyhedron (up to translation and symmetry)
realizing this metric.

As a side note, we remark that the edges of the polygonal pieces in the polyhedral
metric need not be related in any way to the edges of the realization as a convex
polyhedron, and that there exist infinitely many polyhedral metrics that give
rise to the same convex polyhedron.

Shortest paths and geodesics. A shortest path between two points on a
convex polyhedral surface P is the shortest of all possible curves between these
two points, measured on the surface of P . Various properties of shortest paths
on polyhedral surfaces have been identified in [11, 9].

A geodesic path between two points on the surface is a locally shortest path. In
this paper we consider only non-self-intersecting (simple) geodesics and refer to
them, shortly, as geodesics. Given two points on the polyhedral surface, there
may be more than one (even an infinity of) geodesic paths between them. The
shortest paths, by definition, are geodesics. However, in this paper we need to
distinguish those which are not shortest paths: in short, we refer to them simply
as geodesics. For a convex polyhedral surface, a geodesic segment may contain a
point of strictly positive curvature (i.e. a polyhedral vertex) only as an endpoint
(but not strictly interior to the segment). In particular, a geodesic segment is a
straight line segment on some unfolding of (possibly, a cover of) the surface.

Geodesic star unfolding. We consider only unfoldings which are obtained by
cutting a polyhedral surface along a tree whose edges are disjoint (non-crossing,
simple) geodesic segments. These tree edges may be shortest geodesics, as is the
case for all edge or sp-star unfoldings. The geodesic star unfolding (shortly, star
unfolding) is obtained by cutting along geodesic edges connected as a star, but
where some or all of these edges are not shortest paths. The common vertex
s of all the edges is called the source vertex. The polygon obtained via a star
unfolding (Fig. 2) has 2n vertices: n of them correspond to polyhedral vertices
of P and n to copies of the source vertex (source images). These two types
of vertices appear alternately on the boundary of the unfolding, meaning each
source image has one polyhedral vertex preceeding and one following it, in cyclic
order. The angle at each source image is a source angle. The sum of all source
angles is 2π when the source vertex is on a polyhedral face or an edge and strictly

36 Md. Ashraful Alam and Ileana Streinu

less than 2π when it is placed on a polyhedral vertex (by an amount given by
the curvature of the polyhedral vertex). Given a polyhedron, a source vertex and
a geodesic star, we can angularly sort the star edges around the source vertex.
This induces a circular ordering of the polyhedral vertices. If we join by shortest
paths the polyhedral vertices, in this order, we obtain a geodesic polygon on the
surface of the polyhedron. In the case of an sp-star unfolding, this polygon is
non-self-intersecting and bounds a region called the core of the sp-star. In the
corresponding sp-star unfolding, the core unfolds as the inner polygonal region
obtained by joining the polyhedral vertices in the order in which they appear on
the boundary of the unfolding polygon.

Voronoi diagram. A set Pn of n points (called sites) in the Euclidean plane
induces a Voronoi diagram VD(Pn). This is a planar subdivision of n Voronoi
regions (one for each site), Voronoi edges between them and Voronoi vertices
where the Voronoi edges meet, defined as follows. An arbitrary point x ∈ R2 lies
in the Voronoi region of site pi if the Euclidean distance from x to pi is smaller
than the distance to any other point pj ∈ Pn, j 6= i. There are two kinds of
Voronoi edges: segments, bounded at both ends by Voronoi vertices, and rays,
having just one Voronoi vertex at one end (the closed end) but unbounded at
the other end (the open end).

Ridge tree. Given a source point s on the surface of a convex polyhedron P ,
the ridge tree is the set of all the points r ∈ P for which there exist at least two
distinct shortest paths from r to s on the surface. It is known that its closure
is a tree which touches all the vertices of the polyhedron. Another remarkable
property (see [5]) relates the sp-star unfolding to the ridge tree (from the same
source vertex), as follows. Take the images of the source vertex in the sp-star
unfolding and compute their Voronoi diagram. Then delete the part that lies
outside the sp-star unfolding polygon: what remains is a tree which, on the
(folded) 3D polyhedron surface, is precisely the ridge tree for source s.

3 Characterization of geodesic star unfoldings

In this section we prove a very simple characterization of (geodesic) star un-
foldings, and remind the reader of additional features of sp-star unfoldings. The
basic properties of a geodesic star unfolding mentioned in the Introduction lead
to the following definition:

Su-Polygon. An su-polygon (short for abstract star-unfolding polygon3) is a
disk-like zero-curvature (intrinsically flat) surface, whose boundary satisfies the
following properties (known to hold by any geodesic star unfolding polygon): (a)
it has 2n vertices, alternately labeled as si and vi and referred to as s-, resp.
v-vertices. The angle (interior to the surface) at an s-vertex is refered to as an
s-angle; (b) the sum of all the s-angles is 2π, and (c) the v-vertices are placed

3 The modifier “abstract” is used to emphasize that, a priori, such polygons are not
guaranteed to arise from star unfoldings of 3D convex polyhedra.

Geodesic Star Unfolding 37

on the perpendicular bisectors of the two neighboring s-vertices. In particular,
this last property implies that the two edges incident to a v-vertex have equal
lengths. Intuitively, the s-vertices, v-vertices and s-angles are analogous to source
images, polyhedral vertices and source angles for the sp-star unfolding polygons.

We remark that the definition allows for the self-overlap of the unfolded surface,
i.e. the su-polygon is not necessarily a simple polygon. Su-polygons are special
cases of polyhedral metrics, under the rule that the two equal sized edges incident
to a v-vertex are glued together.

Since the boundary edges of an sp-star-unfolding polygon must be the shortest
paths on the corresponding polyhedral surface, not all su-polygons arise as sp-
star-unfoldings. However, every su-polygon arises from a geodesic star unfolding
of some convex polyhedron with respect to some source vertex. This follows
immediately from the following straightforward lemma by applying Alexandrov’s
Theorem:

Lemma 1. An su-polygon is a convex polyhedral metric.

Therefore, an su-polygon can be folded into a convex polyhedron. After fold-
ing, its boundary edges correspond to the cut edges on the polyhedral surface.
Since these cut edges are straight lines, they are also geodesics (some of which
may be the shortest) from the source to the polyhedral vertices. Therefore, we
have the following characterization:

Theorem 2. A polygon (not necessarily simple) is the geodesic star unfolding
of some convex polyhedron from a source vertex if and only if it is an su-polygon.

4 Comparison of Geodesic and Sp-Star Unfoldings

Although geodesic star unfoldings share some basic properties with sp-star un-
foldings, there are several important differences. We present now a series of
properties that hold for sp-star unfoldings but not for arbitrary geodesic ones.
We need the following characterization from [2]:

Theorem 3. (Characterization of sp-star unfoldings) A simple su-polygon
is an sp-star unfolding polygon if and only if (a) the perpendicular bisectors of the
pairs of consecutive s-vertices are all present in the Voronoi diagram of all the
s-vertices; and (b) any v-vertex lies precisely on the Voronoi edge corresponding
to its two s-vertex neighbors.

Source angles. In an sp-star unfolding all source angles are convex (smaller
than π). This is often the case for geodesic non-sp star unfoldings, but not
always:

Lemma 2. There exist geodesic non-sp star unfoldings with one reflex (larger
than π) source angle.

38 Md. Ashraful Alam and Ileana Streinu

Proof. An example of a geodesic star unfolding polygon with one source angle
larger than π is shown in Fig. 3. Since the angle sum at the source vertex is at
most 2π, at most one source angle can be reflex.

Placement of polyhedral vertices. The characterization of sp-star unfolding
polygons [2] states that if vi is the v-vertex between two s-vertices si and si+1,
then the Voronoi diagram of the source vertices contains an edge between these
two sites, and, moreover, vi lies precisely on this Voronoi edge (segment or ray).
This property depends on the “shortest path” assumption and does not extend
to arbitrary geodesic star unfoldings.

Fig. 5. An example of a geodesic star unfolding with v-vertices that do not lie on
Voronoi edges: the polyhedral vertex v2 is on the extension of a Voronoi segment and
the bisector on which v4 lies is not present in the Voronoi diagram.

Lemma 3. There exist geodesic star unfolding polygons where some perpendic-
ular bisectors on which the polyhedral vertices lie are not part of the Voronoi
diagram.

Lemma 4. There exist geodesic star unfolding polygons where some polyhedral
vertex lies not on its corresponding Voronoi segments, but on an extension of
the underlying bisector.

Proof. Both cases are illustrated in Fig. 5. ut

Ridge tree. In the case of an sp-star unfolding, we have seen that the ridge tree
is part of the Voronoi diagram of the source images. The above counter-examples
indicate that this may not be the case for arbitrary geodesic star unfoldings.

Self-overlapping geodesic star unfolding. It is known that sp-star unfold-
ings are non-self-overlapping. On the other side:

Lemma 5. There exist self-overlapping geodesic star unfolding polygons.

Proof. The example in Fig. 6 has been obtained by experimenting with an in-
teractive implementation of su-polygons in Mathematica. ut

Geodesic Star Unfolding 39

Fig. 6. An example of a self-overlapping geodesic star unfolding polygon. Polyhedral,
resp. source vertices are shown with colored circles, resp. white squares.

Fig. 7. An example of a geodesic star un-
folding where the core polygon, shown in
blue, is self-intersecting.

Self-intersecting core. The core
of an sp-star unfolding joins the v-
vertices and is a simple polygon [6].
Furthermore, in this case the core, as
a polygonal region, contains the ridge
tree inside. On the other hand:

Lemma 6. There exist convex poly-
hedra, source vertices and non-crossing
geodesics from the source to the poly-
hedral vertices such that the core of
the resulting geodesic star unfolding
polygon is self-intersecting.

Proof. An example, obtained by ex-
perimentation with our interactive

Mathematica implementation of su-polygons, is shown in Fig. 7. ut

5 Reconstruction of geodesic star unfolding polygons

Based on the characterization given in Theorem 3, we presented in [2] a lin-
ear time algorithm that constructs sp-star unfolding polygons with prescribed
combinatorics, as captured in the (topologically embedded) ridge tree. It turns
out that our algorithm always produces an sp-star unfolding polygon whose s-
vertices lie in convex position. We also know that this property, of having the
source vertices in convex position, does not hold for all sp-star unfoldings poly-
gons. On the other hand, if we are given an ordered point set in convex position,

40 Md. Ashraful Alam and Ileana Streinu

is it true that it supports some sp-star unfolding? This question was answered in
the negative in [2]. Here, we investigate the extent to which such reconstruction
questions can be answered for geodesic star unfoldings, where we encounter new
challenges.

Challenges. We have shown in [2] that not all ordered sets of s-vertices support
sp-star unfolding polygons, and in particular not all that are in convex position.
For this purpose, we introduced the concept of a flap polygon, which satisfies
the same properties as a sp-star unfolding polygon except that the source vertex
angle sum may be arbitrary (in particular, larger than 2π). We defined the
extreme flap polygon, whose v-vertices are placed at Voronoi vertices in a specific
manner that minimizes the source angle sum; when these vertices are moved away
from the Voronoi vertex on incident Voronoi edges, this angle sum increases. For
certain source point sets, the angle sum of the extreme flap polygon exceeds 2π,
hence they do not support any sp-star unfolding polygon.

However, this constraint is not prohibitive for arbitrary geodesic star unfold-
ings: here, the polyhedral vertices are not constrained to lie on corresponding
Voronoi segments. Hence if the sum of the s-angles of an extreme flap polygon is
larger than 2π, we can push some v-vertices inwards until the s-angles sum up to
2π. This causes some v-vertices to be placed on the line extension of their cor-
responding Voronoi segments. Theorems 3 and 2 then ensure that the resulting
polygon is a geodesic star unfolding.

Fig. 8. An example of a extreme flap polygon whose s-angle sum is larger than 2π. It
is difficult to push the v-vertices inwards (on the line extensions of the corresponding
Voronoi edges) to achieve a sum of the s-angles equal to 2π, while maintaining a valid
geodesic star unfolding. Note that in this example, the s-vertices are in convex position
and hence all the consecutive bisectors are part of the Voronoi diagram.

Geodesic Star Unfolding 41

A problem with this approach is that we do not know how far we can push
each v-vertex inwards; the whole process is a trial-and-error heuristic. There are
no geometric properties that will guarantee that we can push a set of v-vertices
inwards enough to make the sum of s-angles to 2π without crossing through
other vertices or edges. Such a challenging example is presented in Fig. 8. This
complicates the development of an algorithm for the construction of arbitrary
geodesic star unfoldings on given point sets. A natural question thus arises:

Are there point sets guaranteed to support sp-star, resp. geodesic unfoldings?

In particular, point sets in convex position are good candidates. However, we
have shown in [2] that there exist cyclically ordered point sets in convex position
which do not support sp-star unfoldings. But do they always support geodesic
star unfoldings? The example in Fig. 8 shows that this may not be easy to decide.

1

2

3

4

5

6 7

Fig. 9. An“almost circular” point set of type
“out” (i = 7), its Voronoi diagram (black) and
extreme su-polygon (orange).

Point sets guaranteed to
support sp-star unfoldings.
However, there exist special
set of points, designated as s-
vertices, such that the v-vertices
can freely move on the extension
of the Voronoi segments while
seeking positions satisfying the
angle sum condition. One such
case is when all s-vertices lie on
a circle. The bisectors of all pairs
of consecutive s-vertices are part
of the Voronoi diagram, and they
all meet exactly at the center of
the circle (i.e. the Voronoi dia-
gram of these points has n line
segments which meet at the cen-
ter of the circle). The sum of the
s-angles of the extreme flap poly-

gon is zero, hence any displacement of a v-vertex on the corresponding Voronoi
segment leads to a valid su-polygon.

Almost circular point sets. There are no other known general families of
points that guarantee sp-star unfoldings. We show now that a small relaxation
of circularity leads to guaranteed sp, resp. geodesic star unfoldings. An ordered
point set s1, · · · , sn is called “almost circular” if all points lie on a circle C of
center c, in this order, except for one point, say si, which lies somewhere inside
the wedge centered at c and bounded by the rays (c, si−1) and (c, si+1), and the
wedge is convex. The set is said to be of type “out” when si lies outside (Fig. 9),
and of type “in” when si lies inside the circle C (Fig. 10).

Theorem 4. An “almost circular” point set of type “out” always supports an
sp-star unfolding, and one of type “in” always supports a geodesic star unfolding.

42 Md. Ashraful Alam and Ileana Streinu

1

2

34

5

6

7

(a)

1

2

34

5

6
7

(b)

Fig. 10. Two “almost circular” point sets (i = 7) of type “in”: (a) convex and (b)
non-convex. The Voronoi diagram is shown in black. In orange is shown the adapted
geodesic su-polygon, with all the source vertices at the center of the circles, except for
the two incident with the special source vertex (shown slightly apart from the extreme
position, for clarity).

Proof. (Sketch) Let c be the center of the circle and assume, without loss of
generality, that the points are labeled consecutively such that let s1, · · · , sn lie
on the circle, except si (the “special” source vertex) which lies somewhere inside
the wedge (si−1, c, si+1). We place the v-vertices on the corresponding Voronoi
segments and build the flap polygon by joining the s- and v-vertices alternately.
Let us label the vertices of su-polygon as s1, v1, s2, v2, . . . , si, vi, . . . , sn, vn. We
analyze three cases, illustrated in Figs. 9 and 10.

Case “Out”: si lies outside the circle C. Independent on whether the whole
point set is convex or not, the extreme su-polygon has the same shape, illustrated
in Fig. 9, with exactly two strictly positive source angles. Since the total curva-
ture at the source vertex is positive, the point set supports an sp-star unfolding
polygon.

Case “In”: si lies inside the circle C. The entire point set may be convex or
not, depending on whether the special point lies outside or inside the convex hull
of the others. In the first case, the Voronoi diagram has only unbounded faces,
otherwise the Voronoi region for the special source vertex is bounded (Fig. 10).

In both cases, we define an adapted extreme su-polygon, where all v-vertices
are moved to the center of the circle except vi−1 and vi. The lines si−1c and
si+1c will intersect the Voronoi segments corresponding to vi−1 and vi respec-
tively. We place vi−1 and vi, respectively, on those intersection points, as illus-
trated in Fig. 10 (where these vertices are shown slightly apart from the extreme
position, for clarity). In this configuration, the s-angles at all s-vertices except
si are zero, and thus the total angle sum at the s-vertices is no more than 2π

Geodesic Star Unfolding 43

(positive curvature). All v-vertices except vi−1 and vi are on the extension of
their corresponding Voronoi segments, while vi−1 and vi lie on the Voronoi seg-
ments. Now we can now move the v-vertices that are placed on the center of the
circle, outwards (away from the center of the circle in the direction towards the
Voronoi edge to which they are associated) and the s-angle sum increases. This
allows us to obtain a geodesic su-polygon by moving a little so that all s-vertex
angles are strictly positive.

This concludes the proof that almost circular point sets support geodesic
star-unfoldings. ut

Conclusion. We have examined some properties of geodesic star unfoldings
that distinguish them from shortest-path star unfoldings. In particular, we have
shown that they may not always lead to simple (non-overlapping) unfoldings.
We have also discussed specific challenges for reconstructing geodesic star un-
foldings on given point sets and presented a method to construct the geodesic
star unfolding for “almost circular” points.

Acknowledgement. This research was supported by the NSF grant CCF-
1319366 of the second author.

References

1. P. K. Agarwal, B. Aronov, J. O’Rourke, and C. A. Schevon. Star unfolding of a
polytope with applications. SIAM J. Computing, 26:1689–1713, 1997.

2. M. A. Alam and I. Streinu. Star unfolding polygons. In F. Botana and P. Quaresma,
editors, Lecture Notes in Artificial Intelligence 9201, Automated Deduction in Ge-
ometry (ADG’14, Coimbra, Portugal, July 9-11, 2014), volume 9201 of Lecture
Notes in Artificial Intelligence, pages 1–20. Springer Verlag, 2015. ISBN 978-3-
319-21362-0.

3. A. D. Alexandrov. Convex Polyhedra. Springer Monographs in Mathematics.
Springer Verlag, Berlin Heidelberg, 2005. English Translation of Russian edition,
Gosudarstv. Izdat.Tekhn.-Teor.Lit., Moscow-Leningrad, 1950.

4. A. D. Alexandrov. Intrinsic Geometry of Convex Surfaces. Chapman and
Hill/CRC, Taylor and Francis Group, Boca Raton, Florida, 2006. Selected Works
II, translated from Russian by S. S. Kutateladze.

5. B. Aronov and J. O’Rourke. Non-overlap of the star unfolding. Discrete and
Computational Geometry, 8:219–250, 1992.

6. E. D. Demaine and J. O’Rourke. Geometric Folding Algorithms: Linkages,
Origami, and Polyhedra. Cambridge University Press, 2007.

7. K. Fukuda. Strange unfoldings of convex polytopes. http://www.ifor.math.ethz.
ch/~fukuda/unfold_home/unfold_open.html, 1997.

8. E. Miller and I. Pak. Metric combinatorics of convex polyhedra: Cut loci and
nonoverlapping unfoldings. Discrete Comput. Geom., 39(1):339–388, 2008.

9. D. Mount. On finding shortest path on convex polyhedra. Technical Report 1495,
University of Maryland, 1985.

10. W. Schlickenrieder. Nets of polyhedra. Technical report, Technische Universitat
Berlin, 1997.

11. M. Sharir and A. Schorr. On shortest path in polyhedral spaces. SIAM Journal
on Computing, 15(1):193–215, February 1986.

Geometric Deformations of Sodalite Frameworks

Ciprian Borcea1 and Ileana Streinu2

1 Department of Mathematics, Rider University, Lawrenceville, NJ 08648, USA
2 Computer Science Department, Smith College, Northampton, MA 01063, USA

Abstract. In mathematical crystallography and computational mate-
rials science, it is important to infer flexibility properties of framework
materials from their geometric representation. We study combinatorial,
geometric and kinematic properties for frameworks modeled on sodalite.

Keywords: periodic framework, sodalite, geometric flexibility.

1 Introduction

In this paper we study the deformation space of a periodic framework modeled
after the ideal sodalite.

The sodalite framework is the prototype of numerous crystal structures. In
fact, more than 900 crystals of this family have been identified [7]. This structure
is remarkable not only for crystallography and materials science. It has direct
connections with tiling and sphere packing problems and has natural generaliza-
tions in arbitrary dimension [11].

A one-parameter geometric deformation of sodalite was first observed by
Pauling [12] in 1930, and used as a phase transition model [10, 13, 5].

We show that, besides this classical ‘Pauling tilt scenario’, the deformation
space of sodalite includes a six-dimensional component, which can be described
in fairly intuitive terms.

Our study relies on the mathematical foundations of a deformation theory
for periodic frameworks introduced in [2]. In general, the deformation space
is a semi-algebraic set made of real solutions of a finite system of polynomial
equations. For applications, such as displacive phase transitions in crystalline
materials, it is highly desirable to obtain explicit and detailed descriptions of
the deformation space [6, 3, 4].

We start with the presentation of the three-dimensional structure of the ideal
sodalite framework in a realization with congruent regular tetrahedra and max-
imal crystallographic symmetry [10, 9, 4]. We express the periodic graph under-
lying the framework via 6-rings of tetrahedra with marked periods. This formu-
lation leads naturally into considerations of symmetry preservation in deforma-
tions, with central symmetry at the forefront. The existence of a six-dimensional
deformation component follows naturally from this formulation. We also inves-
tigate dihedral symmetry and use it to explain the one-dimensional ‘classical
Pauling tilt’.

Geometric Deformations of Sodalite Frameworks 45

2 A placement with maximal symmetry

We use Figure 1 to illustrate the essential aspects of the initial placement of
the sodalite framework: a 6-ring of regular tetrahedra (a) is placed in a specific
manner relative to a cube of side length 2 centered at the origin (c). Three pairs
of parallel vectors between specific vertices of the ring (b) yield the generators
of the periodicity lattice.

(a) (b)

(c) (d)

Fig. 1. An ideal sodalite placement with cubical symmetry. A 6-ring of this framework
is highlighted, with three pairs of generators of the periodicity lattice. In each pair the
vectors must be equal. All tetrahedra are congruent and regular.

46 Ciprian Borcea and Ileana Streinu

Specifically, we consider the origin of the Cartesian system of coordinates at the
center of the cube depicted in Fig.1 (c), with standard basis vectors e1, e2, e3
reaching to the centers of the frontal, right side and top face respectively. Thus,
the edge length for the cube is 2. The edge length for the regular tetrahedra of
the framework is determined by the condition that each tetrahedron has a pair
of opposite (and hence orthogonal) edges parallel to a pair of standard directions
ei, ej . This requires an edge lengths of 2a, with a =

√
2− 1.

The 4 × 6 = 24 tetrahedra around the cube. We give the coordinates for
the four vertices v0, ..., v3 of the tetrahedron touching the cube at v0 = e1 + e3.
They are:

v0 = (1, 0, 1), v1 = (1, 0, 2
√

2− 1), (1)

v2 = (
√

2− 1,
√

2− 1,
√

2), v3 = (
√

2− 1, 1−
√

2,
√

2)

The coordinates for the vertices of the other tetrahedra are obtained by sym-
metry. The symmetries of the cube are represented by permutations and sign
changes of the three coordinates and form a group of order 3! · 23 = 48. This
group has a double-transitive action on the 24 framework tetrahedra around the
cube.

Periodicity lattice. The translational symmetries of the whole framework are
generated by the three (pairs of equal) vectors shown in Figure 1(b). In coordi-
nates:

λ1 =
√

2(1,−1,−1), λ2 =
√

2(−1, 1,−1), λ3 =
√

2(−1,−1, 1) (2)

with the natural labeling suggested by the order three rotational symmetry
around the diagonal direction e1 + e2 + e3. We note that the periods

λ2 + λ3 = −2
√

2e1, λ3 + λ1 = −2
√

2e2, λ1 + λ2 = −2
√

2e3 (3)

are mutually orthogonal and generate a sublattice of index 2 in the full lattice of
periods generated by (2).

The sodalite cage and the Kelvin polyhedron. The 24 framework tetra-
hedra wrapped around a cube form a so-called sodalite cage. We note that the
barycenter of the tetrahedron in (1) has coordinates b = (1√

2
, 0,
√

2) and the

barycenters of the 6-ring of tetrahedra highlighted in Figure 1 form the vertices
of a planar regular hexagon of edge one, centered at c = 1√

2
(1, 1, 1).

Thus, the 24 barycenters of the sodalite cage tetrahedra give the vertices of
a centrally symmetric polyhedron with 8 hexagonal faces and 6 square faces.
Under translation by the periodicity lattice Λ generated by (2), this polyhedron
tiles the three dimensional space R3, as illustrated in Figure 2. Translations
identifying opposite faces are periods and generate the periodicity lattice Λ. The
polyhedron is the Voronoi cell at the origin for the lattice Λ. It may be seen as a
truncated regular octahedron (with edge length 3 at our chosen scale). It is also
called the Kelvin polyhedron, due to a famous conjecture formulated by Kelvin

Geometric Deformations of Sodalite Frameworks 47

Fig. 2. Kelvin polyhedra tiling space.

[14] and disproved by a counter-example of Weaire and Phelan [15]. The name
permutohedra is also used for a family which includes this polyhedron.

Fig. 3. (Left) Periodicity identifications in the Kelvin polytope. Opposite faces are
identified by translation. (Right) The quotient graph of the Kelvin polytope skeleton.

Figure 3 illustrates the result of periodicity identifications in the vertex-and-edge
skeleton of a sodalite cage. The quotient graph pattern is also encoded in a 6-ring
(with marked periods), as discussed below.

The 6-rings. A 6-ring of tetrahedra, as in Figure 1, contains all the information
needed for generating the whole periodic framework. It contains vertex represen-
tatives for all the vertex orbits and edge representatives for all the edge orbits
under periodicity. The 6 pairs of vertices which have to be further identified by
periodicity provide the generators of the periodicity lattice Λ. It is important to
note that (up to sign) we have exactly three generators, since the 6 periods, as

48 Ciprian Borcea and Ileana Streinu

free vectors, come as three pairs of equal vectors. This is a consequence of the
central symmetry of the 6-ring. Indeed, c = 1√

2
(1, 1, 1) is actually the center of

symmetry for the 6-ring from Figure 1.

Fig. 4. A 6-ring of the sodalite framework with three pairs of generators of the peri-
odicity lattice. In each pair the vectors must be equal.

In order to have a convenient representation of the symmetries of the cube (given
by permutations and sign changes of the coordinates) we label the tetrahedra in
the 6-ring as follows: T−1 , T

+
3 , T

−
2 , T

+
1 , T

−
3 , T

+
2 , with T+

3 , T
−
2 on the frontal face

of the depicted cube. Then coordinate sign changes will correspond to (upper)
sign changes and permutations of coordinates will correspond to permutations
of lower indices and multiplicative signature effect on upper signs. For exam-
ple, the transposition of the first two coordinates corresponds to the order two
product of transpositions (T−1 , T

+
2)(T−3 , T

+
3)(T−2 , T

+
1). Figure 4 summarizes this

description.

We denote P13 = T−1 ∩ T+
3 , Q23 = T+

3 ∩ T−2 , with similar labeling around the
spatial hexagon P13Q23P12Q13P23Q12. Note that, in the initial placement,
the triangles P12P23P13 and Q12Q23Q13 are centrally symmetric with respect to
c = 1√

2
(1, 1, 1), but are not in the same plane. If we ignore the conditions on the

three pairs of period vectors, the 6-ring, as a finite linkage has twelve degrees of
freedom: the spatial hexagon has a six-dimensional deformation space and for
a fixed configuration of the hexagon, each tetrahedron may rotate around the
corresponding edge.

Geometric Deformations of Sodalite Frameworks 49

3 Deformations

We use the previously described placement for a single 6-ring to investigate the
periodic deformations allowed by the ideal sodalite structure. Specifically, we
show below that the deformation space has a six-dimensional component related
to the preservation of central symmetry for the 6-ring. This ample geometrical
flexibility supports the experimentally observed versatility of sodalite [5].

Fig. 5. A 6-ring in a periodic deformation of the ideal sodalite framework, with three
pairs of generators of the periodicity lattice. The ring has central symmetry but not
periodicity preserving reflections. Cubes and their projections serve only suggestive
purposes for spatial positioning.

Deformations preserving central symmetry. This six-dimensional compo-
nent allows a very direct and intuitive description. Since we want to preserve
the central symmetry of the 6-ring, indicating the configuration of three linked
tetrahedra, say T−1 , T

+
2 , T

−
3 , will be enough. By equivalence under rigid motions

we may assume T+
2 fixed. Then, the positions of T−1 and T−3 can be parametrized

by SO(3)× SO(3). The center of symmetry will be at the midpoint of P13Q13.
The completion of the 6-ring by central symmetry will have ipso facto equal
vectors in the three pairs of periods. Thus, this component of the deformation
space is parametrized by SO(3) × SO(3) minus the subvariety where the three
generators become dependent. Topologically, the rotation group SO(3) is the
projective space P3(R), hence our six-dimensional component is parametrized

50 Ciprian Borcea and Ileana Streinu

by an open and dense subset of P3(R)× P3(R). One configuration is illustrated
in Figure 5 and shows that reflection symmetries of the initial 6-ring are lost.

Deformations preserving dihedral symmetry D3. We now investigate de-
formations which preserve the symmetries induced by permutations of coordi-
nates in the initial placement. This group of order six may be conceived as a
dihedral group D3 generated by reflections in three planes with a common axis
and forming dihedral angles of π/3 or 2π/3. When restricting our attention to
our chosen 6-ring, the group is simply transitive on the six tetrahedra and their
barycenters form the vertices of a planar regular hexagon.

Suppose we want to preserve the reflection symmetry given by the transposition
of the first two coordinates in the initial placement. The reflection plane goes
through P12 andQ12 and the two marked periods from T−2 to T−1 and respectively
T1+ to T+

2 are parallel to this plane and one is the reflection of the other.

Thus, in order to retain this feature when deforming the 6-ring, we look only at
the three linked tetrahedra T−1 , T

+
3 , T

−
2 and adopt as reflection plane the plane

through P12Q12 which runs parallel to the period from T−2 to T−1 . When we
complete the 6-ring by reflection in this plane, we have to satisfy only one of
the remaining periodicity constraints, since the other one will then be fulfilled
as well by reflection.

Fig. 6. A tetrahedrite 6-ring resulting from a periodic deformation of the ideal sodalite
framework. The regular tetrahedra are pointing towards the viewer. The 6-ring has D3

dihedral symmetry but no central symmetry.

Similar considerations apply for the other two transpositions of coordinates. In
Figure 6 we show a deformation which has preserved all three reflections, but

Geometric Deformations of Sodalite Frameworks 51

central symmetry for the 6-ring has been lost. The illustrated structure is that of
another mineral called tetrahedrite. According to [1], this relationship between
sodalite and tetrahedrite was noticed only at a later stage in the mineralogy
literature, by A.S. Povarennykh. We now compare deformations which ‘break’
the central symmetry of the 6-ring and those which maintain it.

Fig. 7. The regular hexagon of barycenters in a 6-ring with D3 dihedral symmetry.
Circumscribed spheres for linked tetrahedra meet in circles on the reflection planes. A
possible edge position is shown.

Given the observed fact that barycenters must form a planar regular hexagon, we
may start with the configuration shown in Figure 7. The connecting vertices of
the tetrahedra in the 6-ring must be in the reflection planes, indicated by their
common axis and intersections with the plane of barycenters. More precisely,
they belong to circles of intersection of circumscribed spheres of consecutive
tetrahedra. Since one edge determines by symmetry the entire 6-ring, we see
that we have a one-parameter family of possible configurations for the 6-ring
with given hexagon of barycenters. When we ask for fulfillment of the period-
icity conditions, the selection of the edge is subject to an additional condition
expressing the parallelism of one of the periods to the corresponding reflection
plane.

These considerations show that deformations preserving a dihedral D3 sym-
metry consist of curves. One type breaks the central symmetry of the 6-ring:
this is the ‘Pauling tilt scenario’ [12, 13, 10, 8, 5]. As mentioned above, the tetra-
hedrite structure can be reached via this classical tilt. What is distinctive in this
scenario is that sodalite cages maintain their shape, although decreasing in size
relative to the initial case.

52 Ciprian Borcea and Ileana Streinu

However, central symmetry may be maintained as follows. Since we have now
double transitivity on the six tetrahedra, all diameters in the hexagon of barycen-
ters must go through midpoints of opposite edges in the corresponding tetrahe-
dra. This condition is satisfied when we choose the edge discussed above to be
met perpendicularly and in the middle by the appropriate diameter. A deforma-
tion result of this procedure is illustrated in Figure 8.

Fig. 8. A deformation result when preserving both D3 and central symmetry. The
highlighted plane is the perpendicular bisecting plane of all distant edges.

4 Conclusion

The sodalite framework belongs to the class of tectosimplicial periodic structures
made of vertex sharing simplices. In dimension three, a basic count of infinites-
imal deformations yields at least three infinitesimal degrees of freedom for this
type of frameworks [2], Theorem 4.2. However, if more than three infinitesimal
degrees of freedom are present, as is the case for the ideal sodalite framework,
infinitesimal considerations are not sufficient for obtaining actual local deforma-
tions. In this paper, we have relied on direct and intuitive geometric features
to show that for ideal sodalite, in addition to the one-parameter deformation
known as the ‘Pauling tilt’, there is a six-dimensional deformation component.
It is conceivable that certain crystalline materials with distorted sodalite cages
may be more closely related to sodalite on this account.

Geometric Deformations of Sodalite Frameworks 53

Acknowledgements. The first author acknowledges partial support through
NSF award no. 1319389 and the second author acknowledges partial support
through NSF award no. 1319366. Both authors are partially supported through
NIH Grant 1R01GM109456. All statements, findings or conclusions contained in
this paper are those of the authors and do not necessarily reflect the position or
policy of the US Government. No official endorsement should be inferred.

References

1. Baur, W.H. and Fischer, R.X.: A historical note on the sodalite framework: The
contribution of Frans Maurits Jaeger, Microporous and Mesoporous Materials
116 (2008), 1-3.

2. Borcea, C.S. and Streinu, I.: Periodic frameworks and flexibility, Proc. Roy. Soc.
A 466 (2010), 2633-2649.

3. Borcea, C.S. and Streinu, I.: “Deformations of crystal frameworks”,
arXiv:1110.4661 (2011).

4. Borcea, C.S. and Streinu,I.: “Frameworks with crystallographic symmetry”,
Philosophical Transactions of the Royal Society A (2014) 372, 20120143.

5. Depmeier, W.: The sodalite family - a simple but versatile framework structure,
Reviews in Mineralogy and Geochemistry 57 (2005), 203-240.

6. Dove, M.T.: Theory of displacive phase transitions in minerals, American Min-
eralogist 82 (1997), 213-244.

7. Fischer, R.X. and Baur, W.H.: Symmetry relationships of sodalite (SOD)-type
crystal structures, Z. Kristallogr. 224 (2009), 185-197.

8. Hassan, I. and Grundy, H.D.: The crystal structures of sodalite-group minerals,
Acta Crys. B40 (1984), 6-13.

9. Kotani, M. and Sunada, T.: Standard realizations of crystal lattices via harmonic
maps, Trans. Amer. Math.Soc. 353 (2000), 1-20.

10. Megaw, H.D.: Crystal Structures: A working Approach, W.B. Saunders Com-
pany, Philadelphia, (1973).

11. O’Keeffe, M.: N-Dimensional Diamond, Sodalite and Rare Sphere Packings, Acta
Cryst. (1991), A47, 748-753.

12. Pauling, L.: The structure of sodalite and helvite, Z. Kristallogr. 74(1930), 213-
225.

13. Taylor, D.: The thermal expansion behaviour of the framework silicates, Miner-
alogical Mag. 38 (1972) , 593-604.

14. Thompson, William (Lord Kelvin): On the Division of Space with
Minimum Partitional Area, Philosophical Magazine 24 (1887), 503,
doi:10.1080/14786448708628135

15. Weaire, D.; Phelan, R.: A counter-example to Kelvin’s conjecture on minimal
surfaces, Phil. Mag. Lett. 69 (1994), 107110, doi:10.1080/09500839408241577

Computing the Straight Skeleton?

Extended Abstract

John C. Bowers

Department of Computer Science, James Madison University, Harrisonburg, VA,
USA.

jbowers@cs.umass.edu

Abstract. The straight skeleton of a polygon is a certain tree structure
on the polygon’s interior made up of straight line segments. It serves as
a straight-line analog of the medial axis of a polygon. It is an example of
an angular bisector network because each of its line segments lies on an
angle bisector of a pair of the polygon’s edges. It has many applications,
including applications in origami design, computer aided design (CAD),
and graphics.
Though computing the medial axis of a polygon can be done in linear
time, fast algorithms for computing the straight skeleton have not yet
been found. In this paper we identify several elementary combinatorial
and geometry properties of the straight skeleton that allow us to compute
it efficiently from a secondary structure called the motorcycle graph of
the polygon.

1 Introduction

e

(b) (c) (d) (e)

e

(f)(a)

Tuesday, November 26, 13

Fig. 1. (a) A polygon, (b) its straight skeleton, (c) its induced motorcycle graph (d) the
straight skeleton roof, (e) a slab shown from above, (f) the slab shown in perspective.

An angular bisector network is a tree structure on the interior of a polygon
comprised of line segments each of which lie on an angle bisector of the lines
supporting two of the polygon’s edges. (The edges need not be consecutive in
the polygon.) The straight skeleton is one particular angular bisector network
that has found many applications. It is used, for instance, in computer aided
design to construct polygonal roofs on which water does not pool [1]; in graphics
to generate mitered offset polygons; and more interestingly, in origami design.

? A version of this work with all details and proofs has been submitted to Computa-
tional Geometry: Theory and Applications.

Computing the Straight Skeleton 55

In origami design, the straight skeleton is particularly interesting as a special
case of Lang’s universal molecule algorithm [8]. In [3] it was shown that most of
the origami patterns created by the universal molecule algorithm are not foldable
as panel-and-hinge structures; however, in the special case that the universal
molecule is a straight skeleton, the pattern is always foldable [6].

The simplest way to define the straight skeleton is via a wavefront process
in which the sides of the polygon are moved inwards in parallel, each at the
same speed. The vertices in this motion move along the angle bisectors of their
adjacent edges. If an edge collapses to zero-length it is contracted in the polygon,
and if a vertex “hits” another side of the wavefront, the wavefront is split at the
hit point into two polygons, and continues independently in each. The straight
skeleton is defined as the trace of the vertices throughout this wavefront motion.
Figure 1b depicts the straight skeleton of a polygon.

Computing the straight skeleton has proved challenging. This is particularly
intriguing because of its similarity to the medial axis, which can be computed in
linear time. Currently, the fastest algorithms for computing the straight skeleton
require first computing a secondary structure called the motorcycle graph of the
polygon. The motorcycle graph is defined by placing a “motorcycle” at each
reflex vertex in the polygon. The motorcycle moves inwards along the vertex’s
angle bisector at a speed equal to speed of the vertex in the wavefront. As it
moves it lays down a “track” behind it. When a motorcycle encounters either
an edge of the polygon or another motorcycle’s track it crashes, but its track
persists. The motorcycle graph is the set of tracks left over after all motorcycles
have crashed. A motorcycle graph is illustrated in fig. 1c. The fastest algorithm
is that of [4], which requires that the motorcycle graph be provided as input.
That algorithm takes O(n log r log n) time given the motorcycle graph (where n
is the number of vertices and r is the number of reflex vertices in the polygon).
Currently, the fastest algorithm for computing the motorcycle graph is that of [9],
which takes O(r4/3+ε) time (in non-degenerate cases) leading to a full straight
skeleton computation in O(n log r log n+ r4/3+ε) time.

A second way of defining the straight skeleton, which has proved useful for
computation, is as the straight skeleton roof. This is depicted in fig. 1d. It is
a lifting of the straight skeleton into R3, such that each vertex is lifted to the
z-coordinate given by the time at which the vertex appeared in the wavefront.
Each region of the straight skeleton becomes a face of the roof. It was shown in
[9] that this roof is equivalent to the lower envelope of a set of partially infinite
strips in R3 called slabs (see fig. 1(e, f)). Note that the slabs are defined with
respect to the motorcycle graph.

Using the straight skeleton roof, a simple divide and conquer algorithm has
been described that computes the straight skeleton of a monotone polygon in
O(n log n) time [2]. (Recall that a monotone polygon is one in which there is a
direction such that all lines parallel to that direction intersect the polygon in at
most two points.) The algorithm makes use of several special properties of the
straight skeleton of a monotone chain to compute two terrains. Computing the in-
tersection between the two terrains allows the computation of the straight skele-

56 John C. Bowers

ton roof. Generalizing this to non-monotone polygons is not straight-forward,
because the straight skeleton of a non-monotone chain is not a terrain, and
dealing with the resulting objects is more challenging.

In this paper we identify several elementary combinatorial and geometric
properties of the straight skeleton that allow us to generalize the straight skeleton
roof to subchains of the polygon. We call our generalization a partial roof for
the subchain. One key property of our generalization is that two partial roofs
for adjacent subchains of the polygon can be merged in linear time by walking
along their intersection in a manner similar to [2]. The second key property of
our partial roof is that there is a unique object that satisfies our definition of
a partial roof for the entire polygon, namely the straight skeleton roof itself.
These two properties gives us a straightforward divide and conquer algorithm
for computing the straight skeleton of a polygon from its slab set in O(n log n)
time. First divide the polygon into two, then recursively compute a partial roof
for each of the subchains, finally merge the two partial roofs to compute the
partial roof for the entire polygon, which is the straight skeleton roof. In the
remainder of this paper, we will present an overview of the main properties that
make our approach work, and sketch the algorithm for merging partial roofs.

2 Straight skeleton properties

Known properties The following are several known properties of the straight
skeleton of a polygon:

1. The straight skeleton is a tree on the interior of the polygon and the leaves
of the tree are the polygon vertices.

2. It divides the interior of the polygon into a set of faces, each of which is
incident along one entire edge of the polygon. We call the polygon edge
incident to a face of the straight skeleton its base edge.

3. Each face is monotone with respect to its base edge, meaning that any line
orthogonal to the base edge intersects the face in at most two points.

4. Two faces of the straight skeleton are incident along at most one edge.

Critical edges Our goal is to generalize the straight skeleton roof to subchains
of the polygon and to provide a method of merging partial roofs for adjacent
subchains. Here we identify a relationship between straight skeleton edges and
subchains of a polygon. Suppose C is a subchain of a polygon and e is a straight
skeleton edge. We say that e is critical for C if both of the faces incident along
e have their base edge on C. The reason for identifying these critical edges, is
that they play a key role in our generalization of the straight skeleton roof to
the subchain C.

Now suppose C is split into two subchains C1 and C2. Each critical edge e
for C can be classified into one of three sets: those where the two base edges of
the faces incident to e are in C1, those where the two base edges of the faces
incident to e are in C2, and those where one of the base edges is in C1 and one is
in C2. In the first case, the edge e is critical for C1. In the second, e is critical for

Computing the Straight Skeleton 57

C2. Interestingly, in the third case e is neither critical for C1 or C2, but becomes
critical when C1 and C2 are combined to create C. The key property of this
third set is summarized in the following lemma:

Lemma 1. Let E be the set of straight skeleton edges that are critical for C but
not for C1 or C2. E forms a path in the straight skeleton starting at the vertex
v common to C1 and C2.

This lemma follows from the fact that the straight skeleton is a tree and
each of its faces are incident along an edge of the polygon P . It is relatively
simple, but is the main reason our merge operation works. The fact that the
critical edges form a path allows us to describe a simple walk procedure that
recovers this path. We call the set of edges that become critical when C1 and C2

are combined to form C the critical path for C1 and C2. Figure 2 depicts the
straight skeleton of a polygon, two subchains C1 and C2, and the edges that are
critical for C1 (red), for C2 (blue), and the critical path (gray).

v

C1

C2

Fig. 2. A straight skeleton for a polygon and the edges that are critical for three
subchains: C1 (red), C2 (blue), and C1 and C2 combined at v (thick gray).

Slab set for a polygon Recall from the introduction that an alternative definition
of the straight skeleton is as a lower envelope of a set of partially infinite strips
in R3 called slabs. Following Huber and Held [7] we define a single infinite strip
in R3 called a “slab” for each edge e of the polygon. The slab lies in the plane
Πe through e that makes an angle of π/4 with the interior of P . If any of the
vertices of e is reflex, then the vertex has an edge in the motorcycle graph, which
we call its motorcycle arm. An edge e may have zero, one, or two motorcycle
arms. We will orient the polygon P counter-clockwise so that each edge has a
well defined left and right vertex, and call the motorcycle arms its left and
right motorcycle arms. For each edge e lift its motorcycle arms upwards onto
Πe.

We establish a local coordinate system for Πe so that the positive x-direction
points counter-clockwise along e in P and the y-direction points upward along
the slope vector of Πe. The slab s for e is defined as the region of Πe above

58 John C. Bowers

∞

Fig. 3. Left: a slab defined by lifting the motorcycle arms (red) of its base edge up
onto the plane through the base edge making an angle of π/4 with the interior of the
polygon. Right: the local view of the slab.

the edge and lifted motorcycle arm chains for e. We call e the base edge of
the slab, and the lifted motorcycle arms the motorcycle arms of the slab. See
fig. 3. Recall that each motorcycle graph edge is a left arm of one polygon edge
and the right arm of another. Thus a motorcycle edge in one slab always has a
corresponding motorcycle edge in the other slab.

The slab set for P , denoted SP is the set of slabs defined for each edge of
P . For a subchain C of the polygon, the slab set SC ⊆ SP for C is the set of
slabs in SP whose base edge is an edge of C.

3 Partial roofs

Local definition of the straight skeleton roof To define partial roofs, we first need
the following alternative definition for the straight skeleton roof from [5]. Let
s be the slab for an edge e of the polygon. Intersect s with all other slabs to
obtain a set of line segments LP (s) on s. The lower envelope of LP (s) in s is the
face of the straight skeleton supported by s. The lower envelope of a set of line
segments, is the set of points that do not lie above any of the line segments.

Cleft

Cright

Fig. 4. The set of line segments LP (s) on a slab s. The two red chains are Cleft and
Cright illustrate the critical chains for some subchain C of the polygon. The dark shaded
region is the lower envelope of the line segments, which is the straight skeleton face for
this slab.

Computing the Straight Skeleton 59

Cleft

Cright

Fig. 5. The restriction of the line segments from fig. 4 to only those in LC(s) for some
subchain C. Notice that the two critical chains Cleft and Cright are still supported by
the segments and lie on the lower envelope of LC(s).

Restricting the slab set to a subchain Our working definition of the straight
skeleton roof uses the entire slab set for the polygon P . To generalize the roof to
a subchain C of P , we restrict our attention to the slab set SC for C. Let LC(s)
denote the set of line segments given by intersecting a slab s ∈ SC with all other
slabs in SC . Notice that since we are simply restricting which slabs we intersect,
LC(s) ⊆ LP (s). Furthermore, notice that if e is a critical edge for the straight
skeleton, then both of its faces (and hence both of its supporting slabs) have
their base edge in SC . Thus e must be supported by one of the line segments
in LC(s). One further property that can be derived is that the set of critical
edges on s form (at most) two polygonal chains on arrangement of line segments
LC(s), and these two chains are incident to the left and right motorcycle arms
of s. For this reason, we call these the critical chains Cleft and Cright of s.

Partial roof We defined the partial roof for a subchain C locally as we did with
the straight skeleton above. For each slab s in SC , we define a partial face for s
is given by any two polygonal chains on the arrangement LC(s) that contain the
critical chains for s with respect to C. We call these the defining chains for
the face. The lower envelope of these two chains gives us the a (possibly partially
infinite) polygon on the surface of s. Suppose we now have a partial face for each
slab in SC . Every defining chain edge of a partial face for a slab s lies on the
intersection of s with some other slab s′ in SC . If the partial face for s′ also has
an edge on the intersection of s and s′ and the two edges are equal in R3, we
say that the partial faces for s and s′ are compatible and we glue the two faces
together by identifying the two corresponding edges. A partial roof is given by
the following construction. Start with a set of partial faces, one for each slab in
SC such that all pairs of partial faces are compatible. Glue every pair of partial
faces along their corresponding edges to form a single surface. If that surface is
topologically a disk, we call it a partial roof for C. The main property of partial
roofs is that the partial roof for the entire polygon is the straight skeleton roof.

60 John C. Bowers

4 Merging partial roofs

A key property of a partial face is that the partial face for any given slab s con-
tains the corresponding straight skeleton roof face. Thus if two straight skeleton
roof faces are incident along an edge, any two corresponding partial faces inter-
sect along the edge. We now want to merge two partial roofs R1 and R2 for C1

and C2. Recall that the critical edges for C1 and C2 form a path in the straight
skeleton. Since each partial roof face contains its straight skeleton face, this path
is on the intersection of R1 and R2. Walking along this intersection allows us to
find the critical path. Once we have the critical path, we cut the two roofs R1

and R2 along this path, discard the part of each partial face above the path, and
merge R1 and R2 by gluing them together along the path. We are glossing over
the details here, but the punchline is that our method can be executed in linear
time.

5 Conclusion

Given our merge operation, the following strategy computes a partial roof: divide
the polygon into two, recursively compute a partial roof for each, and then
merge the two into a partial roof for the entire polygon. Since the unique partial
roof for an entire polygon is the straight skeleton roof, this gives us a method
for computing the straight skeleton of a polygon. The algorithm has the same
recurrence as merge sort, and thus requires O(n log n) time where n is the number
of vertices in the polygon (given the slab set as input). Since computing the
slab set requires computing the motorcycle graph, this leads to an algorithm
for computing the straight skeleton in O(n log n + r4/3+ε) time where r is the
number of reflex vertices in the polygon.

References

1. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner. A novel type of
skeleton for polygons. Journal of Universal Computer Science, 1(12):752–761, 1995.

2. T. Biedl, M. Held, S. Huber, D. Kaaser, and P. Palfrader. Straight skeletons of
monotone polygons. In 30th (EuroCG ’14), Dead Sea, Israel, Mar. 2014.

3. J. C. Bowers and I. Streinu. Rigidity of origami universal molecules. In T. Ida and
J. D. Fleuriot, editors, Automated Deduction in Geometry, volume 7993 of Lecture
Notes in Computer Science, pages 120–142. Springer, 2012.

4. S.-W. Cheng, L. Mencel, and A. Vigneron. A faster algorithm for computing straight
skeletons. In Proc. 22nd Euro. Symp. on Algorithms (ESA 2014), Worclaw, Poland,
Sept. 2014.

5. S. W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. In Proc.
13th Symp. on Discrete algorithms, SODA ’02, pages 156–165, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Mathematics.

6. E. D. Demaine and M. L. Demaine. Computing extreme origami bases. Technical
Report CS-97-22, Department of Computer Science, University of Waterloo, May
1997.

Computing the Straight Skeleton 61

7. S. Huber and M. Held. Theoretical and practical results on straight skeletons of
planar straight-line graphs. In Proc. 27th Symp. on Computational geometry, SoCG
’11, pages 171–178, New York, NY, USA, 2011. ACM.

8. R. J. Lang. A computational algorithm for origami design. In Proceedings of the
12th Annual ACM Symposium on Computational Geometry, pages 98–105, 1996.

9. A. Vigneron and L. Yan. A faster algorithm for computing motorcycle graphs. In
Proc. 29th Symp. on Computational geometry, SoCG ’13, pages 17–26, New York,
NY, USA, 2013. ACM.

An Equivalence Proof Between Rank Theory
and Incidence Projective Geometry

David Braun, Nicolas Magaud, and Pascal Schreck

ICube, UMR 7357 CNRS, University of Strasbourg
Pôle API, Bd Sébastien Brant, BP 10413, 67412 Illkirch, France

{david.braun, magaud, schreck}@unistra.fr

Abstract. Incidence geometry is a well-established theory which cap-
tures the very basic properties of all geometries in terms of belonging
of points to lines, planes, etc. Moreover, considering incidence projective
geometry leads to a very simple framework. This article considers two dif-
ferent approaches to formalize this theory in Coq. The first one consists
in the usual geometric axiom system encountered in the literature. The
second one relies on combinatorial aspects through the notion of rank
which is based on the matroid structure of incidence geometry. In this
paper, we prove in Coq the equivalence between these two approaches
in both 2D and 3D. This result allows to study further automation of
many proofs of projective geometry theorems. We already present some
automation techniques in the proof of equivalence.

Keywords: automation, Coq, formalization, incidence, matroid, projective ge-
ometry, ranks

1 Introduction

In this article, we consider two axiom systems of incidence projective geome-
try. The equivalence proof between these two formalizations through the proof
assistant Coq is our main original contribution.

The most elementary geometry that can be studied is the incidence geometry.
It basically analyzes the incidence relation between two types of objects: points
and lines. This geometry is ubiquitous, collinearity issues are found in various
contexts. For example, it appears in graph theory, subways maps and even chil-
dren games such as dobble. Moreover, this simple geometry can be defined by
a fairly simple set of axioms both in the plane and in an at least three dimen-
sional setting (noted ≥3D) [3,6]. So it is conceivable to efficiently automate the
reasoning.

We describe two geometrical axiomatizations. The first one is based on a
classical geometrical characterization. The second one relies on the combinatorial
notion of rank provided by the matroid structure of incidence geometry. The
latter allows to represent homogeneously all incidences of this geometry (point-
point, point-line, point-plan, line-line, line-plan, plan-plan) but also relations of

Equivalence Proof Between Rank and Projective Geometry 63

collinearity, coplanarity, etc. Thanks to the unique representation of all incidence
relations as ranks, we can thus consider a more systematic automation.

Our main motivation is the mechanization of demonstrations to ease the
task of mathematicians but also to more effortlessly study the degenerate cases.
Formalization and proof of geometrical theorems are not an easy task. It needs to
be very rigorous to take into account all non degeneracy conditions that can occur
in this context. These conditions often lead to long and tedious technical proofs.
That is why, many papers have emphasized the importance of investigating the
problem of degenerate cases in formal geometry [7, 21,28].

In this paper, we work in the specific context of projective geometry in which
the notion of parallel does not exist. This simple framework is powerful enough
to study the formalization and proof of complex problems as suggested in [23]. In
addition, there is no loss of generality since it is possible to switch from projective
geometry to affine geometry putting a chosen line at infinity. Moreover, it is
possible to consider finite geometries containing only finite sets of points and lines
that check the properties of projective framework. Examples of finite geometry
such as Fano plane are often used to analyze the behavior of geometric theorems.

Some ideas behind this work have their origins in previous studies about
combinatoric aspects of proofs in incidence geometry as described in [18, 24],
and particularly a proof of Desargues theorem using only ranks [19,20]. To carry
out the latter, the authors have proven only one direction of the equivalence
theorem between the two theories: the one from a classical incidence projective
geometry axiomatization to a rank-based axiom system in 3D and not the con-
verse which was useless at the time. To our knowledge, mathematicians have
not studied extensively the details of the equivalence proof between these two
approaches.

Related Work Geometry is a good candidate to be studied through the proof
assistants like Coq. Many formalizations of plane geometry, Hilbert and Tarski
axiomatization has already be done [8,11,21,28]. In the narrower context of pro-
jective geometry, there is work in constructive projective geometry initiated by
Von Plato [14,33]. Our formalization differs by considering a decidable incidence
relation. In the field of automatic methods in projective geometry, we can men-
tion the algebraic formalization of Grassmann-Cayley algebra [9,17,30]. Finally,
to our knowledge there is no work treating incidence geometry in a projective
framework using the equivalence between a geometrical characterization and a
combinatorial approach.

Outline of the paper The paper is organized as follows. In Section 2, we
present the axioms for incidence projective geometry and we give an preview
of our Coq formalization. In Section 3, we expose our axiomatizations based on
the concept of rank from matroid theory. Section 4 investigates in details the
equivalence proof between these two formalizations. Finally, the conclusion and
perspectives are discussed in Section 5.

64 David Braun, Nicolas Magaud, and Pascal Schreck

Notation We use the naming convention AXYN for our axioms. The letter
stands A for axiom, X for the axiom number, Y may take two values (P =
projective, R = rank) and N designs the dimension.

2 Axiom Systems of Projective Geometry

In a general setting, geometry such as Euclidean geometry is a complicated
subject mixing objects like points, lines and planes with concepts of distance,
angle, continuity, incidence etc. Among all these notions, we keep only two kinds
of objects, points and lines, and the incidence relation between them to form the
elementary incidence geometry.

2.1 Incidence Geometry

Incidence geometry is the study of a triple (Ω,∆,Φ) called incidence structure.
Ω refers to the set of points, ∆ is the disjoint set composed of lines and Φ is the
binary relation that unite them. Elements which are mutually incident constitute
a subset Φ ⊆ Ω × ∆. Intuitively, a point and a line are within this subset if and
only if the point is on the line. It is possible to describe this geometry informally
with three axioms.

– There is always a line passing through two points.
– On any line, there are at least two points.
– There exist three points that are not aligned.

This characterization is sufficient to prove many theorems [3]. In addition,
the enrichment of incidence geometry by new concepts keeps many fundamental
results. Projective geometry relies on the basics of incidence geometry. It is
a general setting in the hierarchy of geometries which assumes that two lines
in a plane always meet [6]. Planes can be defined within our theory but they
are not a primitive object. With the concepts of incidence geometry, we can
describe properly projective geometry in 2-dimensional space and in at least
3-dimensional space.

2.2 Axioms System for Projective Plane Geometry

The axiom system for projective plane geometry consists of five axioms presented
in Coxeter’s book [6]. The first two axioms deal with construction of points and
lines. We do not specify that the involved points (resp. lines) should be different
in axiom Line-Existence (resp. Point-Existence). Indeed if these points (resp.
lines) are equal, the line (resp. point) still exists. In fact, there exists an infinity
of lines (resp. points). This formalization choice follows this general principle
in formal geometry: it is decisive to define statements in the most general way
possible. The next axiom (A3P2) concerns uniqueness of the two defined objects.
Finally, axiom (A4P2) states that each line contains at least three points; and

Equivalence Proof Between Rank and Projective Geometry 65

axiom (A5P2) expresses that there always exists two distinct lines, which means
dimension is at least 2. Together with axiom Point-Existence which show that the
dimension is at most 2. Therefore the dimension is exactly 2. The formalization
of this axiom system is straightforward, textbooks often use some variants of
this system [6] but we choose the latter to ease mechanization of proofs.

(A1P2) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P2) Point-Existence : ∀ l m : Line, ∃ A : Point, A ∈ l ∧ A ∈ m

(A3P2) Uniqueness : ∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧ A ∈ m
∧ B ∈ m ⇒ A = B ∨ l = m

(A4P2) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P2) Lower-Dimension : ∃ l m: Line, l 6= m

2.3 Axioms System for Projective Space Geometry

In the same way, we define an axiom system for projective space geometry.
The system still contains five axioms with three of them remaining unchanged
(A1P3, A3P3, A4P3). Pasch’s axiom substitutes (A5P2) assuming that two
coplanar lines always meet. Furthermore, we modify the axiom Lower-Dimension
to capture a projective geometry in at least 3-dimensional space. For this, we
assume that there exist two lines which do not meet. This time, the second axiom
does not allow to limit the higher dimension, that is why we consider a geometry
≥3D.

(A1P3) Line-Existence : ∀ A B : Point, ∃ l : Line, A ∈ l ∧ B ∈ l

(A2P3) Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D ∧
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAC ∧ J ∈ lBD)

(A3P3) Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

(A4P3) Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

(A5P3) Lower-Dimension : ∃ l m : Line, ∀ p : Point, p /∈ l ∨ p /∈ m

66 David Braun, Nicolas Magaud, and Pascal Schreck

2.4 Formalization in Coq

Implementing these two systems of axioms is rather immediate in the Coq proof
assistant; we present below our formalization of the projective space. The nota-
tion ∈ denotes the predicate Incid. To enhance modularity, we take advantage
of the type classes and functors of Coq. The most difficult notation to handle for
the reader probably is the curly-brackets notation for constructive existential
quantification over the sort Type. For example, the formula forall l:Line,

{P:Point | ∼ Incid P l} states that ∀ l:Line, ∃ P:Point, ¬ Incid P l.
To observe equivalences between different variants of our axiomatizations,

we split our axioms in different classes considering the dimension. Moreover,
this decomposition allows us to bring out the minimal axiom system required
to demonstrate a set of properties. First, we build a type class with common
axioms between the dimensions namely Line-Existence, Uniqueness and Three-
Points. Then, we construct two classes, the first one captures the whole projective
plane, and the second one describes the projective space. For the sake of clarity,
we present here a simplified version of our implementation.

Class ProjectiveSpaceOrHigher ‘(PPS : PreProjectiveSpace) := {

(* Line-Existence *)

A1P3 : forall (A B : Point) , {l : Line | Incid A l /\ Incid B l};

(* Pasch *)

A2P3: forall A B C D : Point, forall lAB lCD lAC lBD : Line,

~ A [==] B /\ ~ A [==] C /\ ~ A [==] D /\

~ B [==] C /\ ~ B [==] D /\ ~ C [==] D ->

Incid A lAB /\ Incid B lAB ->

Incid C lCD /\ Incid D lCD ->

Incid A lAC /\ Incid C lAC ->

Incid B lBD /\ Incid D lBD ->

(exists I : Point, (Incid I lAB /\ Incid I lCD)) ->

exists J : Point, (Incid J lAC /\ Incid J lBD);

(* Uniqueness *)

A3P3: forall (A B : Point)(l1 l2 : Line), Incid A l1 -> Incid B l1 ->

Incid A l2 -> Incid B l2 -> A [==] B \/ l1 = l2;

(* Three-Points *)

A4P3: forall l : Line, {A : Point & {B : Point & {C : Point |

(~ A [==] B /\ ~ A [==] C /\ ~ B [==] C /\

Incid A l /\ Incid B l /\ Incid C l)}}};

(* Lower-Dimension *)

A5P3: {l1 : Line & {l2 : Line | forall p : Point,

~(Incid p l1 /\ Incid p l2)}}

}.

Equivalence Proof Between Rank and Projective Geometry 67

The main difference between our formalization and the axiom system shown
above comes from decidability issues and equality relations. The equality on
points, denoted [==], is a parameter of our theory. This equality allows to make
transparent the way in which the point is built. As the underlying logic of the
Coq system is intuitionist, we have to declare explicitly which predicates are
decidable. Assuming only the decidability of the predicate Incid, we prove the
decidability of all other predicates used in this theory (points, lines) [18]. We
choose to not use a parametric equality for lines since it can be represented as a
set of points in the other axiomatization. It is quite possible to use one, but it
has not been necessary.

3 A Rank-based Axiom System

In Section 2, we present a standard axiomatization for projective geometry as
a reference. We propose here an alternative axiom system based on the notion
of rank. This new approach takes homogeneously the flats into account and we
hope that it will simplify the proof schemes in higher dimensions.

3.1 Matroid Properties

The concept of rank comes from matroid theory [29]. Matroids were introduced
by Whitney in 1935 to capture abstractly the essence of dependence. Whitney’s
definition embraces a surprising diversity of combinatorial structures. Matroid
allows to capture and generalize the main set properties of linear dependence in
vector spaces. When combined with a finite set of points, it catches incidence
(collinearity, coplanarity, ...) between these points. However matroids apply in
a much larger object class. Other natural examples are obtained from graph
theory, fields, greedy algorithms. There are several cryptomorphic ways to define
a matroid. In our context, we use the definition based on ranks. Using ranks
allows to deal only with points which makes proofs easier because we do not
handle directly lines or planes. An integer function rk on E a finite set is the
rank function of a matroid if and only if the following conditions are satisfied:

(* nonnegative and subcardinal *)
(A1R2-R3) : 0 ≤ rk(X) ≤

∣∣X
∣∣, ∀ X ⊆ E

(* nondecreasing *)
(A2R2-R3) : rk(X) ≤ rk(Y), ∀ X ⊆ Y

(* submodular *)
(A3R2-R3) : rk(X ∪ Y) + rk(X ∩ Y) ≤ rk(X) + rk(Y), ∀ X, Y ⊆ E

3.2 Rank to Describe Incidence Projective Geometry

In the framework of projective geometry, we define a rank function on finite
sets of points which checks the three conditions above. We specify the notion of

68 David Braun, Nicolas Magaud, and Pascal Schreck

flat which is a set of points closed by the collinearity/coplanarity relation. The
rank of a flat is the cardinal of a smallest set generating A (see Fig. 1 for some
examples).

rk{A,B} = 1 A = B
rk{A,B} = 2 A 6= B
rk{A,B,C} = 2 A,B,C are collinear with at least two of them distinct
rk{A,B,C} ≤ 2 A,B,C are collinear
rk{A,B,C} = 3 A,B,C are not collinear
rk{A,B,C,D} = 3 A,B,C,D are coplanar, not all collinear
rk{A,B,C,D} = 4 A,B,C,D are not coplanar

Fig. 1. Some rank statements and their geometric interpretations

Using this definition, it can be shown that every projective space has a ma-
troid structure, but the converse is not true. To capture all the projective geom-
etry, we need to introduce some additional axioms to matroid’s one.

3.3 2D Rank-based Axioms System

We present a rank-based axiom system to describe projective plane. The first
two axioms establish the non degeneracy of the rank function. The others are
more or less direct translations of the axioms of projective geometry.

(A4R2) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R2) Rk-Couple : ∀ P Q: Point, P 6= Q ⇒ rk{P, Q} ≥ 2

(A6R2) Rk-Inter : ∀ A B C D, ∃ J, rk{A, B, J} = rk{C, D, J} = 2

(A7R2) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A,
C} = 2

(A8R2) Rk-Lower-Dimension : ∃ A B C, rk{A, B, C} ≥ 3

3.4 ≥3D Rank-based Axioms System

In the same way, we define a rank-based axiom system to describe projective
space. Again, we modify only the axioms of Pasch and Lower-Dimension.

(A4R3) Rk-Singleton : ∀ P : Point, rk{P} ≥ 1

(A5R3) Rk-Couple : ∀ P Q: Point, P 6= Q ⇒ rk{P, Q} ≥ 2

Equivalence Proof Between Rank and Projective Geometry 69

(A6R3) Rk-Pasch : ∀ A B C D, rk{A, B, C, D} ≤ 3 ⇒ ∃ J,
rk{A, B, J} = rk{C, D, J} = 2

(A7R3) Rk-Three-Points : ∀ A B, ∃ C, rk{A, B, C} = rk{B, C} = rk{A,
C} = 2

(A8R3) Rk-Lower-Dimension : ∃ A B C D, rk{A, B, C, D} ≥ 4

The Implementation in Coq follows the same process, we use type classes to
increase modularity of the code depending of the dimension.

Now that we have specified the axiomatization, we will focus on proof of the
equivalence between these two axiom systems. In previous works [19, 20], only
the implication of the ranks to ≥3D projective geometry has been proven. It is
sufficient to justify the case study on the formalization of Desargues theorem with
the ranks [19,20]. To allow bilateral translation and to increase the possibilities
of automation, we have completed the proof of this equivalence.

4 Equivalence Proof

We prove the following statement:

Theorem 1. Axiomatization on incidence projective geometry and rank-based
axioms system are equivalent respectively in 2D and ≥ 3D.

To achieve this proof, we split the demonstration of the equivalence depend-
ing on the dimension and the direction.

4.1 From Ranks to Projective Geometry

We begin with the implication from ranks to projective geometry both 2D and
≥ 3D. The conduct of the proofs remains the same no matter the dimension.

Preliminaries

First, we need to characterize the notion of line and incidence that does not
exist in the axiom system based on ranks. We build, using an inductive definition,
a line from two distinct points. A point P is incident to a line, if the rank of the
triple formed by the two points constituting the line and the point P remains
equal to 2.

Definition Point := Point.

Inductive LineInd : Type :=

|Cline : forall (A B : Point)(H : ~ A[==]B), LineInd.

Definition Line := LineInd.

70 David Braun, Nicolas Magaud, and Pascal Schreck

Definition Incid (P : point)(l : Line) := rk ((fstP l)(sndP l) P) = 2.

From there we can express the axioms of projective geometry and prove them
using rank axioms.

Submodularity

We detail proof techniques used to demonstrate the five axioms in projec-
tive geometry both 2D and ≥3D. First, we usually prove equalities on ranks
(rk(a) = rk(b)) in two steps : first that rk(a) ≤ rk(b), then rk(a) ≥ rk(b). Sec-
ond, we work systematically with the axiom of submodularity (A3R2-R3). The
issue is that to determine the intersection of two finite set of points, we need
to distinguish cases about the equalities of points. The resulting proofs becomes
more complex with these distinctions. Therefore, we define a particular lemma
derived from the axiom A3R2-R3 that does not consider the theoretical inter-
section but a lower approximation of this intersection (noted u).

Definition 1. (Literal Intersection).
Let L1 and L2 be two sets of points. By definition L1 u L2 is the intersection

of the two sets of points considered syntactically.

From this literal intersection, we can derive a more appropriate version of
the axiom ignoring case distinctions:

Lemma 1. (A3R2-R3-lit),
∀ X Y, rk(X ∪ Y) + rk(X u Y) ≤ rk(X) + rk(Y).

In Coq, it is not possible to define the literal intersection. To capture the
meaning of the lemma, we define a practical version:

Lemma 2. (A3R2-R3-alt),
∀ X Y I, I ⊆ X ∩ Y ⇒ rk(X ∪ Y) + rk(I) ≤ rk(X) + rk(Y).

This functional version of the submodularity will be extensively employed in
each proof. To illustrate the mechanism of proof of this subsection, we detail the
demonstration of the Uniqueness property.

Proof of the uniqueness property

Lemma 3. (A3P2)(A3P3) Uniqueness,
∀ A B : Point, ∀ l m : Line, A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨

l = m

Proof (test). We begin this proof by performing a case distinction on the equality
between A and B. The first case A = B is immediately checked with the goal. If
A 6= B, by unfolding definitions of Line and Incid, it follows that :

Equivalence Proof Between Rank and Projective Geometry 71

We have A <> B
Let P ∈ l, Q ∈ l and P <> Q
Let R ∈ m, S ∈ m and R <> S
Incid A l ⇒ rk{P, Q, A} = 2
Incid B l ⇒ rk{P, Q, B} = 2
Incid A m ⇒ rk{R, S, A} = 2
Incid B m ⇒ rk{R, S, B} = 2





Assumptions

l = m ⇒ rk(P Q R S}) = 2
}
Goal

To continue, we determine the rank of two new sets using A3R2-R3-alt:
rk{P, Q, A, B} and rk{R, S, A, B}.

rk({P, Q, A} ∪ {P, Q, B}) + rk({P, Q, A} ∩ {P, Q, B})
≤ rk{P, Q, A} + rk{P, Q, B}
⇒ rk{P, Q, A, B} + rk{P, Q} ≤ rk{P, Q, A} + rk{P, Q, B}
⇒ rk{P, Q, A, B} ≤ 2

Analogously, we calculate rk{R, S, A, B} ≤ 2. Then we establish that
rk{P, Q, R, S, A, B} ≤ 2.

rk({P, Q, A, B} ∪ {R, S, A, B}) + rk({P, Q, A, B} ∩ {R, S, A, B})
≤ rk{P, Q, A, B} + rk{R, S, A, B}
⇒ rk{P, Q, R, S, A, B} + rk{A, B} ≤ rk{P, Q, A, B} + rk{R, S, A, B}
⇒ rk{P, Q, R, S, A, B} ≤ 2

Using A2R2-R3, we prove that:

{P, Q, R, S} ⊂ {P, Q, R, S, A, B} ⇒
rk{P, Q, R, S} ≤ rk{P, Q, R, S, A, B}

So rk{P, Q, R, S} ≤ 2 and contains at least two distinct points, we conclude
that rk{P, Q, R, S}=2.

Coq implementation

At the implementation level, to make the deduction on abstract sets, we use
the tactic fsetdecide provided by the library on Containers [16]. We also use
setoids to make substitutions when we have to indicate to the system that the
sets are identical. Finally to address inequalities, we use omega [5]1 tactic. We
proved with similar techniques others lemmas of projective geometry.

1 Omega: a solver of quantifier-free problems in Presburger Arithmetic

72 David Braun, Nicolas Magaud, and Pascal Schreck

4.2 From Projective Geometry to Ranks

The opposite direction is more difficult to handle, we need to specify the con-
cept of rank from projective geometry. This implication is much more difficult
to prove.

Preliminaries

It is not possible to directly describe rank, we have to define intermediate
definitions representing the different returned values of the rank function. To
characterize the rank, we are inspired by the concept of flat from the matroid
theory. The set of points is either empty or it represents a point, a line, a plane
or a space. To represent abstract sets, we can manipulate AVLs or lists. Given
that we are working on sets of small sizes, we choose to work with lists for the
implementation.

Definition rkl s := match s with

| nil => 0

| x :: nil => 1

| s => if contains_four_non_coplanar_points s then 4 else

if contains_three_non_collinear_points s then 3 else

if contains_two_distinct_points s then 2 else 1

end.

The three predicates contains four, contains three and contains two

put bounds on the dimension of the set. For instance the coplanarity, either
there is a quadruple of non coplanar points and the set represents a space, or it
continue recursion analyzing collinearity. These predicates form what is called an
intermediate layer. They help to make transition between the two axiom systems
and are often accompanied by dozens of lemmas. It is desirable to remain vigilant
during the development of such definitions to take into account all the degenerate
cases (mainly coincident points).

Fixpoint contains_four_non_coplanar_points l :=

match l with

| nil => false

| a::r => if coplanar_with_all a (all_triples r)

then contains_four_non_coplanar_points r

else true

end.

Proof techniques

Similarly, we present the main technical aspects to perform demonstrations
of the eight axioms. We exploit mostly the induction mechanism. Manipulation
of the three conditionals in the rank’s characterization and the management of

Equivalence Proof Between Rank and Projective Geometry 73

degenerate cases yield many goals which significantly increase the size of the
proofs. Resulting proofs are often tedious, however it is possible to automate
many steps. For this, we use Ltac the tactical language provided by Coq. We
identify specific patterns within hypothesis and goals that we simplify by a se-
quence of tactics and lemmas. This tactic allows to unfold as much as possible
the goal while introducing a maximum of assumptions. If the goal has become
trivial with a simple equality/inequality, the work is finished. Otherwise one has
to make explicit a contradiction in assumptions. This logic work is the core of
the proof and must be done by hand. To raise contradictions in context, it makes
sense to write intermediate lemmas.

Ltac my_rank :=

repeat match goal with

|[H : _ |- _] => progress intros

|[H : _ |- _] => progress intro

|[H : _ |- _ <-> _] => split

|[H : _ |- _ /\ _] => split

|[H : _ /\ _ |- _] => destruct H

|[H : _ |- _] => solve[intuition]

|[H : _ |- _] => progress contradiction

|[H : ?X :: _ = nil |- _] => inversion H

|[H : false = true |- _] => inversion H

|[H : true = false |- _] => inversion H

|[H : ?X[==]?X -> False |- _] => apply False_ind;apply H;reflexivity

|[H : _ |- (if if ?X then _ else _

then _ else _) = _ \/ _] => case_eq X

|[H : _ |- (if ?X then _ else _) = _ \/ _] => case_eq X

...

end.

Proof of the nondecreasing property

We give an overview with the proof of the nondecreasing property of the
matroid theory.

Lemma 4. (A2R2-R3),
∀ X ⊆ Y, rk(X) ≤ rk(Y).

In our context, the rank function can take five possible values from 0 to 4,
which leads us twenty five different cases to treat when we make a structural
induction on X and Y. First case 0 ≤ 0, second case 0 ≤ 1, etc. With the tactic,
we eliminate fifteen trivial goals immediately wherein X is included in Y. To
prove the remaining ones, we build a contradiction and we simplify with a tactic
that automatically handles the calculation of inclusion. For example, we clarify
that a plane can not be included in a line. It is therefore impossible to reach the
case 3 ≤ 2.

74 David Braun, Nicolas Magaud, and Pascal Schreck

Coq implementation

Lemma A3R2-R3 is the hardest lemma to prove with the management of the
intersection and the union. It contains many nontrivial cases that we decompose
into several lemmas as below.

Lemma matroid3_rk2_rk2_interrk2_to_unionrk2 :

forall l m,

rkl l = 2 ->

rkl m = 2 ->

rkl (inter l m) = 2 ->

rkl (union l m) = 2.

Another recurring issue is caused by our parametric equality on points. We
must write a morphism for each definition that we cross when we perform a
rewrite. We prove that the equality is compatible and consistent with the defi-
nition in which it is used. In this way, it is possible to substitute a set X similar
to a set Y directly in the rank definition. The writing of such morphism in Coq
is as below:

Instance rank_morph : Proper (@equivlistA Point eq => (@Logic.eq nat)) rkl.

Proof.

...

Qed.

This leads to the following lemma where the predicate equivlist indicates
that the two lists are equal:

Lemma 5. rank morph,
∀ x y : list Point, equivlist x y → rkl x = rkl y

4.3 Statistics

Finally, we give some data about our library, we also detail the impact of automa-
tion that we have put in place throughout the process. Overall, our development
consists of more than 30 000 lines and 850 lemmas. We dedicate 14 000 lines to
demonstrate the equivalence organized as shown in the Fig. 2 below. Using tac-
tics and splitting the demonstration into lemmas has divided by three the size
of the formalization.

5 Conclusion and Future Work

This paper explain how projective geometry can be formalized in Coq using two
different axioms systems in both 2D and 3D. We detail in particular the original
axiomatization based on the notion of rank from the matroid theory. Then we

Equivalence Proof Between Rank and Projective Geometry 75

From rank to PG From PG to rank

2D ≥3D 2D ≥3D

lines of Coq specs 250 350 650 1 050

lines of Coq proofs 300 800 2 600 11 000

Fig. 2. Organization of equivalence proof in Coq

prove rigorously equivalence between these two formalizations. We highlight the
tools and techniques used to achieve it by presenting a typical proof. Finally we
give some thoughts on proof automation in presence of ranks.

In the future, we plan to carry on our investigations in two main directions.
On the one hand, we expect to write a reliable algorithm for performing a bi-
lateral translation between the two approaches. In this way we can alternate
between geometry for visualization and combinatorics for automation and com-
putation.

On the other hand, we shall study how to effectively automate demonstra-
tions about ranks at different levels. First, we will investigate the possibilities of
full automation in the case of finite geometry like Fano plane. Secondly, we are
interested in a partial automation of many steps in the Desargues theorem proof
presented in [19,20]. We want to make proof as readable as possible by removing
technical details, thus being as close as possible to mathematical proof.

Availability The full Coq development is available at the following url:
http://galapagos.gforge.inria.fr/

References

1. Bertot, Yves and Castéran, Pierre: Interactive Theorem Proving and Program De-
velopment, Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science, Springer Science & Business Media (2004)

2. Boutry, Pierre and Narboux, Julien and Schreck, Pascal and Braun, Gabriel: Using
small scale automation to improve both accessibility and readability of formal
proofs in geometry. Automated Deduction in Geometry 2014 pp. 1–19 (2014)

3. Buekenhout, Francis: Handbook of Incidence Geometry: buildings and foundations.
Elsevier (1995)

4. Castéran, Pierre and Sozeau, Matthieu: A Gentle Introduction to Type Classes
and Relations in Coq (2016)

5. Coq development team: The Coq proof Assistant Reference Manual.
https://coq.inria.fr/distrib/current/files/Reference-Manual.pdf (2016)

6. Coxeter, Harold Scott Macdonald: Projective Geometry. Springer Science & Busi-
ness Media (2003)

7. Dehlinger, Christophe and Dufourd, Jean-François and Schreck, Pascal: Higher-
Order Intuitionistic Formalization and Proofs in Hilbert’s Elementary Geometry.
Automated Deduction in Geometry pp. 306–324 (2000)

76 David Braun, Nicolas Magaud, and Pascal Schreck

8. Duprat, Jean: Une axiomatique de la géométrie plane en Coq. Journées Franco-
phones des Langages Applicatifs pp. 123–136 (2008)

9. Fuchs, Laurent and Thery, Laurent: A formalization of grassmann-cayley algebra
in Coq and its application to theorem proving in projective geometry. Automated
Deduction in Geometry 6877, 51–67 (2010)

10. Génevaux, Jean-David and Narboux, Julien and Schreck, Pascal: Formalization of
Wu’s simple method in Coq. Certified Programs and Proofs 7086, 71–86 (2011)

11. Guilhot, Frédérique: Formalisation en Coq et visualisation d’un cours de géometrie
pour le lycée. Journées Francophones des Langages Applicatifs 7, 15 (2004)

12. Janičić, Predrag and Narboux, Julien and Quaresma, Pedro: The Area Method :
a Recapitulation. Journal of Automated Reasoning 48(4), 489–532 (2012)

13. Jermann, Christophe and Trombettoni, Gilles and Neveu, Bertrand and Mathis,
Pascal: Decomposition of Geometric Constraint Systems: a survey. International
Journal of Computanional Geometry & Application 16(05n06), 379–414 (2006)

14. Kahn, Gilles: Constructive geometry according to Jan von Plato (1995)
15. Kusak, Eugeniusz: Desargues theorem in projective 3-space. J. of Formalized Math-

ematics 2 (1990)
16. Lescuyer, Stéphane: First-Class Containers in Coq. Stud. Inform. Univ. 9(1), 87–

127 (2011)
17. Li, Hongbo and Wu, Yihong: Automated short proof generation for projective geo-

metric theorems with Cayley and bracket algebras: I. Incidence geometry. Journal
of Symbolic Computation 36(5), 717–762 (2003)

18. Magaud, Nicolas and Narboux, Julien and Schreck, Pascal: Formalizing Projective
Plane Geometry in Coq. Automated Deduction in Geometry 6301, 141–162 (2008)

19. Magaud, Nicolas and Narboux, Julien and Schreck, Pascal: Formalizing Desargues
theorem in Coq using ranks. ACM pp. 1110–1115 (2009)

20. Magaud, Nicolas and Narboux, Julien and Schreck, Pascal: A Case Study in For-
malizing Projective Geometry in Coq: Desargues Theorem. Computational Geom-
etry : Theory and Applications 45(8), 406–424 (2012)

21. Meikle, Laura I and Fleuriot, Jacques D: Formalizing Hilbert’s Grundlagen in
Isabelle/Isar. Theorem proving in higher logics 2758, 319–334 (2003)

22. Michelucci, D and Schreck, P: Detecting induced incidences in the projective plane.
isiCAD Workshop. Citeseer (2004)

23. Michelucci, Dominique and Foufou, Sebti and Lamarque, Loic and Schreck, Pascal:
Geometric constraints solving:some tracks. ACM pp. 185–196 (2006)

24. Michelucci, Dominique and Schreck, Pascal: Incidence constraints : a combinatorial
approach. International J. of Computational Geometry & Application 16(05n06),
443–460 (2006)

25. Moulton, Forest Ray: A Simple Non-Desarguesian Plane Geometry. Transactions
of the American Mathematical Society 3(2), 192–195 (1902)

26. Narboux, Julien: A Decision Procedure for Geometry in Coq. Theorem Proving in
Higher Order Logics 3223, 225–240 (2004)

27. Narboux, Julien: Formalisation et automatisation du raisonnement géométrique en
Coq. Ph.D. thesis, Université Paris Sud-Paris XI (2006)

28. Narboux, Julien: Mechanical Theorem Proving in Tarski’s Geometry. Automated
Deduction in Geometry 4869, 139–156 (2006)

29. Oxley, James G: Matroid Theory, vol. 3. Oxford University Press, USA (2006)
30. Richter-Gebert, Jürgen: Mechanical theorem proving in projective geometry. An-

nals of Mathematics and Artificial Intelligence 13, 139–172 (1995)
31. Sozeau, Matthieu and Oury, Nicolas: First-class type classes. Theorem Proving in

Higher Order Logics 5170, 278–293 (2008)

Equivalence Proof Between Rank and Projective Geometry 77

32. Tarski, Alfred: What is Elementary Geometry ? (1983)
33. von Plato, Jan: The axioms of constructive geometry. Annals of pure and applied

logic 76(2), 169–200 (1995)

From Hilbert to Tarski

Gabriel Braun, Pierre Boutry, and Julien Narboux

ICube, UMR 7357 CNRS, University of Strasbourg
Pôle API, Bd Sébastien Brant, BP 10413, 67412 Illkirch, France
{gabriel.braun, boutry, narboux}@unistra.fr

Abstract. In this paper, we describe the formal proof using the Coq proof as-
sistant that Tarski’s axioms for plane neutral geometry (excluding continuity ax-
ioms) can be derived from the corresponding Hilbert’s axioms. Previously, we
mechanized the proof that Tarski’s version of the parallel postulate is equivalent
to the Playfair’s postulate used by Hilbert [9] and that Hilbert’s axioms for plane
neutral geometry (excluding continuity) can be derived from the corresponding
Tarski’s axioms [12]. Hence, this work allows us to complete the formal proof of
the equivalence between the two axiom systems for neutral and plane Euclidean
geometry. Formalizing Hilbert’s axioms is not completely straightforward, in this
paper we describe the corrections we had to make to our previous formalization.
We mechanized the proof of Hilbert’s theorems that are required in our proof
of Tarski’s axioms. But this connection from Hilbert’s axioms, allows to recover
the many results we obtained previously in the context of Tarski’s geometry: this
includes the theorems of Pappus[13], Desargues, Pythagoras and the arithmetiza-
tion of geometry [8].

Keywords: formal proof, geometry, foundations, Tarski’s axioms, Hilbert’s axioms,
Coq

1 Introduction

There are several ways to define the foundations of geometry. In the synthetic approach,
the axiomatic system is based on some geometric objects and axioms about them. The
best known modern axiomatic systems based on this approach are Hilbert’s [17] and
Tarski’s ones [32]. In the analytic approach, a field F is assumed (usually R) and the
space is defined as Fn. In the mixed analytic/synthetic approaches, one assumes both
the existence of a field and also some geometric axioms. For example, the axiomatic
systems for geometry used for education in North America are based on Birkhoff’s
axiomatic system [7] in which the field serves to measure distances and angles. This
is called the metric approach. A modern development of geometry based on this ap-
proach can be found in the books of Millman [21] or Moise [22]. The textbook of
Hartshorne [16] provides a development of geometry based on Hilbert’s axioms. A rig-
orous development of geometry based on Tarski’s axioms appears in the first part of the
book by Tarski, Szmielew and Schwabhäuser [27].

The GeoCoq library gathers results about the foundations of geometry formalized in
Coq [23]. It includes a formalization of the first part of [27]. We formalized in Coq the

From Hilbert to Tarski 79

link between the synthetic geometry defined by Tarski’s axioms and analytic geome-
try [8]. We also formalized the link from Tarski’s axioms to Hilbert’s axioms [12], Bee-
son has later written a note [5] to demonstrate that the main results to obtain Hilbert“s
axioms are contained in [27]. In this paper, we complete the picture, by proving for-
mally that Tarski’s axioms can be derived from Hilbert’s axiom.

Dehlinger, Dufourd and Schreck have studied the formalization of Hilbert’s founda-
tions of geometry in the intuitionist setting of Coq [14]. They have highlighted the fact
that Hilbert’s proofs require the excluded middle axiom applied to the point equality
and the role of non degenerate conditions. They focus on the first two groups of ax-
ioms and prove some betweenness properties. Meikle and Fleuriot have done a similar
study within the Isabelle/HOL proof assistant [20]. They went up to twelfth1 theorem
of Hilbert’s book. Scott has continued the formalization of Meikle using Isabelle/HOL
and revised it [28]. He has corrected some ”subtle errors in the formalization of Group
III by Meikle”. Scott was interested in trying to obtain readable proofs. Later, he de-
veloped a system within the HOL-Light proof assistant to automatically fill some gaps
in the incidence proofs [30]. In our work, even if we use some tactics to obtain some
proofs more easily [11,10], we do not focus on obtaining readable proofs. Scott then
focused on proving a theorem, which Hilbert’s states without proof: that a special case
of the Jordan Curve Theorem can be proved using the first two groups of Hilbert’s ax-
ioms only [29]. Moreover Richter has formalized a substantial number of results based
on Hilbert’s axioms and a metric axiom system using HOL-Light [25]. Finally Beeson
and Wos have used the OTTER automatic theorem prover to mechanize some proofs
in Tarski’s geometry [3,4]. They manage to automatically prove many results from the
first twelve chapter of [27], with the help of some human generated hints OTTER can
prove all the lemmas necessary to derive Hilbert’s axioms.

The earlier errors in Meikle’s formalization found by Scott can frighten the reader.
How can we be sure that there are no errors in the formalization presented in this paper?
They are two kinds of potential errors:

1. the axioms are inconsistent
2. the axioms do not capture the desired theory - some standard geometry theorems

may not be provable from the axioms

In our previous work [12], we have shown that Tarski’s axioms for plan Euclidean ge-
ometry can serve as a model for the corresponding Hilbert’s axioms. In an unpublished
result, Boutry has built a formal proof that the Cartesian plane over a Pythagorean or-
dered field is a model of Tarski’s axioms (A1-A10, i.e. excluding the continuity axiom).
This can convince the reader that Tarski’s axioms as they are formalized are consistent
and hence our formalization of Hilbert’s axiom system as well. Makarios has also shown
using the Isabelle/HOL proof assistant that there are both euclidean and a non-euclidean
models of Tarski’s axioms for plane neutral geometry [19]. However our axiom system
could be weaker than necessary. As a matter of fact, the axiom system we proposed in
2012 was not sufficient to prove Tarski’s axioms and we had to correct it. In this paper,
we present a formal proof that the formalization of Hilbert’s axioms is not only correct

1 We use the numbering of theorems as of the tenth edition.

80 Gabriel Braun, Pierre Boutry, and Julien Narboux

but also sufficient, in the sense that we can obtain the culminating result of both [17]
and [27]: the arithmetization of geometry.

Outline

The paper is organized as follows. In Section 2, we describe Tarski’s axiom system
(the version used in [27]), then (Sec. 3) our formalization of Hilbert’s axioms for plane
Euclidean geometry. In doing so, we present the errors we had to correct in our previous
axiomatic system to obtain the equivalence with Tarski’s axioms. Finally, in Section 4,
we provide the proof that Tarski’s axioms can be derived from Hilbert’s axioms.

2 Tarski’s Axioms

We use the axioms that serves as a basis for [27]. For an explanation of the axioms and
their history see [32]. Table 1 lists the axioms for neutral geometry.

Let us recall that Tarski’s axiom system is based on a single primitive type depicting
points and two predicates, namely between noted by and congruence noted by ≡ .
A B C means that A, B and C are collinear and B is between A and C (and B may
be equal to A or C). AB ≡ CD means that the line-segments AB and CD have the
same length (the orientation does not need to be the same).

Figure 2 provides the Coq’s formalization of these axioms. We worked in an intu-
itionistic setting but we included the axiom point_equality_decidability.

A1 Symmetry AB ≡BA

A2 Pseudo-Transitivity AB ≡ CD ∧AB ≡ EF ⇒ CD ≡ EF

A3 Cong Identity AB ≡ CC ⇒ A = B

A4 Segment construction ∃E,A B E ∧BE ≡ CD

A5 Five-segment AB ≡A′B′ ∧BC ≡B′C′∧
AD ≡A′D′ ∧BD ≡B′D′∧
A B C ∧A′ B′ C′ ∧A 6= B ⇒ CD ≡ C′D′

A6 Between Identity A B A⇒ A = B

A7 Inner Pasch A P C ∧B Q C ⇒ ∃X,P X B ∧Q X A

A8 Lower Dimension ∃ABC,¬A B C ∧ ¬B C A ∧ ¬C A B

A9 Upper Dimension AP ≡AQ ∧BP ≡BQ ∧ CP ≡ CQ ∧ P 6= Q
⇒ A B C ∨B C A ∨ C A B.

A10 Parallel postulate ∃XY (A D T ∧B D C ∧A 6= D ⇒
A B X ∧A C Y ∧X T Y)

Table 1: Tarski’s axiom system for neutral geometry.

From Hilbert to Tarski 81

bA bCb B

bD

bA′

bC
′

b B
′

bD
′

.

.

(a) Five-segment axiom

bA

b
C

b
B

b
P

b
Q

bc
X

.

.

(b) Inner Pasch’s axiom

bA

bD

bC

b B

bTbc X bcY

.

.

(c) Parallel postulate

Fig. 1: Illustration for three axioms

The symmetry axiom (A1 on Table 1) for equidistance together with the transitiv-
ity axiom (A2) for equidistance imply that the equi-distance relation is an equivalence
relation. The identity axiom for equidistance (A3) ensures that only degenerate line
segments can be congruent to a degenerate line segment. The axiom of segment con-
struction (A4) allows to extend a line segment by a given length. The five-segments
axiom (A5) is similar to the Side-Angle-Side principle, but expressed without mention-
ing angles, using only the betweenness and congruence relations (Fig. 1a). The lengths
ofAB,AD andBD fix the angle ĈBD. The identity axiom for betweenness expresses
that the only possibility to have B between A and A is to have A and B equal. Tarski’s
relation of betweenness is non-strict, unlike Hilbert’s. The inner form of the Pasch’s
axiom (A7, Fig. 1b) is a variant of the axiom that Pasch introduced in [24] to repair the
defects of Euclid. Pasch’s axiom intuitively says that if a line meets one side of a trian-
gle and does not pass through the endpoints of that side, then it has to meet one of the
other sides of the triangle. Inner Pasch’s axiom is a form of the axiom that holds even
in 3-space, i.e. does not assume a dimension axiom. The lower 2-dimensional axiom
(A8) asserts that the existence of three non-collinear points. The upper 2-dimensional
axiom (A9) implies that all the points are coplanar. The version of the parallel postulate
(A10) is a statement which can be expressed easily in the language of Tarski’s geometry
(Fig. 1c). It is equivalent to the uniqueness of parallels or Euclid’s 5th postulate.

82 Gabriel Braun, Pierre Boutry, and Julien Narboux

Class Tarski_neutral_dimensionless :=
{
Tpoint : Type;
Bet : Tpoint -> Tpoint -> Tpoint -> Prop;
Cong : Tpoint -> Tpoint -> Tpoint -> Tpoint -> Prop;
cong_pseudo_reflexivity : forall A B, Cong A B B A;
cong_inner_transitivity : forall A B C D E F,

Cong A B C D -> Cong A B E F -> Cong C D E F;
cong_identity : forall A B C, Cong A B C C -> A = B;
segment_construction : forall A B C D,

exists E, Bet A B E /\ Cong B E C D;
five_segment : forall A A’ B B’ C C’ D D’,

Cong A B A’ B’ ->
Cong B C B’ C’ ->
Cong A D A’ D’ ->
Cong B D B’ D’ ->
Bet A B C -> Bet A’ B’ C’ -> A <> B -> Cong C D C’ D’;

between_identity : forall A B, Bet A B A -> A = B;
inner_pasch : forall A B C P Q,

Bet A P C -> Bet B Q C ->
exists X, Bet P X B /\ Bet Q X A;

PA : Tpoint;
PB : Tpoint;
PC : Tpoint;
lower_dim : ˜ (Bet PA PB PC \/ Bet PB PC PA \/ Bet PC PA PB)
}.

Class Tarski_neutral_dimensionless_with_dec_point_equality
‘(Tn : Tarski_neutral_dimensionless) :=
{
point_equality_decidability : forall A B : Tpoint, A=B \/ ˜A=B
}.

Class Tarski_2D
‘(TnEQD : Tarski_neutral_dimensionless_with_dec_point_equality) :=
{
upper_dim : forall A B C P Q,

P <> Q -> Cong A P A Q -> Cong B P B Q -> Cong C P C Q ->
(Bet A B C \/ Bet B C A \/ Bet C A B)

}.

Class Tarski_2D_euclidean ‘(T2D : Tarski_2D) :=
{
euclid : forall A B C D T,

Bet A D T -> Bet B D C -> A<>D ->
exists X, exists Y,
Bet A B X /\ Bet A C Y /\ Bet X T Y

}.

Fig. 2: The formalization of Tarski’s axioms

From Hilbert to Tarski 83

3 Hilbert’s Axioms

Our formalization of Hilbert’s axiom system is derived on the French translation of the
tenth edition annotated by Rossier [18].

Hilbert’s axiom system is based on two abstract types: points and lines (as we limit
ourselves to 2-dimensional geometry we did not introduce ’planes’ and the related ax-
ioms).

In our initial version of Hilbert’s axioms, we made several mistakes. None of the
axioms were incorrect (as they are formally proved from Tarski’s axioms), but some
should be strengthened and some others are useless because they can be derived. For
each group of axioms, we detail the changes we made to our previous formalization, we
do not detail all the axioms that have already been described in [12]. But, we give the
full list of axioms as a reference.

3.1 Group I

Group I of axioms contains the incidence axioms.
First, we had to change the lower dimensional axiom. Hilbert states that there ex-

ists three non collinear points and three points are said to be collinear if there exists
a line going through these three points. This assumption is not enough, because in a
world without lines, assuming that there are three non collinear points does not imply
that they are distinct. Indeed, there is a model of the first two groups of Hilbert’s ax-
ioms with only one point and no lines (interpreting congruence by the empty relation).
We can construct a line only if we have two distinct points. Scott’s formalization does
not need this modification because in Isabelle/HOL all types are inhabited, hence his
formalization includes implicitly the fact that there is at least one line. Meikle’s and
Richter’s formalizations enforce that the three points are distinct.

Hence, for the lower dimension axiom, we state that there is a line and point not on
this line:

l0 : Line;
P0 : Point;
plan : ˜ Incid P0 l0;

As there is an axiom stating there are always at least two points on a line, the former
axiom stating that there are three non collinear points can be derived.

Second, we had to introduce the property that line equality is an equivalence relation
and that incidence is a morphism for line equality:

EqL_Equiv : Equivalence EqL;
Incid_morphism :
forall P l m, Incid P l -> EqL l m -> Incid P m;

Finally, as we are working in an intuitionist setting we had to introduce some de-
cidability properties which allow to perform case distinctions. It would be interesting to
formalize a constructive version of Hilbert’s axioms, following Beeson’s work [1], we
leave this for future work.

84 Gabriel Braun, Pierre Boutry, and Julien Narboux

Incid_dec : forall P l, Incid P l \/ ˜Incid P l;
eq_dec_pointsH : forall A B : Point, A=B \/ ˜ A=B;

The complete list of axioms for group I is given in Fig. 3.

Point : Type;
Line : Type;
EqL : Line -> Line -> Prop;
EqL_Equiv : Equivalence EqL;
Incid : Point -> Line -> Prop;
Incid_morphism :
forall P l m, Incid P l -> EqL l m -> Incid P m;

Incid_dec : forall P l, Incid P l \/ ˜ Incid P l;
eq_dec_pointsH : forall A B : Point, A=B \/ ˜ A=B;
line_existence :
forall A B, A <> B -> exists l, Incid A l /\ Incid B l;

line_uniqueness :
forall A B l m,

A <> B ->
Incid A l -> Incid B l -> Incid A m -> Incid B m ->

EqL l m;
two_points_on_line :
forall l,

{ A : Point & { B | Incid B l /\ Incid A l /\ A <> B}};
ColH :=
fun A B C => exists l, Incid A l /\ Incid B l /\ Incid C l;

l0 : Line;
P0 : Point;
plan : ˜ Incid P0 l0;

Fig. 3: Formalization of Group I

3.2 Group II

Group II of axioms contains the betweenness axioms. We denote byA B C Hilbert’s
betweenness predicate, which is strict. It expresses the fact that B is on the line AC
between A and C and different from A and C. We could not derive the fact that if
A B C then A 6= C from our former axioms so we added this property as an axiom.
The fact that A 6= B and B 6= C (which is assumed by Greenberg, Hartshorne and
Richter) is not necessary as it can be derived from the other axioms. The fact that A
should be different from C is not explicit in Hilbert’s book.

between_diff : forall A B C, BetH A B C -> A <> C;

From Hilbert to Tarski 85

The property between_one states that given three collinear points distinct points
at least one of them is between the other two:

between_one :
forall A B C,

A <> B -> A <> C -> B <> C -> ColH A B C ->
BetH A B C \/ BetH B C A \/ BetH B A C.

In our earlier formalization as well as earlier editions of Hilbert’s book, this prop-
erty was taken as an axiom. Following the proof by Wald published by Hilbert in later
editions, we derived it from the other axioms. Richter assumes this property. Moreover,
in the axiom between_only_one, we removed one of the conjuncts as it can be
derived. We now have:

between_only_one : forall A B C, BetH A B C -> ˜ BetH B C A;

instead of:

between_only_one :
forall A B C, BetH A B C -> ˜ BetH B C A /\ ˜ BetH B A C;

The other axioms could be kept unmodified. The axioms for the second group are
given in Fig. 4.

BetH : Point -> Point -> Point -> Prop;
between_col : forall A B C, BetH A B C -> ColH A B C;
between_diff : forall A B C, BetH A B C -> A <> C;
between_comm : forall A B C, BetH A B C -> BetH C B A;
between_out : forall A B, A <> B -> exists C, BetH A B C;
between_only_one : forall A B C, BetH A B C -> ˜ BetH B C A;
cut :=
fun l A B => ˜ Incid A l /\ ˜ Incid B l /\

exists I, Incid I l /\ BetH A I B;
pasch :
forall A B C l,

˜ ColH A B C -> ˜ Incid C l -> cut l A B ->
cut l A C \/ cut l B C;

Fig. 4: Formalization of Group II

86 Gabriel Braun, Pierre Boutry, and Julien Narboux

3.3 Group III

Group III of axioms contain those about congruence of segments and angles.

Congruence of segments Hilbert defines congruence as a relation about segments,
where segments are defined as unordered pairs of points. In our formalization, we chose
to avoid defining the concept of segment. We denote by ≡H the Hilbert segment con-
gruence relation. Hence, we have an axiom which says that segments can be permuted
on the right. Other permutations can be derived.

cong_permr : forall A B C D, CongH A B C D -> CongH A B D C;

The uniqueness of segment construction can be derived if one assume the reflexivity
of congruence of angles, therefore we dropped this axiom. Richter assumes uniqueness
of segment construction. The other axioms were not changed, the full list is given on
Fig. 5. Our formalization of the segment addition axiom follows Hilbert’s prose. It is
based on the definition of the concept of disjoint segments. Note that in the segment
addition axiom, the concept of disjoint segments could be replaced by a betweenness
assumption stating that B is between A and C and B′ is between A′ and C ′, we proved
it as lemma:

Lemma addition_betH : forall A B C A’ B’ C’,
BetH A B C -> BetH A’ B’ C’ ->
CongH A B A’ B’ -> CongH B C B’ C’ ->
CongH A C A’ C’.

Congruence of angles In early editions of the Foundations of Geometry, Hilbert had
taken pseudo-transitivity of congruence of angles as an axiom. Later Rosenthal has
shown that this axiom can be derived from the others [26]. We used the later version of
Hilbert’s axioms. Note that, as we need transitivity of congruence in our proofs, we had
to formalize Rosenthal’s proofs. These proofs are rather technical, not very interesting
in a pedagogical context, that is why Hartshorne chose to take the simpler, not mini-
mal, axiom system of the earlier editions [16]. Richter also assumes the transitivity of
congruence of angles. In our previous formalization, we defined the concept of angles
ABC as three points A, B and C, with a proof that A 6= B and B 6= C. We did not
want to open the Pandora box of the dependent types [6] (types that depend on a proof),
so we dropped the proofs from the angle type, and even made implicit the angle type. To
be faithful to Hilbert, some non degeneracy conditions are added to ensure that angles
are neither flat nor null. This makes the proof of the Tarski’s five-segment axiom (A5)
more involved.

We used a predicate of arity six for the congruence of angles:

CongaH :
Point -> Point -> Point -> Point -> Point -> Point -> Prop;

From Hilbert to Tarski 87

CongH : Point -> Point -> Point -> Point -> Prop;
cong_permr : forall A B C D, CongH A B C D -> CongH A B D C;
cong_pseudo_transitivity :
forall A B C D E F,

CongH A B C D -> CongH A B E F -> CongH C D E F;
cong_existence :
forall A B l M,

A <> B -> Incid M l ->
exists A’, exists B’, Incid A’ l /\ Incid B’ l /\

BetH A’ M B’ /\
CongH M A’ A B /\ CongH M B’ A B;

disjoint := fun A B C D => ˜ exists P, BetH A P B /\ BetH C P D;
addition :
forall A B C A’ B’ C’,

ColH A B C -> ColH A’ B’ C’ ->
disjoint A B B C -> disjoint A’ B’ B’ C’ ->
CongH A B A’ B’ -> CongH B C B’ C’ ->
CongH A C A’ C’;

Fig. 5: Formalization of Group III, part 1 : segment congruence axioms

As for the congruence of segments we need a permutation property about angle
congruence:

congaH_permlr :
forall A B C D E F, CongaH A B C D E F -> CongaH C B A F E D;

Our approach does not use rays, so we need to state that two angles represented by
the same rays are congruent. This is the purpose of axiom congaH_outH_congaH.
The predicate outH P A B states that B belongs to the ray PA:

outH :=
fun P A B => BetH P A B \/ BetH P B A \/ (P <> A /\ A = B);

congaH_outH_congaH :
forall A B C D E F A’ C’ D’ F’,

CongaH A B C D E F ->
outH B A A’ -> outH B C C’ -> outH E D D’ -> outH E F F’ ->
CongaH A’ B C’ D’ E F’;

Recall that Hilbert’s axiom III 4 states that:
Given an angle α, a ray h emanating from a point O and given a point P , not on

the line generated by h, there is a unique ray h′ emanating from O, such that the angle
α′ defined by (h,O, h′) is congruent with α and such that every point inside α′ and P
are on the same side with respect to the line generated by h.

88 Gabriel Braun, Pierre Boutry, and Julien Narboux

We simplified the formalization of Hilbert’s axiom III 4, instead of considering
every point inside the angle, our proof shows that it is sufficient to state that the point
that defines the angle is on the same side as P . Hence, we can save the burden of
defining what it means for a point to be inside an angle. Our version is also simpler than
Scoot’s one, which follows Hilbert’s definition.

We say that two points are on the same side of a line, if there is a point P such that
they are both on opposite sides wrt. P . The fact that two points are on opposite sides of
a line is defined by the cut predicate of Group II.

hcong_4_existence :
forall A B C O X P,

˜ ColH P O X -> ˜ ColH A B C ->
exists Y, CongaH A B C X O Y /\ same_side’ P Y O X;

hcong_4_uniqueness :
forall A B C O P X Y Y’,

˜ ColH P O X -> ˜ ColH A B C ->
CongaH A B C X O Y -> CongaH A B C X O Y’ ->
same_side’ P Y O X -> same_side’ P Y’ O X ->
outH O Y Y’

The full list of axioms is given in Fig. 6.

3.4 Group IV

In 2012, we had an axiom saying that given a line and a point there exists a parallel
line through this point. Only the uniqueness of the parallel should be assumed as the
existence can be derived from other axioms. The uniqueness axiom is depicted on Fig. 7.

4 Proving Tarski’s Axioms

To prove Tarski’s axioms we use a trick: we worked on both sides. We derived some
lemmas in the context of Hilbert’s axioms and we also proved Tarski’s axioms in the
context of a variant of these axioms. We introduced this variant of Tarski’s axiom system
inspired by the one adopted by Beeson in [2]. We added the following two properties as
axioms: symmetry of betweenness and inner transitivity and we number them as in [32].
We modified Pasch’s axiom to have a version which excludes the degenerate case when
the triangle ABC is flat. This non degeneracy condition is crucial because obtaining
the general case from Hilbert’s version is not trivial.

Formally, we consider the following axioms:

A14 := ∀ABC, A B C ⇒ C B A
A15 := ∀ABCD, A B D ∧B C D ⇒ A B C
A′

7 := ∀ABCPQ, A P C ∧B Q C∧
A 6= P ∧ P 6= C ∧B 6= Q ∧Q 6= C ∧ ¬Col(ABC)⇒
∃X,P X B ∧Q X A

From Hilbert to Tarski 89

CongaH :
Point -> Point -> Point -> Point -> Point -> Point -> Prop;

conga_refl : forall A B C, ˜ ColH A B C -> CongaH A B C A B C;
conga_comm : forall A B C, ˜ ColH A B C -> CongaH A B C C B A;
congaH_permlr :
forall A B C D E F, CongaH A B C D E F -> CongaH C B A F E D;

cong_5 :
forall A B C A’ B’ C’,

˜ ColH A B C -> ˜ ColH A’ B’ C’ ->
CongH A B A’ B’ -> CongH A C A’ C’ ->
CongaH B A C B’ A’ C’ ->
CongaH A B C A’ B’ C’;

same_side := fun A B l => exists P, cut l A P /\ cut l B P;
same_side’ :=
fun A B X Y =>

X <> Y /\
forall l, Incid X l -> Incid Y l -> same_side A B l;

outH :=
fun P A B => BetH P A B \/ BetH P B A \/ (P <> A /\ A = B);

congaH_outH_congaH :
forall A B C D E F A’ C’ D’ F’,

CongaH A B C D E F ->
outH B A A’ -> outH B C C’ -> outH E D D’ -> outH E F F’ ->
CongaH A’ B C’ D’ E F’;

hcong_4_existence :
forall A B C O X P,

˜ ColH P O X -> ˜ ColH A B C ->
exists Y, CongaH A B C X O Y /\ same_side’ P Y O X;

hcong_4_uniqueness :
forall A B C O P X Y Y’,

˜ ColH P O X -> ˜ ColH A B C ->
CongaH A B C X O Y -> CongaH A B C X O Y’ ->
same_side’ P Y O X -> same_side’ P Y’ O X ->
outH O Y Y’

Fig. 6: Formalization of Group III, part 2: angle congruence axioms

Para := fun l m => ˜ exists X, Incid X l /\ Incid X m;
euclid_uniqueness :
forall l P m1 m2,

˜ Incid P l ->
Para l m1 -> Incid P m1-> Para l m2 -> Incid P m2 ->
EqL m1 m2

Fig. 7: Formalization of Group IV

90 Gabriel Braun, Pierre Boutry, and Julien Narboux

We denote by V the following set of axioms:

{A1, A2, A3, A4, A5, A
′
7, A8, A9, A14, A15}.

Figure 8 provides an overview of the structure of the proof.

A1

A2

A3

A4

A5

A6

A7

A8

A9

A1

A2

A3

A4

A5

A′
7

A8

A9

A14

A15

Group I
Group II
Group III

Tarski’s
Neutral 2D

Hilbert’s
Plane

V

A10Group IV

Tarski’s
Euclidean

2D

Hilbert’s
Euclidean

2D

Cartesian
Plane over a
pythagorean
ordered field

Fig. 8: Overview of the proofs

4.1 Hilbert Plane is equivalent to Tarski A1-A9

The proof is divided into two parts.
First, we proved that the variant of Tarski V implies Tarski’s axioms. The fact that

the axiom A6 can be derived from V is Theorem 2.17 of Gupta’s Ph.D. Thesis [15].
Second, we proved that V follows from Hilbert’s axioms. Hilbert’s betweenness re-

lation is strict, whereas Tarski’s one is not. Obviously, we defined Tarski’s betweenness
relation (Bet) from Hilbert’s one (BetH) as:

Definition Bet A B C := BetH A B C \/ A = B \/ B = C.

Hilbert’s congruence relation is defined only for non degenerate segments, whereas
Tarski’s one include the case of the null segment:

Definition Cong A B C D :=
(CongH A B C D /\ A <> B /\ C <> D) \/ (A = B /\ C = D).

From Hilbert to Tarski 91

Axioms A1, A2, A3, A4, A8 and A14 are already axioms in Hilbert or easy conse-
quences of the axioms. A15 is a theorem in Hilbert which can be proved easily. Tarski’s
version of Pasch’s axiom is stronger than Hilbert’s one, because it provides information
about the relative position of the points. We could recover the non degenerate case of
Tarski’s version of Pasch (A′

7) using some betweenness properties and repeated appli-
cations of Hilbert’s version of Pasch. The five-segment axiom requires a longer proof.
The non degenerate case is a trivial consequence of the Side-Side-Side theorems and
the fact that if two angles are congruent their supplements are congruent as well. Those
theorems are proved by Hilbert as theorems 18 and 14. To prove these two theorems
we had to formalize the proof of Hilbert’s theorems 12, 15, 16 and 17 as well. Hilbert’s
proofs can be formalized without serious problem; we only had to introduce some lem-
mas about the relative position of two points and a line. For example, we had to prove
that the same-side relation is transitive: if A and B are of the same side of l, and B
and C are on the same side of l then A and C are also on the same side of l. As al-
ready noticed by Meikle and Scott, these lemmas, which are as difficult to prove as
Hilbert’s other theorems are completely implicit in Hilbert’s prose. The non-obvious
part of the proof has been the degenerate case of the five-segment axiom and the upper
2-dimensional axiom (A9).

To prove the degenerate case of the five-segment axiom (when the point D belongs
to the line AB), we had to prove that then D′ also belongs to line A′B′. We also
had to prove many degenerate cases which reduce to segment addition and subtraction.
Segment subtraction can be deduced from uniqueness of segment construction and from
addition. We give here only the proof of the key lemma (Lemma 2 below), assuming
the following lemma:

Lemma 1.

A B C ∧A′ B′ C ′ ∧AC ≡H A′C ′ ∧AB ≡H A′B′ ⇒ A′ B′ C ′

Lemma 2.

A B C ∧AB ≡H A′B′ ∧BC ≡H B′C ′ ∧AC ≡H A′C ′ ⇒ Col A′B′ C ′

Proof. We will prove this lemma by contradiction so let us assume that B′ does not
belong to line A′C ′. Let B′′ be a point on A′C ′ such that A′B′′ ≡H AB. Let C ′′ a
point such that B′C ′′ ≡H BC and A′ B′ C ′′ (Fig. 9). So the triangle B′C ′′C ′ is
isosceles in B′. Then Hilbert’s theorem 12 lets us prove that B′C ′C ′′ =̂ B′C ′′C ′.
By Lemma 1, we have that A′ B′′ C ′. We can derive B′′C ′ ≡H BC by subtraction
and then A′C ′ ≡H A′C ′′ by addition. Therefore triangle C ′A′C ′′ is isosceles in A′,
hence Hilbert’s theorem 12 implies that A′C ′′C ′ =̂ A′C ′C ′′. By transitivity of angle
congruence (Hilbert’s theorem 19), we know that B′C ′C ′′ =̂ A′C ′C ′′. Finally we
obtain a contradiction as the uniqueness of angle construction and the fact that B′ and
C ′′ are on the same side of C ′C ′′ let us prove that C ′B′ is the same ray as C ′A′.

The last axiom we need to prove is the upper 2-dimensional axiom. The proof is
not completely straightforward because we do not assume decidability of intersection
of lines: we can not distinguish cases to know if two lines intersect or not.

Let us first prove two useful lemmas.

92 Gabriel Braun, Pierre Boutry, and Julien Narboux

A′
B′′ C′

B′

C′′

Fig. 9: Proof of Lemma 2

Lemma 3. If two points A and B are not collinear with two points X and Y , then
either they are one the same side of the line XY or they are on opposite sides of this
line.

Proof. First, one can construct a point C, such that points A and C are on the opposite
side of the line XY . Therefore, there exists a point I collinear with X and Y . If A, B
and I are collinear, then either A B I , B A I or A = B and then A and B are on
the same side of line XY or A I B and then A and B are on opposite sides of line
XY , as, neither A nor B can be equal to I since they would then be collinear with X
and Y . Finally, if A, B and C are not collinear, then Pasch’s axiom lets us conclude the
proof.

In order to prove Lemma 5 we first prove a particular case which will be used
repeatedly throughout this proof.

Lemma 4. If three distinct points A, B and C are equidistant from two different points
P and Q, then, assuming that A is collinear with P and Q, these points are collinear.

Proof. We know that neither B or C are collinear with P and Q because if they were
then they would be equal to A, thus obtaining a contradiction. Therefore, using the
previous lemma, either B and C are on opposite sides or on the same side of line PQ.

– If they are on opposite sides of line PQ, then we name I the point of intersection
between this line and the segment BC. If we can prove that A is equal to point I
we will be done. To do this we just have to prove that I is equidistant from P and
Q. Using Hilbert’s theorem 18, we know that the angles P̂AB and Q̂AB are equal.
Then Hilbert’s theorem 12 lets us prove that I is equidistant from P and Q.

– If they are on the same side of line PQ, the previous lemma states that either P and
Q are on opposite sides or on the same side of line BC.
• If they are on the same side, the uniqueness axioms let us prove that they are

equal, therefore obtaining a contradiction.

From Hilbert to Tarski 93

• If they are on opposite side, then we name I the point of intersection between
this line and the line PQ. Without loss of generality, let us consider that B is
between C and I (if they are equal then A, B and C are trivially collinear).
Using Hilbert’s theorems 14 and 18, we know that the angles P̂BI and Q̂BI
are equal. Then Hilbert’s theorem 12 let us prove that I is equidistant from P
and Q. Therefore A is equal to I and we are done.

Lemma 5. If three distinct points A, B and C are equidistant from two different points
P and Q, then these points are collinear.

Proof. We just have to consider the case where neither A, B or C are collinear with
P and Q since otherwise the previous lemma lets us conclude. We know that either at
least two of these points are on opposite sides of the line PQ or all the points are one
the same side of this line.

– If they are on opposite sides of line PQ, then we name I the point of intersection
between this line and the segment formed by the points which are on opposite sides
of this line. As in the previous lemma we can prove that I is equidistant from P
and Q. Then apply the previous lemma twice we know that A, B and I as well as
A, C and I are collinear and the transitivity of collinearity allows us conclude.

– If they are on the same side of line PQ, either P and Q are on opposite sides or on
the same side of line AB.
• If they are on the same side, the uniqueness axioms let us prove that they are

equal, therefore obtaining a contradiction.
• If they are on opposite side, then we name I the point of intersection between

this line and the line PQ. As in the previous lemma we can prove that I is
equidistant from P and Q. Then apply the previous lemma twice we know that
A,B and I as well asA,C and I are collinear and the transitivity of collinearity
allows us conclude.

4.2 Euclidean Hilbert Plane is equivalent to Tarski A1-A10

The fact that Playfair’s postulate can be derived from Tarski’s version of the postulate
appears in Chapter 12 of [27], that we have formalized previously. The reverse implica-
tion and many other equivalence results have been described in [9]. For this implication,
we have to assume the decidability of intersection of line: given two lines either they
intersect or they do not.

5 Conclusion

We have obtained a formal proof that Hilbert’s geometric axioms implies Tarski’s ones.
It is interesting to note, that to prove this result we had to correct the axioms we had
given in [12], both removing unnecessary axioms and adding some properties. The
connection between Hilbert’s axioms and Tarski’s ones allows us to obtain all the results
we had proven in the context of Tarski’s axiom system, in particular the culminating
result which is the arithmetization of geometry.

94 Gabriel Braun, Pierre Boutry, and Julien Narboux

In our experience, manipulating Hilbert’s axioms is more tedious than Tarski’s ones.
As the axioms involve both points and lines (and planes in 3D), a single result can be
stated in many different ways, and it requires formally a lot of administrative work to
convert assumptions about lines into assumptions about points and vice-versa. Even if
this administrative work can be partially automated, using for example the techniques
proposed by Scott and Fleuriot [31], we have the impression that the mechanization of
geometry based on a single primitive type as in Tarski’s axiom system is more con-
venient. Moreover, Hilbert chose to exclude some degenerate cases from its axioms:
angles are never null nor full, segments are never degenerate, this makes the proofs
more tedious than in Tarski’s setting. Still, Hilbert’s axiom system has the advantage
that axioms are grouped and each group can serve to develop a significant part of ge-
ometry, whereas in a development of geometry based on Tarski’s axioms, one has to use
both the betweenness and congruence axioms very early. Our formalization of Hilbert’s
axiom system avoids the concept of sets of points, segments, rays and angles. Our cur-
rent formalization can hence be considered less faithful to the original than the one we
presented in 2012, but this new formalization produces axioms which are both clearer
and simpler to use.

Perspectives

This work completes the formalization of a non trivial part of Hilbert’s book. But, the
formalization could be completed. Among the chapters which have not been formalized,
we can cite the one about meta-mathematical results, and the one about arithmetization
of hyperbolic geometry. It would also be useful to extend the formalization to 3D.

It would be also interesting to generate readable proofs from our Coq formalization
to obtain a mechanized book about foundations of geometry.

We leave to future work the proof that our version of Hilbert’s axiom is equivalent
to a version in which angles are defined as a pair of rays.

Availability

The full Coq development is available here (release 2.1.0):
http://geocoq.github.io/GeoCoq/

References

1. Michael Beeson. Constructive geometry. In Proceedings of the Tenth Asian Logic Collo-
quium. World Scientific, 2010.

2. Michael Beeson. A constructive version of Tarski’s geometry. Annals of Pure and Applied
Logic, 166(11):1199–1273, 2015.

3. Michael Beeson and Larry Wos. OTTER proofs of theorems in Tarskian geometry. In
Stéphane Demri, Deepak Kapur, and Christoph Weidenbach, editors, 7th International Joint
Conference, IJCAR 2014, Held as Part of the Vienna Summer of Logic, Vienna, Austria,
July 19-22, 2014, Proceedings, volume 8562 of Lecture Notes in Computer Science, pages
495–510. Springer, 2014.

From Hilbert to Tarski 95

4. Michael Beeson and Larry Wos. Finding Proofs in Tarskian Geometry. Journal of Automated
Reasoning, submitted, 2015.

5. Michel Beeson. Proving Hilbert’s axioms in Tarski geometry.
http://www.michaelbeeson.com/research/papers/TarskiProvesHilbert.pdf, 2014.

6. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, 2004.

7. George D Birkhoff. A set of postulates for plane geometry, based on scale and protractor.
Annals of Mathematics, 33:329–345, 1932.

8. Pierre Boutry, Gabriel Braun, and Julien Narboux. From Tarski to Descartes: Formalization
of the Arithmetization of Euclidean Geometry. In The 7th International Symposium on Sym-
bolic Computation in Software (SCSS 2016), EasyChair Proceedings in Computing, page 15,
Tokyo, Japan, March 2016.

9. Pierre Boutry, Julien Narboux, and Pascal Schreck. Parallel postulates and decidability of
intersection of lines: a mechanized study within Tarski’s system of geometry. submitted, July
2015.

10. Pierre Boutry, Julien Narboux, and Pascal Schreck. A reflexive tactic for automated genera-
tion of proofs of incidence to an affine variety. October 2015.

11. Pierre Boutry, Julien Narboux, Pascal Schreck, and Gabriel Braun. Using small scale au-
tomation to improve both accessibility and readability of formal proofs in geometry. In
Francisco Botana and Pedro Quaresma, editors, Preliminary Proceedings of the 10th In-
ternational Workshop on Automated Deduction in Geometry (ADG 2014), 9-11 July 2014,
University of Coimbra, Portugal, pages 1–19, Coimbra, Portugal, July 2014.

12. Gabriel Braun and Julien Narboux. From Tarski to Hilbert. In Tetsuo Ida and Jacques
Fleuriot, editors, Post-proceedings of Automated Deduction in Geometry 2012, volume 7993
of LNCS, pages 89–109, Edinburgh, United Kingdom, September 2012. Springer.

13. Gabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geom-
etry. Journal of Automated Reasoning, 2015. accepted, revision pending.

14. Christophe Dehlinger, Jean-François Dufourd, and Pascal Schreck. Higher-Order Intuition-
istic Formalization and Proofs in Hilbert’s Elementary Geometry. In Automated Deduction
in Geometry, volume 2061 of Lecture Notes in Computer Science, pages 306–324. Springer,
2001.

15. Haragauri Narayan Gupta. Contributions to the axiomatic foundations of geometry. PhD
thesis, University of California, Berkley, 1965.

16. Robin Hartshorne. Geometry : Euclid and beyond. Undergraduate texts in mathematics.
Springer, 2000.

17. David Hilbert. Foundations of Geometry (Grundlagen der Geometrie). Open Court, La
Salle, Illinois, 1960. Second English edition, translated from the tenth German edition by
Leo Unger. Original publication date, 1899.

18. David Hilbert. Les fondements de la géométrie. Dunod, Paris, jacques gabay edition, 1971.
Edition critique avec introduction et compléments préparée par Paul Rossier.

19. Timothy James McKenzie Makarios. A Mechanical Verification of the Independence of
Tarski’s Euclidean Axiom. PhD thesis, Victoria University of Wellington, 2012. Master
Thesis.

20. Laura Meikle and Jacques Fleuriot. Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In
Theorem Proving in Higher Order Logics, volume 2758 of Lecture Notes in Computer Sci-
ence, pages 319–334. Springer, 2003.

21. Richard S Millman and George D Parker. Geometry, A Metric Approach with Models.
Springer Science & Business Media, 1991.

22. E.E. Moise. Elementary Geometry from an Advanced Standpoint. Addison-Wesley, 1990.

96 Gabriel Braun, Pierre Boutry, and Julien Narboux

23. Julien Narboux. Mechanical Theorem Proving in Tarski’s Geometry. In Francisco Botana
Eugenio Roanes Lozano, editor, Post-proceedings of Automated Deduction in Geometry
2006, volume 4869 of Lecture Notes in Computer Science, pages 139–156, Pontevedra,
Spain, 2008. Springer.

24. Moritz Pasch. Vorlesungen über neuere Geometrie. Springer, 1976.
25. William Richter. Formalizing Rigorous Hilbert Axiomatic Geometry Proofs in the Proof

Assistant Hol Light.
26. Artur Rosenthal. Vereinfachungen des Hilbertschen Systems der Kongruenzaxiome. Math-

ematische Annalen, 71(2):257–274, June 1911.
27. Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski. Metamathematische Methoden

in der Geometrie. Springer-Verlag, Berlin, 1983.
28. Phil Scott. Mechanising Hilbert’s Foundations of Geometry in Isabelle. Master thesis, Ed-

inburgh, 2008.
29. Phil Scott and Jacques Fleuriot. Compass-free Navigation of Mazes. In James H. Daven-

port and Fadoua Ghourabi, editors, SCSS 2016. 7th International Symposium on Symbolic
Computation in Software Science, volume 39 of EPiC Series in Computing, pages 143–155.
EasyChair, 2016.

30. Phil Scott and Jacques D. Fleuriot. An Investigation of Hilbert’s Implicit Reasoning through
Proof Discovery in Idle-Time. In Automated Deduction in Geometry - 8th International
Workshop, ADG 2010, Munich, Germany, July 22-24, 2010, Revised Selected Papers, pages
182–200, 2010.

31. Phil Scott and Jacques D. Fleuriot. A Combinator Language for Theorem Discovery. In Intel-
ligent Computer Mathematics - 11th International Conference, AISC 2012, 19th Symposium,
Calculemus 2012, 5th International Workshop, DML 2012, 11th International Conference,
MKM 2012, Systems and Projects, Held as Part of CICM 2012, Bremen, Germany, July 8-13,
2012. Proceedings, pages 371–385, 2012.

32. Alfred Tarski and Steven Givant. Tarski’s System of Geometry. The bulletin of Symbolic
Logic, 5(2):175–214, June 1999.

Mass points, Bézier Curves and Conics: a Survey

Lionel Garnier1 and Jean-Paul Bécar2

1 LE2I, UMR CNRS 6306, University of Burgundy, 21000 Dijon, France
2 LAMAV-CGAO, CNRS 2956, Le Mont-Houy, 59313 Valenciennes cedex 9

Abstract. It is well known that rational quadratic Bézier curves define
conics. The use of massic points permits one to define a semi-conic in
the Euclidean plane. Moreover, from a given quadratic Bézier curve, we
determine the properties of the underlying conic using only one theorem
which leads to a very simple program.

Keywords: Massic points; rational quadratic Bézier curves; invarients of conics

1 Introduction

In the computer aided domain, the use of rational Bezier curves play an impor-
tant role for geometric modelling. Among these curves, the second order curves
define a conic arc (see [1–4]). Such a curve is considered as the set of barycentres
of weighted points. However, some problems occur for the representation of non
bounded parabolic or hyperbolic arcs. One answer is the use of weighted points
and vectors in the same space (see [5]). In that space, vectors get a null weight.
Thus Bezier curves can be generalised. In the second order rational curves, by
the use of some homographic parameter changes, all features of conics such as
focus and directrix can be determined (see [4]).

Our method offers a new approach of others method developed by G. Albrecht
(see [6]), R. Goldman and W. Wang (see [7]), E. Lee (see [8]), J. Sánchez-Reyes
(see [9]). Using one of these methods, the construction of a Bézier curve is not
possible in a non-Euclidean space. Some other examples of these models, in the
space of spheres, can be found in [10–12].

Moreover, some researchers use homogeneous coordinates to model a semi-
circle (see [13–15]), but A. Piegl noticed (see [14]) that: ”A point in projec-
tive space is what mathematicians call an equivalence class. This means that−→
Pj (xj , yj , zj , 0) and

−→
Pj

∗ (αxj , αyj , αzj , 0) are two representations of the same

point in projective space. However, substituting
−→
Pj and

−→
Pj

∗ into Eq (7.34)
(see [14]) clearly results in two different curves.” We can choose a vector us-
ing perpendicular conditions and pseudo-metric conditions to determine a Bézier
curve which models a given conic seen as a circle (for an adequate non-degenerate
indefinite quadratic form) (see [11]). Some applications of the representations,
on the space of spheres, of Dupin cyclides using rational quadratic Bézier curves
with mass points can be found in (see [16–19]). In this space, the use of the
homogeneous coordinates are not possible.

98 Lionel Garnier and Jean-Paul Bécar

This paper is organised as follows: Section 2 presents the mass points and
rational quadratic Bézier curves where their control points are mass points. In
section 3, we determine the elements of a conic defined by a rational quadratic
Bézier curve in the Euclidean plane. The last section draws some conclusions.

In this paper, (O;−→ı0 ;−→0) designates the initial direct reference frame in the

usual Euclidean affine plane P. Let
−→P be the set of the vector plane.

2 About mass points

Let I be a finite subset of N. Consider a family (Ai;ωi)i∈I of weighted points in
the affine plane satisfy ∑

i∈I

ωi 6= 0

The centre of mass (or barycentre) G of the weighted points (Ai;ωi)i∈I is
the unique point in P defined by

∑

i∈I

ωi
−−→
GAi =

−→
0 (1)

A mass point is a couple (M,m) such that: if m is equal to 0,
−→
M is a vector

belonging to the vector plane
−→P otherwise M is a point belonging to the affine

plane P. So, a mass point is a weighted point or a vector. J.C. Fiorot (see [5, 20,
21]) defined the set of mass points as

P̃ = (P × R∗) ∪
(−→P ×

{−→
0
})

What is the barycentre of weighted points when the sum of the weights

vanishes? It is well known that this sum is a vector in the vector plane
−→P and

for example:

(A;B) ∈ P ⇒ bar {(A;−1) ; (B; 1)} is:
−−→
AB ∈ −→P

where bar {(M ;ω) ; (N ;µ)} designates the barycentre of the weighted points
(M ;ω) and (N ;µ). Moreover, if (Ai, ωi)i∈I is a family of weighted points with∑

i∈I ωi = 0, then we cannot define the barycentre of this family, but we obtain
the vector −→u =

∑

i∈I

ωi
−−−→
MAi

for any point M in P (the vector −→u does not depend on the point M).

To construct a vector space, we have to define some operations in P̃ using
analytical geometric methods and then the addition, noted⊕, is defined as follow:

• ω 6= 0 =⇒ (M ;ω)⊕ (N ;−ω) =
(
ω
−−→
NM ; 0

)
;

Mass points, Bézier Curves and Conics: a Survey 99

• if we have ωµ (ω + µ) 6= 0, then

(M ;ω)⊕ (N ;µ) =

(
bar

{
(M ;ω) ; (N ;µ)

}
;ω + µ

)

• (−→u ; 0)⊕ (−→v ; 0) = (−→u +−→v ; 0);

• ω 6= 0 =⇒ (M ;ω)⊕ (−→u ; 0) =
(
T 1

ω
−→u (M) ;ω

)
where T−→w is the translation of

P of vector −→w .

In the same way, on the space P̃, we define the multiplication by a scalar,
noted ⊙, as follow:

• α 6= 0 =⇒ α⊙ (M ;ω) = (M ;αω)

• ω 6= 0 =⇒ 0⊙ (M ;ω) =
(−→
0 ; 0

)

• α⊙ (−→u ; 0) = (α−→u ; 0)

Let G2 be the midpoint of the segment [MN]. We have

(M ; 1)⊕ (N ; 1) = (M ; 2)⊕ (M ;−1)⊕ (N ; 1)

= (M ; 2)⊕
(−−→
MN ; 0

)

=
(
T 1

2

−−→
MN

(M) ; 2
)
= (G2; 2)

and we generalise the associativity of the barycentre to the set of vectors.
Notice that we do not use homogeneous coordinates, we do not use quotient

space and we can define any metric or pseudo-metric on
−→P (see [16, 19]). The

notion of barycentre is lost using homogeneous coordinates. For more details on
this space, the reader can refer to books of Fiorot and Jeannin (see [5, 20]).

2.1 Rational quadratic Bézier curves in P̃
Let us recall the definition of the quadratic Bernstein polynomials

B0 (t) = (1− t)
2
, B1 (t) = 2t (1− t) , B2 (t) = t2 , t ∈ [0, 1] (2)

Now, we can define a rational quadratic Bézier curve having three control
mass points (P0;ω0), (P1;ω1) and (P2;ω2), Definition 1.

Definition 1 : Rational quadratic Bézier curve (BR curve) in P̃
Let ω0, ω1 and ω2 be three real numbers. Let (P0;ω0), (P1;ω1) and (P2;ω2)

be three mass points in P̃, these points are not colinear.
Define two sets I = {i|ωi 6= 0} and J = {i|ωi = 0}
Define the function ωf from [0; 1] to R as follows

ωf (t) =
∑

i∈I

ωi ×Bi (t) (3)

A mass point (M ;ω) or (−→u ; 0) belongs to the quadratic Bézier curve defined
by the three control mass points (P0;ω0), (P1;ω1) and (P2;ω2), if there is a real
t0 in [0; 1] such that:

100 Lionel Garnier and Jean-Paul Bécar

• if ωf (t0) 6= 0 then we have

−−→
OM =

1

ωf (t0)

(∑

i∈I

ωiBi (t0)
−−→
OPi

)
+

1

ωf (t0)

(∑

i∈J

Bi (t0)
−→
Pi

)
(4)

• if ωf (t0) = 0 then we have

−→u =
∑

i∈I

ωiBi (t0)
−−→
OPi +

∑

i∈J

Bi (t0)
−→
Pi (5)

To simplify the rest of this paper, we introduce:

Notation 1 :
The notation BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)} designates a BR curve with

the following mass points of control (P0;ω0), (P1;ω1) and (P2;ω2).
The notation BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)} designates the proper conic

containing the curve BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)}.

2.2 Some properties

If J = ∅, we do not modify the Bézier curve if we multiply all the weights by a
non-zero real. What happens when the control points are weighted points and/or
vectors? We can state:

Lemma 1 Let (P0;ω0), (P1;ω1) and (P2;ω2) be three mass points P̃.

Let λ be a non-zero real. If
∑

i∈I

ωiBi (t0) is not equal to 0, we have

BR

{
(Pi;ωi)i∈I ;

(−→
Pj ; 0

)
j∈J

}
= BR

{
(Pi;λωi)i∈I ;

(
λ
−→
Pj ; 0

)
j∈J

}
(6)

Proof: left to the reader. �
If J = ∅, the reduced discriminant of the denominator3, Formula (3), is

∆′ = ω2
1 − ω2ω0 (7)

and we can state the following fundamental result:

⋆ if ω2
1 −ω2ω0 = 0 then the denominator has one and only one root, the curve

is a parabolic arc;
⋆ if ω2

1 −ω2ω0 > 0 then the denominator has two distinct roots, the curve is a
hyperbolic arc;

⋆ if ω2
1 − ω2ω0 < 0 then the denominator does not vanish, the curve is an

elliptical arc.

3 Formula (3) is the denominator in the definition of the BR curve.

Mass points, Bézier Curves and Conics: a Survey 101

We can note that we obtain the same result if J 6= ∅, see the proposition
5.1.6 of (see [5]).

We can note w.l.o.g. (see Lemma 1), one of the weights can be equal to 1.
If ω0 is not equal to 0, we choose ω0 = 1, else, we choose ω1 = 1, and we can
characterise the type of the conic from the mass points of the BR curve, see
Table 1.

Conic Three weighted points Points and vectors

Parabola (P0; 1), (P1;ω)
(
P2;ω

2
)

(P0; 1),
(−→
P1; 0

) (−→
P2; 0

)

Ellipse (P0; 1), (P1;ω1), (P2;ω2), ω2 > ω2
1 (P0; 1),

(−→
P1; 0

)
(P2; 1)

Hyperbola (P0; 1), (P1;ω1) (P2;ω2), ω2 < ω2
1 (P0; 1),

(−→
P1; 0

)
(P2;−1)

(−→
P0; 0

)
, (P1; 1) and

(−→
P2; 0

)

Table 1. Types of conics defined by Bézier curves with control mass points, see Fig-
ure 1.

3 New conic parameters determination

In this section, we compute the new control mass points from the previous control
mass points and a homographic function h : we compute mass points to obtain
a representation of the semi-conic using a Bézier curve, see Figure 1.

3.1 Homographic function

Theorem 1
Let (P0;ω0), (P1;ω1) and (P2;ω2) be three mass points.
Let a, b, c and d be four reals and h be the homographic function defined by

h : R −→ R

u 7−→ a (1− u) + bu

c (1− u) + du

with

∣∣∣∣
a b
c d

∣∣∣∣ 6= 0 (8)

102 Lionel Garnier and Jean-Paul Bécar

Fig. 1. Standard representation of a semi-conic using a BR curve with three control
mass points.

Let (Q0;̟0), (Q1;̟1) and (Q2;̟2) be the mass points defined as follow





(Q0;̟0) = (c− a)
2 ⊙ (P0;ω0)⊕ 2a (c− a)⊙ (P1;ω1)

⊕ a2 ⊙ (P2;ω2)

(Q1;̟1) = (c− a) (d− b)⊙ (P0;ω0)

⊕ (bc− 2ab+ ad)⊙ (P1;ω1)

⊕ ab⊙ (P2;ω2)

(Q2;̟2) = (d− b)
2 ⊙ (P0;ω0)⊕ 2b (d− b)⊙ (P1;ω1)

⊕ b2 ⊙ (P2;ω2)

(9)

Let γP be the map of BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)}. Let γQ be the map of
BR {(Q0;̟0) ; (Q1;̟1) ; (Q2;̟2)}. Then γQ = γP ◦ h and

BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)} = BR {(Q0;̟0) ; (Q1;̟1) ; (Q2;̟2)} (10)

Proof: see [4]. �
In the rest of this paper, we will just write the result using Formula (9) but

the reader keeps in mind that γQ = γP ◦ h and that Formula (10) is always true.

Mass points, Bézier Curves and Conics: a Survey 103

We note, using Theorem 10 with a = 0, c =
1√
ω0

and d = b =
1√
ω2

, that

only the weights of P0 and P2 change. Moreover, if ω0 and ω2 are two positive
real numbers, if ω1 6= 0, we have

BR {(P0;ω0) ; (P1;ω1) ; (P2;ω2)} = BR

{
(P0; 1) ;

(
P1;

ω1√
ω0ω2

)
; (P2; 1)

}
(11)

else, (if ω1 = 0), we have

BR
{
(P0;ω0) ;

(−→
P1; 0

)
; (P2;ω2)

}
= BR

{
(P0; 1) ;

(
1√
ω0ω2

−→
P1; 0

)
; (P2; 1)

}
(12)

Thus we generalise to vectors the formulae given by Farin (see [22]). In the rest
of this paper, if the first control point is a weighted point, we take ω0 = 1.

3.2 The parabola case

From Formula (7), the BR {(P0; 1) ; (P1;ω1) ; (P2;ω2)} is a parabola iff we have

ω2 = ω2
1

Theorem 2
Let (P0; 1), (P1;ω) and

(
P2;ω

2
)
be three control weighted points of a BR

curve. We distinguish two cases.

1. If ω = 1. Let h be defined by h (u) =
u

1− u
.

Then, the point (P0; 1) is unchanged and we obtain





(−→
U1; 0

)
=

(−−−→
P0P1; 0

)

(−→
U2; 0

)
=
(−−−→
P1P0 +

−−−→
P1P2; 0

) (13)

2. If ω /∈ {0; 1}. Let h be defined by h (u) =
u

1− ω
.

Then, the point (P0; 1) is unchanged and we obtain





(−→
U1; 0

)
=

(
ω

1− ω

−−−→
P0P1; 0

)

(−→
U2; 0

)
=

((
ω

1− ω

)2 (−−−→
P1P0 +

−−−→
P1P2

)
; 0

) (14)

Proof: This proof is obtained using Theorem 10 with a = 0, b = 1, c = 1 and
d = 0 for the first case and a = 0, b = 1

1−ω , c = 1 and d = 1 for the second case.
�

104 Lionel Garnier and Jean-Paul Bécar

In Theorem 2, if t0 belongs to [0, 1[, the mass point of the BR curve is a
weighted point (M,B0 (t0)) defined by

−−→
OM =

1

B0 (t0)

(
B0 (t0)

−−→
OP0 +B1 (t0)

−→
U1 +B2 (t0)

−→
U2

)
(15)

whereas, for t0 = 1, the mass point of the BR curve is the vector
(−→
U2; 0

)
.

Figures 2 show the effect of Theorem 2 with (P0; 1) = ((0.; 6) ; 1), (P1;ω) =
((−13.; 0) ; 1) and

(
P2;ω

2
)
= ((−1;−1) ; 1).

(a) (b)

Fig. 2. Illustration of Theorem 2 with ω = 1. (a): the initial BR curve with three
control weighted points. (b): the new BR curve with three control mass points (one
weighted point and two vectors).

The second step of this work is done using the following theorem.

Theorem 3 Let (P0; 1),
(−→
U1; 0

)
and

(−→
U2; 0

)
be three control mass points of a

BR curve such that −→
U1 •

−→
U2 6= 0

Let h be defined by

h (u) =
ru

(1− u) + ru
with r =

1
∥∥∥−→U2

∥∥∥
2

−→
U1 •

−→
U2 (16)

Then, the point (P0; 1) is unchanged and we obtain





(−→
V1; 0

)
=
(
r
−→
U1; 0

)

(−→
V2; 0

)
=
(
r2
−→
U2; 0

) (17)

Proof: This proof is obtained using Theorem 10 with a = 0, d = b = r and
c = 1. �

Figure 3 shows an application of Theorem 3 with (P0; 1) = ((0.; 6) ; 1),
(P1; 1) = ((−13.; 0) ; 1) and (P2; 1) = ((−1;−1) ; 1).

Now we can state:

Mass points, Bézier Curves and Conics: a Survey 105

Fig. 3. Illustration of Theorem 3 with ω = 1.

Theorem 4 Let (P0; 1),
(−→
V1; 0

)
and

(−→
V2; 0

)
be three control mass points of a

BR curve such that −→
V1 •

−→
V2 6= 0

Let h be defined by h (u) =
− (1− u) + u

u
.

Then, the point (P0; 1) is unchanged and we obtain





(Q0; 1) =
(
T−→
V2−2

−→
V1

(P0) ; 1
)

(−→
W1; 0

)
=

(−→
V1 −

−→
V2; 0

) (18)

Proof: This proof is obtained using Theorem 1 with a = −1, b = d = 1 and
c = 0. �

Figure 4 gives an illustration of Theorem 4 with (P0; 1) = ((0.; 6) ; 1), (P1; 1) =
((−13.; 0) ; 1) and (P2; 1) = ((−1;−1) ; 1).

Fig. 4. Illustration of Theorem 4 with ω = 1.

We can state a fundamental remark. The vectors defined in Formula (18)
verify −→

W1 •
−→
V2 = 0 (19)

Now we can determine the parabola invariants.

106 Lionel Garnier and Jean-Paul Bécar

Theorem 5 :
Let ω ∈ R∗. Let (P0; 1), (P1;ω) and

(
P2;ω

2
)
be three control mass points of a

BR curve. Let BR
{
(Q0; 1) ;

(−→
W1; 0

)
;
(−→
V2; 0

)}
, be the BR curve obtained using

Theorems 2, 3 and 4.
Then, BR {(P0; 1) ; (P1;ω) ; (P2;ω2)} is a parabola P, its vertex is Q0, its

equation is

Y =

∥∥∥−→V2

∥∥∥
2

4
∥∥∥−→W1

∥∥∥
X2

in the orthonormal reference frame


Q0;

1∥∥∥−→W1

∥∥∥
−→
W1;

1∥∥∥−→V2

∥∥∥
−→
V2


.

Proof: see [4]. �
The vector

−→
W1 is tangent to the parabola at Q0 whereas the focal axis is

defined by Q0 and
−→
V2.

Figure 5 shows two arcs of the same parabola: BR{(P0; 1) , (P1; 1) , (P2; 1)}
on one hand and BR{(Q0; 1) ,

(−→
W1; 0

)
,
(−→
V2; 0

)
} on the other hand. This curve

offers the computation of the elements of the parabola using Theorem 5.

1

2

3

4

5

6

−1
−1−2−3−4−5−6−7−8−9−10−11−12−13−14
b

b

b

rr
Q0

P2

P1

P0

F

−→
V2

−→
W1

Fig. 5. Two arcs of the same parabola defined with two BR curves with control mass

points (P0; 1), (P1; 1) and (P2; 1) (in orange) on one hand (Q0; 1),
(−→
W1; 0

)
and

(−→
V2; 0

)

(in black) on the other hand. The first mass point is the weighted point (Q0; 1) whereas

the last mass point is the vector
(−→
V2; 0

)
.

Mass points, Bézier Curves and Conics: a Survey 107

3.3 The ellipse case

In this section, the weights satisfy the condition ω2
1 − ω2ω0 < 0 and w.l.o.g.,

we can suppose ω0 = 1 and ω2 > 0. Moreover, using Theorem 10 with a = 0,
b = d = −1 and c = 1, we can suppose ω1 ≥ 0. In fact, using the multiplication
of a mass point by a scalar, we transform the mass point (P1;ω1) into the mass

point −1⊙ (P1;ω1). So a weighted point (P1;ω1) (resp. vector
(−→
P1; 0

)
) becomes

(P1;−ω1) (resp. vector
(
−−→
P1; 0

)
). Now we can begin the change of the control

mass points and we can state:

Theorem 6 Let (P0; 1), (P1;ω1), ω2 > ω2
1 6= 0, and (P2;ω2) be three control

weighted points of a BR curve. Let h be defined by

h (u) =
ru

(1− u) + (1 + r)u
with r = − 1

ω1
(20)

Then, the point (P0; 1) is unchanged and we obtain




(−→
U1; 0

)
=
(−−−→
P1P0; 0

)

(P3;̟3) =

(
bar

{
(P0; 1) ; (P1;−2)

(
P2;

ω2

ω2
1

)}
;−1 +

ω2

ω2
1

)
(21)

Proof: This proof is obtained using Theorem 1 with a = 0, b = r, c = 1 and
d = 1 + r. �

We note that the last weight is positive and the midpoint O0 of [P0P3] is the
centre of the ellipse.

Figure 6 shows the effect of Theorem 6 with (P0; 1) = ((0.; 6) ; 1), (P1; 1) =(
(−13.; 0) ; 1

2

)
and (P2; 1) = ((−1;−1) ; 1) (the curve is in green). The inter-

mediate weighted point is transformed into a vector, the last weighted point is
modified into another weighted point. The obtained curve is in red.

Fig. 6. Illustration of Theorem 6.

The next theorem offers the weights of the weighted points to be equal to 1.

108 Lionel Garnier and Jean-Paul Bécar

Theorem 7 :
Consider BR

{
(P0; 1) ;

(−→
U1; 0

)
; (P3;̟3)

}
obtained using Theorem 6.

Let h be defined by h (u) =
u√

ω3 (1− u) + u
.

Then, the point (P0; 1) is unchanged, the weight of P3 becomes 1 and we
obtain −→

V1 =
1√
ω3

−→
U1 (22)

Proof We use Theorem 10 with a = 0, d = b = 1 and c =
√
ω3, and then we

use Formula (6) with λ = 1
ω3

.�
Figure 7 shows the effect of Theorem 7 with (P0; 1) = ((0.; 6) ; 1), (P1; 1) =(

(−13.; 0) ; 1
2

)
and (P3; 1) = ((−1;−1) ; 1).

Fig. 7. Illustration of Theorem 7.

Let k1 and k2 be the reals defined by





k1 =
−−−→
P0P3 •

−→
V1

k2 =
−→
V1

2 − 1

4
P0P

2
3

(23)

If k1 = 0 and k2 = 0 then the BR
{
(P0; 1) ;

(−→
V1; 0

)
; (P3; 1)

}
is a circular arc,

see [4]. In the rest of this section, we do not consider this case. The following
theorem permits us to model a semi-ellipse.

Theorem 8 Let (P0; 1),
(−→
V1; 0

)
and (P3; 1) be the control mass points of a

Bézier curve, obtained using Theorem 7.

If k2 = 0, we take θ = π
8 , else we take θ =

1

4
arctan

(
k1
k2

)
.

Mass points, Bézier Curves and Conics: a Survey 109

We define two points P4 and P5 as follow




P4 = bar

{(
P0; cos

2 (θ)
)
;
(
P3; sin

2 (θ)
)}

P5 = bar
{(

P3; cos
2 (θ)

)
;
(
P0; sin

2 (θ)
)}

Let h be defined by

h (u) =
sin (θ) (1− u) + cos (θ)u

(cos (θ) + sin (θ)) (1− u) + (cos (θ)− sin (θ))u
(24)

Then, we obtain




(Q0; 1) =
(
T
sin(2θ)

−→
V1

(P4) ; 1
)

(−→
W1; 0

)
=

(
sin (2θ)

2

−−−→
P0P3 + cos (2θ)

−→
V1; 0

)

(Q2; 1) =
(
T− sin(2θ)

−→
V1

(P5) ; 1
)

(25)

Proof: The reader can use Theorem 1 with a = sin (θ), b = cos (θ), c = a+ b
and d = b− a. �

We note that the mass point defined by Formula (25) verify

−−−→
Q0Q2 •

−→
W1 = 0

and now we can determine the invariants of the ellipse and we can state:

Theorem 9 Invariants of the ellipse BR
{
(Q0; 1) ;

(−→
W1; 0

)
; (Q2; 1)

}

Let us consider the BR
{
(Q0; 1) ;

(−→
W1; 0

)
; (Q2; 1)

}
obtained, using Theorems

6, 7 and 8, from BR {(P0; 1) ; (P1;ω1) ; (P2;ω2)} with
−−−→
Q0Q2 •

−→
W1 = 0.

We distinguish two cases.

• −→
W1

2 − 1

4
Q0Q

2
2 < 0, we take

−→ı =
1

a

1

2

−−−→
Q0Q2 with a =

∥∥∥∥
1

2

−−−→
Q0Q2

∥∥∥∥

−→ =
1

b

−→
W1 with b =

∥∥∥−→W1

∥∥∥

• −→
W1

2 − 1

4
Q0Q

2
2 > 0, we take

−→ı =
1

a

−→
W1 with a =

∥∥∥−→W1

∥∥∥

−→ =
1

b

1

2

−−−→
Q0Q2 with b =

∥∥∥∥
1

2

−−−→
Q0Q2

∥∥∥∥

Let O0 be the midpoint of the segment [Q0Q2]. In the orthonormal reference

frame (O0;
−→ı ;−→), the equation of the ellipse BR

{
(Q0; 1) ;

(−→
W1; 0

)
; (Q2; 1)

}
is

x2

a2
+

y2

b2
= 1

110 Lionel Garnier and Jean-Paul Bécar

Proof: see [4]. �
Figure 8 shows two arcs of the same ellipse defined by two BR curves of

control mass points (P0; 1),
(
P1;

1
2

)
and (P2; 1) on one hand (Q0; 1),

(−→
W1; 0

)
and

(Q2; 1) on the other hand. This last curve permits us to compute the invariants
of the ellipse using Theorem 9. The points Q0 and Q2 are two vertices on one of
the two axis (the focal axis or the non-focal axis).

r

r

rb

b

b

O0

−→ı−→

−→
W1

P2

P1

P0

Q0 = B

Q2 = B′

Fig. 8. Two arcs of an ellipse. From a BR curve of control weighted points (P0; 1),(
P1;

1
2

)
and (P2; 1), we obtain a semi-ellipse defined by the BR curve of control mass

points (Q0; 1),
(−→
W1; 0

)
and (Q2; 1).

3.4 The hyperbola case

In this section, we take ω0 = 1 and then we have the following condition

ω2
1 − ω2 > 0

During the first step, we change the weighted points (P0; 1) and (P2;ω2) into
vectors having the directions of the asymptotes of the hyperbola. The denomi-
nator of BR {(P0; 1) ; (P1;ω1) ; (P2;ω2)} is

B0 (t) + ω1B1 (t) + ω2B2 (t) = (1− 2ω1 + ω2) t
2 + 2 (ω1 − 1) t+ 1 (26)

and we have two cases.

• If 1−2ω1+ω2 6= 0 then the degree of the denominator equals 2 and we have
two roots t1 and t2 which define two vectors;

• If 1 − 2ω1 + ω2 = 0 then the degree of the denominator equals 1 then we
have one root t1 which defines a vector. The second vector is obtained as
the barycentre of (P0; 1), (P1;−2ω1) and (P2;ω2) (the sum of the weights is
equal to 0).

Mass points, Bézier Curves and Conics: a Survey 111

Theorem 10 Let (P0; 1), (P1;ω1) and (P2;ω2) be three control weighted points
of a BR curve. We have two cases.

• If 1− 2ω1+ω2 6= 0, the equation given in Formula (26) has two roots t1 and
t2 defined by

t1 =
1− ω1 +

√
ω2
1 − ω2

1− 2ω1 + ω2
, t2 =

1− ω1 −
√
ω2
1 − ω2

1− 2ω1 + ω2

Let h be defined by h (u) = t1 (1− u) + t2u. Then





−→
U0 = B0 (t1)

−−→
ΩP0 + ω1B1 (t1)

−−→
ΩP1 + ω2B2 (t1)

−−→
ΩP2

(Q1;̟1) =

(
bar {(P0;α0) ; (P1;α1) ; (P2;α2)} ;

2
(
ω2 − ω2

1

)

(1− 2ω1 + ω2)

)

−→
U2 = B0 (t2)

−−→
ΩP0 + ω1B1 (t2)

−−→
ΩP1 + ω2B2 (t2)

−−→
ΩP2

(27)

with

(α0, α1, α2) = ((1− t1) (1− t2) , ω1 (t2 − 2t1t2 + t1) , t1t2ω2)

• If 1− 2ω1 + ω2 = 0, the root of the equation given in Formula (26) is

t0 =
1

2 (1− ω1)

Let h be defined by h (u) =
t0 (1− u) + u

(1− u)
. Then





−→
U0 = B0 (t0)

−−→
ΩP0 + ω1B1 (t0)

−−→
ΩP1 + ω2B2 (t0)

−−→
ΩP2

(Q1;̟1) = (bar {(P0;α0) ; (P1;α1) ; (P2;α2)} ;ω1 − 1)

−→
U2 =

−−→
ΩP0 − 2ω1

−−→
ΩP1 + ω2

−−→
ΩP2

(28)

with
(α0, α1, α2) = t0 − 1, ω1 (1− 2t0) , t0ω2

Proof: This proof is obtained using Theorem 10 with a = t1, b = t2, c = 1
and d = 1 for the first case and a = t0, b = c = 1 and d = 0 for the second case.
�

Figure 9 shows the effect of the first case of Theorem 10 with (P0; 1) =((√
2; 1
)
; 1
)
, (P1;ω1) and (P2; 1) =

((
2;−

√
3
)
; 1
)
with

(P1;ω1) =

((√
2

2
−

√
3

3
; 1 +

(
1 +

√
3
)(

1−
√
2
))

;

√
2
√
3 + 4

√
2 + 2

2

)

112 Lionel Garnier and Jean-Paul Bécar

Fig. 9. Illustration of the first case of Theorem 10.

Let us define
−→
V0 = 1

̟1

−→
U0 and

−→
V2 = 1

̟1

−→
U2. The new control mass points of

the Bézier curve are
(−→
V0; 0

)
, (Q1; 1) and

(−→
V2; 0

)
. The centre of the hyperbola is

Q1, its weight is equal to 1. In the next theorem, we obtain two vectors having
the same norm.

Theorem 11 Let
(−→
V0; 0

)
, (Q1; 1) and

(−→
V2; 0

)
be the control mass points of a

BR curve obtained using previous theorems. Let h be defined by

h (u) =
ru

1

r
(1− u) + ru

with r =
4

√√√√√

∥∥∥−→V0

∥∥∥
∥∥∥−→V2

∥∥∥
(29)

Then 



(Q0;̟0) =
(−→
W0; 0

)
=
(
r4

−→
V0; 0

)

(Q2;̟0) =
(−→
W2; 0

)
=
(
r4

−→
V2; 0

) (30)

with the fundamental relation

∥∥∥−→W0

∥∥∥ =
∥∥∥−→W2

∥∥∥ (31)

Proof : From Theorem 10 with a = 0, d = b = r and c = 1
r . �

Figure 10 shows the effect of Theorem 11 from the example given in Figure 9.

The last step consists in computing the hyperbola invariants.

Mass points, Bézier Curves and Conics: a Survey 113

Fig. 10. Illustration of Theorem 11 from Figure 9.

Theorem 12 Invariants of a hyperbola

The curve BR
{(−→

W0; 0
)
; (Q1; 1) ;

(−→
W2; 0

)}
is obtained using Theorems 10 and 11.

Define

−→ı =
1

a

1

2

(−→
W0 +

−→
W2

)
with a =

∥∥∥−→W0 +
−→
W2

∥∥∥
2

(32)

and

−→ =
1

b

1

2

(−→
W0 −

−→
W2

)
with b =

∥∥∥−→W0 −
−→
W2

∥∥∥
2

(33)

Then BR
{(−→

W0; 0
)
; (Q1; 1) ;

(−→
W2; 0

)}
is the hyperbola of centre Q1, of equa-

tion

x× y =

∥∥∥−→W0

∥∥∥
2

4

in the orthonormal reference frame

(
Q1;

1∥∥∥−→W0

∥∥∥
−→
W0;

1∥∥∥−→W2

∥∥∥
−→
W2

)
, of equation

x2

a2
− y2

b2
= 1

in the orthonormal reference frame (Q1;
−→ı ;−→).

Proof: see [4]. �
We remark that the vertices A and A′ of the hyperbola satisfy

−−→
Q1A =

1

2

(−→
W0 +

−→
W2

)
= −

−−−→
Q1A

′ (34)

114 Lionel Garnier and Jean-Paul Bécar

Figure 11 shows two arcs of the same hyperbola. The first arc is modelled

by a BR curve, its control weighted points are (P0; 1),

(
P1;

√
2
√
3+4

√
2+2

2

)
and

(P2; 1), Figure 9. The second arc is a branch of the hyperbola, the control mass

points of the BR curve are
(−→
W0; 0

)
, (Q1; 1) and

(−→
W2; 0

)
. From this curve, using

Theorem 12, we can determine the elements of this hyperbola.

1

2

−1

−2

1 2−1
b

b

r

b

∆ ′

P1Q1

−→
W0

−→
W2

−→ı

P0

P2

−→

∆

Fig. 11. A connected arc of hyperbola mode led by a BR curve of control mass points

(P0; 1),

(
P1;

√
2
√
3+4

√
2+2

2

)
and (P2; 1), a BR curve of control mass points

(−→
W0; 0

)
,

(Q1; 1) and
(−→
W2; 0

)
which models a branch of the Hyperbola.

Mass points, Bézier Curves and Conics: a Survey 115

4 Conclusion

We have presented a survey of mass points: in the same space, we aggregate the
affine points and the vectors. Moreover, we can generalise the notion of barycen-
tre and its associativity to the vectors. We have modelled non-degenerate conics
using rational quadratic Bézier curves. In the Euclidean plane, starting with
these kinds of curves, we have computed the elements of these conics (parabola,
ellipse and hyperbola).

To complete this discussion, the reader may consult (see [23]) which gives a
modern application of conics in the context of curve approximations and (see [16,
24]) where the authors compute the characteristic circles of a Dupin cyclide
modelled in the space of spheres.

Acknowledgements

The authors warmly thank Prof R. Goldman from Rice University in Houston
for his review and his helpful comments.

References

1. Bézier, P.: Courbe et surface. 2ème edn. Volume 4. Hermès, Paris (1986)
2. Casteljau, P.D.: Mathématiques et CAO. Volume 2 : formes à pôles. Hermes (1985)
3. Garnier, L.: Mathématiques pour la modélisation géométrique, la représentation

3D et la synthèse d’images. Ellipses (2007) ISBN : 978-2-7298-3412-8.
4. Bécar, J.P.: Forme (BR) des coniques et de leurs faisceaux. PhD thesis, Université

de Valenciennes et de Hainaut-Cambrésis, LIMAV (1997)
5. Fiorot, J.C., Jeannin, P.: Courbes et surfaces rationnelles. Volume RMA 12. Mas-

son (1989)
6. Albrecht, G.: Mathematical methods for curves and surfaces. Vanderbilt Univer-

sity, Nashville, TN, USA (2001) 15–24
7. Goldman, R.N., Wang, W.: Using invariants to extract geometric characteristics

of conic sections from rational quadratic parameterizations. Int. J. Comput. Ge-
ometry Appl. 14 (2004) 161–187

8. Lee, E.: The rational Bézier representation for conics. In (ed.), G.F., ed.: In
Geometric Modeling, Algorithms and New Trends. SIAM, Philadelphia (1985) 3–
19

9. Sánchez-Reyes, J.: Characteristics of conic segments in Bézier form. In: Interna-
tional Conference on Innovative Methods in Product Design, Venise, Italy (2011)
231–234

10. Garnier, L., Druoton, L., Langevin, R.: Subdivisions itératives d’arcs d’ellipses
et d’hyperboles et application à la visualisation de cyclides de Dupin. Revue
Electronique Francophone d’Informatique Graphique 6 (2012) 1–36

11. AFIG, ed.: Inversions de coniques à centres vues comme des cercles, Université de
Limoges (2013)

12. Garnier, L., Druoton, L., Bécar, J.P.: Points massiques, espace des sphères et
”hyperbole”. In: G.T.M.G. 2015, Poitiers (2015) http://gtmg2015.conference.univ-
poitiers.fr/programme details.

116 Lionel Garnier and Jean-Paul Bécar

13. Versprille, K.J.: Computer-aided Design Applications of the Rational B-spline
Approximation Form. PhD thesis, Syracuse, NY, USA (1975) AAI7607690.

14. Piegl, L., Tiller, W.: The NURBS book. Monographs in visual communication.
Springer (1995)

15. Farin, G.: From conics to nurbs: A tutorial and survey. IEEE Comput. Graph.
Appl. 12 (1992) 78–86

16. Druoton, L., Garnier, L., Langevin, R.: Iterative construction of Dupin cy-
clide characteristic circles using non-stationary Iterated Function Systems (IFS).
Computer-Aided Design 45 (2013) 568–573 Solid and Physical Modeling 2012,
Dijon.

17. Garnier, L., Bécar, J.P., Druoton, L.: Subdivisions de courbes de
Bézier quadratiques, Lyon, France, Université de Lyon, LIRIS (2015)
http://liris.cnrs.fr/afig2015/?page id=939#sthash.IbJxJhLu.dpuf.

18. Garnier, L., Bécar, J.P., Morin, G., Fuchs, L.: Une application de l’espace des
sphres : détermination des sphères de Dandelin, Lyon, France, Université de Lyon,
LIRIS (2015) http://liris.cnrs.fr/afig2015/?page id=939#sthash.IbJxJhLu.dpuf.

19. Garnier, L., Bécar, J.P., Druoton, L.: Surfaces canal et courbes de bézier ra-
tionnelles quadratiques, Dijon, France, Université de Bourgogne, Le2i (2016)

20. Fiorot, J.C., Jeannin, P.: Courbes splines rationnelles, applications à la CAO.
Volume RMA 24. Masson (1992)

21. Goldman, R.: On the algebraic and geometric foundations of computer graphics.
ACM Trans. Graph. 21 (2002) 52–86

22. Farin, G.: NURBS from Projective Geometry to Pratical Use. 2 edn. A K Peters,
Ltd (1999) ISBN 1-56881-084-9.

23. Albrecht, G., Bécar, J.P., Farin, G.E., Hansford, D.: On the approximation order
of tangent estimators. Computer Aided Geometric Design 25 (2008) 80–95

24. Garnier, L., Druoton, L.: Constructions, dans l’espace des sphères, de car-
reaux de cyclides de Dupin à bords circulaires. Revue Electronique Francophone
d’Informatique Graphique 7 (2013) 17–40

A New Formalization of Origami in Geometric
Algebra

Tetsuo Ida1, Jacques Fleuriot2, and Fadoua Ghourabi3

1 University of Tsukuba, Tsukuba, Japan.
ida@cs.tsukuba.ac.jp

2 University of Edinburgh, Edinburgh, U.K.
jdf@inf.ed.ac.uk

3 Ochanomizu University, Tokyo, Japan.
ghourabi.fadoua@ocha.ac.jp

Abstract. We present a new formalization of origami modeling and the-
orem proving using a geometric algebra. We formalize in Isabelle/HOL
a geometric algebra G3) to treat origamis in both 2D and 3D physical
space. We define G3 as a type class of Isabelle/HOL. The objects in G3

are multivectors. We prove that the co-datatype of a multivector is an
element instance of the type class G3. We prove by Isabelle/HOL a large
number of identities and equations that hold in G3. With G3 we then
reformulate Huzita’s elementary origami folds in equations of multivec-
tors. They are translated to the equations of the polynomial ring. By
solving the equations, we can construct origamis computationally, and
furthermore prove geometric properties of the constructed origami. We
show an example of trisecting an arbitrary angle by origami using G3.

1 Introduction

We show an application of a geometric algebra to computational origami. There
are several definitions of geometric algebra. We take the one expounded by
Hestenes [1]. We call for geometric algebra, as we are investigating the extension
of the computational origami system Eos [2] to deal with modeling and verifying
3D origamis more systematically. There are two main reasons for this.

Firstly, a uniform treatment of 3D and 2D models within the same system
is important to us since many origamis can be made in a single flat 2D plane,
whereas folding papers apparently involve the notion of superpositions of flat
planes. This mere fact shows the need for the concept of 3D. In other words,
modeling origami entirely in 3D destroys the simplicity of origami geometric
problems, whereas to model origamis entirely in 2D is too restrictive, as we are
mostly interested in the 3D shapes of origami as the result of construction.

Secondly, the algebraic and geometric structures used for computational pur-
poses are often boiled down to the collection of simple symbolic forms by the
translations via the Cartesian coordinate system. Whether the resulting ones
are polynomials or matrices, for example, the geometric meanings that origi-
nally pertain to geometric objects are often lost in the translation. Here, we

118 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

need adequate abstraction layers between the geometric language of our daily
use and the language for the computational purposes.

We organize the rest of the paper as follows. In Section 2, we present the
geometric algebra (to be abbreviated to GA, hereafter), but only as much as
is needed for the computational origami construction and verification, with the
use of new notations that facilitate the reading of identities involved. As we are
treating formulas of the GA in two computer languages, some deviation from
the usual mathematical notations, and complication in expressing the formulas
are inevitable. To simplify our explanation, we remove type information from
the GA formulas of this paper. From the outset of Section 2, we introduce the
notion of a multivector, i.e. the element of GA, together with its operations.
Then, we formalize the multivector and the operations on it using Isabelle/HOL.
In Section 3, we briefly introduce Huzita’s elementary fold operations since we
use them in origami geometry. In Section 4, we describe Huzita’s fold in GA.
In Section 5, we show a simple example to illustrate our method of geometric
theorem proving using GA. We give an example of trisecting an arbitrary angle
by origami. Although it is a typical 2D origami problem, indeed had been one of
the famous impossibility problems in classical Euclidean geometry, it can serve
as a non-trivial illustration of GA. In Section 6, we briefly discuss research works
in the past two decades whose methodology and goal we share, i.e. geometric
theorem proving. In Section 7, we summarize our results and point out the
directions for further research.

2 Geometric algebra

2.1 Objects and operations

We are going to define a geometric algebra G, following Hestenes’ definition[1]
with the application to origami in mind. In particular, we would like to describe
G3 as a formal system to reason about the geometric objects and their operations
on them in 2D and 3D physical spaces.

Elements of G3 are called multivectors. A multivector consists of the following
components: a real number (we also call it a scalar, to be consistent with the
usage in the linear algebra), a vector, a bivector, and a trivector. They are
sometimes written as 0-vector, 1-vector, 2-vector, and 3-vector, respectively. The
vectors and bivectors are three dimensional. A vector is a triplet of scalars,
generally written as (x1, x2, x3). We fix the basis of the 3D vector space to be
the set of the orthonormal vectors σ1, σ2, and σ3. By convention, they form a
right-handed set. In traditional 3D geometry, they correspond to the unit vectors
along x-axis, y-axis, and z-axis, respectively. The basis of the 3D bivector (linear)
space is the set of the orthonormal bivectors i1, i2, and i3. They are related to
σ1, σ2, and σ3 as i1 = σ2 ∗ σ3, i2 = σ3 ∗ σ1, and i3 = σ1 ∗ σ2. The multiplication
operator * is one of the operators of the geometric algebra and will be explained
in Sub-section 2.2 in conjunction with type mvec of multivectors. It is worth
mentioning, however, that unlike usual arithmetics, * is non-commutative. The
3D trivector space is a one-dimensional space. The basis of the 3D trivector

A New Formalization of Origami in Geometric Algebra 119

(linear) space is the set { ι }. The trivector ι is a unit trivector and is equal to
σ1∗σ2∗σ3. In summary, we will write a multivector x as a quadruple (λ, v, b, t),
where λ, v, b, and t are a scalar, a vector, a bivector and a trivector, respectively.
An i-vector of a multivector is said to be at grade i of the multivector. The i-
vector of x is denoted by 〈x〉i, or xi if the context guarantees the unambiguity.
We call a multivector x homogeneous if 〈x〉i = x for a single i such that 0 ≤ i ≤ 3.
Moreover, we call i-vector xi of such a homogeneous multivector x i-blade.

We can show that, by appropriately defining * and + on multivectors, the
set of multivectors together with addition operator + (with neutral element 0)
and multiplication operator * (with neutral element 1) form an algebra (unit)
ring, where the unit is the multiplicative neutral element 1. Furthermore, real
numbers and i-vectors (i = 1,2, 3) form a real linear spaces. We can see that the
quadratic form of the multivectors can be defined, and it provides the squared
magnitude of the multivectors. All these properties qualify our algebra G3 as a
commonly agreed geometric algebra.

For geometric reasoning, we define · and ∧, the operators for constructing
inner and outer products, respectively, as follows. For any r-blade ar and s-blade
bs, we define each inner and outer products as follows:

ar · bs = 〈ar ∗ bs〉|r−s|

ar ∧ bs =





〈ar ∗ bs〉r+s r + s ≤ 3

0 otherwise

Inner and outer products of G3 agree with the notions of inner and outer
products in the usual vector algebra and via the former, algebraic expressions
in G3 often lead to easier geometric interpretations. For instance, orthogonality
and parallelism of 1-vectors a and b are expressed as a · b = 0 and a ∧ b = 0,
respectively.

2.2 Formalization in Isabelle/HOL

We first define concrete data structures. We define a type mvec of a multivector
as a codatatype in Isabelle. We could have used a datatype but by defining this
notion coalgebraically, we can formalize the various multivector operations more
elegantly by considering their grades separately.

codatatype mvec =

Mvec (Scalar: real) (Vec: "real^3") (Bivec: "real^3") (Trivec: real)

We can then start to take advantage of Isabelle type classes [3] to show that
our concrete type mvec is an instance of various algebraic structures. We do so
by providing in each case suitable definitions for the class operations and proofs
of their properties as specified by the class. For instance, to start with, we easily
show that our multivectors form an abelian group under addition.

120 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

instantiation mvec :: ab_group_add

begin
primcorec zero_mvec where
"Scalar 0 = 0"

| "Vec 0 = 0"

| "Bivec 0 = 0"

| "Trivec 0 = 0"

primcorec plus_mvec where
"Scalar (x + y) = Scalar x + Scalar y"

| "Vec (x + y) = Vec x + Vec y"

| "Bivec (x + y) = Bivec x + Bivec y"

| "Trivec (x + y) = Trivec x + Trivec y"

primcorec uminus_mvec where
"Scalar (-x) = - Scalar x"

| "Vec (-x) = - Vec x"

| "Bivec (-x) = - Bivec x"

| "Trivec (-x) = - Trivec x"

primcorec minus_mvec where
"Scalar (x - y) = Scalar x - Scalar y"

| "Vec (x - y) = Vec x - Vec y"

| "Bivec (x - y) = Bivec x - Bivec y"

| "Trivec (x - y) = Trivec x - Trivec y"

instance
by intro_classes (simp_all add: mvec_eq_iff)

end

The use of a codatatype mvec enables us to use corecursion to define addition,
for instance, and nicely separate the results for its scalar, vector, bivector and
trivector parts.

We also define the geometric product and then show that multivectors form
a monoid. We only give below a brief extract of the formalization due to space
considerations. The proof scripts of the formalization of G3 are available at
http://www.i-eos.org:8080/ieos/OpenXchive.

instantiation mvec :: monoid_mult

begin

primcorec times_mvec where
"Scalar (x * y) = Scalar x * Scalar y + (Vec x · Vec y) -

(Bivec x · Bivec y) - Trivec x * Trivec y"

| "Vec (x * y) = ..."

| "Bivec (x * y) = ..."

| "Trivec (x * y) = ..."

end

A New Formalization of Origami in Geometric Algebra 121

The full definition of the geometric product for mvec is derived by using the
definitions of i1, i2, and i3, and the property that σ1, σ2, and σ3 are pairwise
anti-commute.

With multiplication defined, we show mvec is a multiplicative monoid.
To obtain an algebra, we define a scalar product (denoted by ∗R in Isabelle)

and show that it has the expected property by proving that mvec is an instance
of Isabelle’s algebra type class:

instantiation mvec :: real_algebra

begin

primcorec scaleR_mvec where
"Scalar (r *R x) = r * Scalar x"

| "Vec (r *R x) = r *R (Vec x)"

| "Bivec (r *R x) = r *R (Bivec x)"

| "Trivec (r *R x) = r * Trivec x"

instance
proof

fix a b :: real and x y :: mvec

show "a *R (x + y) = a *R x + a *R y"

by (simp add: mvec_eq_iff distrib_left scaleR_add_right)

show...

qed
end

We consider G3 now. Let us first recapitulate what we have done so far. We
assume that type scalar is synonymous to type real, and define datatypes vec,
bivec,trivec and mvec, which represent types 1-vector, bivector and multivec-
tor. In Isabelle/HOL syntax these are written as

type synonym scalar = real

type synonym vec = scalar^3

type synonym bivec = scalar^3

codatatype
mvec = Mvec (Scalar: scalar) (Vec: vec) (Bivec: bivec) (Trivec: trivec)

The symbols Mvec, Scalar, Vec, Bivec, and Trivec play a similar role of the
constructor symbols. For example, Mvec 0 (Vec 1 0 0) (Bivec 0 1 0) 1) is
an Isabelle object of type mvec. This object is translated to the term Mvec[0,

Vec[1, 0, 0], Bivec[0, 1, 0], Trivec[1]] of Mathematica.
Next we define G3 as a type class.

class g3= ring+ real_algebra + one+

fixes quad_form:: "’a ⇒ bool"

After defining functions that operate on the terms of the defined (co)datatypes
and lemmas that will be necessary for proving mvec is a type in G3, we complete
the instantiation proof by issuing

122 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

instantiation mvec::g3

The identities relating objects of types mvec, scalar, vec, bivec, and trivec

are then defined for computational purposes. These can be straightforwardly
proved in most cases using the multivariate package of Isabelle/HOL. We for-
malized a large number of identities involving the addition, multiplication, the
inner and outer products of multivectors in this way. These are used as rewrite
rules during geometric operations and during verification. The identities can be
found in standard textbooks on geometric algebra, e.g. [4, 1] and [5], but in our
approach, they are first proved in Isabelle/HOL and then are manually trans-
lated to those expressions of Mathematica for their use.

An alternative representation of multivectors in G3 (and G2) would be as
one level tuples since the bases can be n-tuples (8-tuples in G3). However, the
representation of a multivector as a combination of blades is more convenient
from the verification and programming points of view since it carries typing
information.

3 HO: Set of Huzita’s elementary folds

We next give a set HO, Huzita’s elementary fold set [6]4. HO plays a fundamental
role in origami geometry, as the (five) postulates of the 2D Euclidean geometry
play. In the 2D Euclidean geometry, compasses and straightedges are used, but
HO relies only on folding of a piece of paper without breaking it. HO is written in
the natural language, as are the five Euclidean postulates. Even though geometric
notions are implicit in Huzita’s statements, he added the comment about the
corresponding geometric implication in each statement. Namely, (O1), described
shortly, corresponds to line-drawing by applying a straightedge, (O4) to the
perpendicular footing, (O5) to drawing a tangent to a parabola and (O6) to “non-
existing in the geometry so far known thus making origami geometry superior”.

In Eos, for reasoning about and computation of geometric objects of origami,
they are first transcribed to expressions of the language of the fragment of the
first-order logic and then to the elements of a polynomial ring over real. HO
consists of the following six statements (O1) ∼ (O6). For the implementation of
Eos and its relation to HO, the readers are referred to [7].

In this paper, we extend HO to enable us to construct a class of 3D origamis.
We confine our attention to the cases that all the points and lines that occur as
the parameters to the Huzita’s elementary folds lie on the same plane P, and
that the set F of the origami faces that we fold should lie on that plane. We call
F and P base face set and base plane of the elementary fold, respectively.

4 In some publications, Huzita-Justin set is explained as the complete elementary fold
set, and add one more elementary operation (O7). However, in this paper, we restrict
ourselves to Huzita’s set since we would like to focus on algebraic interpretations
rather than axiomatic treatment.

A New Formalization of Origami in Geometric Algebra 123

Let O denote an origami structure on the base plane P, whose details are
left unspecified in this paper. We fold an origami O along a fold line determined
by the parameters of each elementary operation. The parameters are lines de-
termined by a pair of distinct points on the faces, and points on the faces.

(O1) Given two distinct points P and Q, both on F , fold O along the line on P
that passes through P and Q.

(O2) Given two distinct points P and Q, both on F , fold O along the line on P
to superpose P and Q.

(O3) Given two distinct lines m and n, both on F , fold O along a line on P to
superpose m and n.

(O4) Given a line m and a point P , both on F , fold O along the line on P
passing through P to superpose m onto itself.

(O5) Given a line m, a point P not on m and a point Q, where m, P and Q are on
F , fold O along a line on P passing through Q to superpose P and m.

(O6) Given lines m and n, a point P not on m and a point Q not on n, where
m and n are distinct or P and Q are distinct, and furthermore m, n, P and Q

are on F , fold O along a line on P to superpose P and m, and Q and n.

Subsequently, we often denote a line by a sequence of two points, like P Q , which
is the line passing through points P and Q.

Clearly, those statements, if interpreted as those of the decision problems,
the answers are all positive. We have algorithms, using algebraic methods, to
find fold lines, if any, along which we fold origami O in each case. We will show
how we translate (O1) ∼ (O6) into expressions of G3 involving multivector x
which represents a fold line.

(a) Points P and Q (b) Folded along fold line
P Q

Fig. 1: Fold (O1)

124 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

(a) Points P and Q (b) Folded along the fold line

Fig. 2: Fold (O2)

(a) Lines m and n (b) Folded along one of the two fold
lines

Fig. 3: Fold (O3)

A New Formalization of Origami in Geometric Algebra 125

(a) Line m and point P (b) Folded along the fold line

Fig. 4: Fold (O4)

(a) Line m, points P and Q (b) Folded along one of the two fold
lines

Fig. 5: Fold (O5)

(a) Lines m, n, and points P ,
Q

(b) Folded along one of the
three fold lines

Fig. 6: Fold (O6)

126 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

4 HO in the geometric algebra

4.1 O1 in GA

In G3, points, lines, planes, etc. are treated uniformly as multivectors. Therefore,
points P, Q etc. are multivectors p and q etc., respectively. We denote any
points on the fold line by x. The line passing through distinct points P and Q is
expressed in G3 as follows.

(x− p) ∧ (q− p) = 0. (1)

Since q - p can be written as λ u for any scalar λ 6= 0 and a unit vector u
whose direction is the same as q - p, we have

(x− p) ∧ u = 0. (2)

as the standard representation of a line whose direction is u and passes through
point p.

To obtain the traditional form of line equations, let us recall that we represent
x by (x1, x2, x3). Thus term (Vec x1 x2 x3) in Isabelle/HOL (and Vec[x1, x2, x3]
inMathematica) is the representation of vector x = x1∗σ1+x2∗σ2+x3∗σ3. Given
p =(p1, p2, p3) and q =(q1, q2, q3), a straightforward symbolic computation on
Eq. (1) yields the following three equations in the polynomial ring.

p3q2 + q3x2 + p2x3 = p2q3 + p3x2 + q2x3

p3q1 + q3x1 + p1x3 = p1q3 + p3x1 + q1x3

p2q1 + q2x1 + p1x2 = p1q2 + p2x1 + q1x2

Noting the conditions that P and Q are distinct, we solve the above equations
for x1, x2 and x3 and obtain

x2 → −x1(q2 − p2)

p1 − q1
− p2q1 − p1q2

p1 − q1
, x3 → −x1(q3 − p3)

p1 − q1
− p3q1 − p1q3

p1 − q1
(3)

when p1 6= q1. Equation (3) is a yet another algebraic representation of the
desired line in 3D. By virtue of our choice of the basis σ1, σ2 and σ3, they are
the expressions of the line in Cartesian coordinate system. The other cases of
the combinations of unequality and equality of p1 and q1, of p2 and q2 and of p3
and q3 are dealt with similarly and gives the corresponding line representation.

In practice, we can take the base plane to be x3 = 0. Then we obtain the
following line equation.

(−p2 + q2)(−p1 + x1)− (−p1 + q1)(−p2 + x2) = 0

from Eq. (1).

A New Formalization of Origami in Geometric Algebra 127

4.2 O2 in G3

The statement (O2) is translated to the set of G3 equations as follows.

1. We stipulate that the plane defined by p ∧ q is a base plane.
2. We have a non-degeneracy condition that P 6= Q.
3. We define the midpoint m of P and Q, i.e. m = (p+ q)/2.
4. The line x passes through m and is orthogonal to line PQ.

(x−m) · (p− q) = 0 (4)

5. Line x is on the base plane: x ∧ p ∧ q = 0.

Note that without Condition 5, we would have obtained an infinite number of
lines. We are only interested in the line that is on the base face. The line x is
then the set of points (x1, x2, x3) that satisfies

(p1 6= q1
∨

p2 6= q2
∨

p3 6= q3)
∧

p1q3x2 + p2q1x3 + p3q2x1 = p1q2x3 + p2q3x1 + p3q1x2

∧
(5)

p1
2 + p2

2 + p3
2 + 2q1x1 + 2q2x2 + 2q3x3 = 2p1x1 + 2p2x2 + 2p3x3+

q1
2 + q2

2 + q3
2

The above set of the equations can be solved numerically at the time of
origami construction. To fold the origami, we need to know the fold line, which
the solutions of Eq. (5) can fully specify. The symbolic form of Eq. (5) is saved
and later used for proving purpose.

The following lemma is useful as the situation it specifies frequently appears
when we define a line m that is orthogonal to line n.

Lemma 1 Let p, q and r be vectors denoting pairwise distinct points P, Q and
R, respectively. Furthermore, we assume that P, Q and R are on the base plane
whose direction is the same as that of i3 and that P and Q are on line n. The
following equation represents the line that passes through R and is orthogonal to
the line n.

(x− r) ∧ 〈(p− q) ∗ i3〉1 = 0 (6)

The proof is done by a straightforward algebraic manipulation on multivectors.
For the geometric interpretation of Eq. (6), see Fig. 7. The line (to the right,
colored in blue) is the solution of x of Eq. (6).

Using Lemma 1, we immediately obtain the fold line of (O2):

(x− 1

2
(p+ q)) ∧ 〈(p− q) ∗ i3〉1 = 0

4.3 O3 in G3

It is natural to view (O3) as a special case of (O6). It is a degenerate case where
(i) the two lines m and n are the same, (ii) points P and Q in (O6) define another
line, say l, and (iii) l and m superpose (cf. Fig. 8).

128 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

q

p

r

x

〈(p− q) ∗ i3〉1

Fig. 7: Line x in Lemma 1

l

n (= m)

p

p’

q

q’

x

The line in blue is one of the two fold lines.

Fig. 8: Fold line in (O3) in G3

4.4 O4 in G3

Referring to Fig. 4a, we assume that distinct points Q and R define line m. Then,
we immediately obtain the desired fold line by Lemma 1.

(x− p) ∧ 〈(q− r) ∗ i3〉1 = 0,

where q 6= r.
As an example, let us consider the case where the base face is on the base

plane (x1, x2, 0) i.e. z = 0 plane in Cartesian coordinate system. The fold line
determined by (O4) is then the set of points (x1, x2, x3) that satisfies the relation

(q1 − r1)(−p1 + x1)− (−q2 + r2)(−p2 + x2) = 0
∧

¬(q1 = r1
∧

q2 = r2),

A New Formalization of Origami in Geometric Algebra 129

m

r

q

p

x

〈(q− r) ∗ i3〉1

Fig. 9: Geometric configuration in (O4) in G3

where r = (r1, r2, 0).

4.5 O5 in G3

We can view the operations (O5) and (O6) as a fold to bring a point onto a line
or vice versa, as seen from Figs 13 and 14. The fold reflects the point across the
fold line determined by the parameters of (O5) or (O6).

Let w and z be vectors, and v be a unit vector. We then define a reflection
operator Rv(z,w), as follows.

Rv(z,w) = v ∗ (z−w) ∗ v+w.

Rv(z,w) reflects z across v at pivot w (cf. Fig. 10).

z

Rv(z,w)

w

u

v

P

The base plane P (colored in light grey) is specified by vector u, which is orthogonal
to P. Vectors z, z’ and v are on the base plane and v is unit vector.

Fig. 10: Reflection

Referring to Fig. 5a, we assume assume that distinct points S and T define
line m. Since the fold line passes through point Q and its direction is determined

130 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

by a unit vector u, we have the following equation for x.

(x− q) ∧ u = 0,

satisfying the following conditions.

non-degeneracy : s 6= t

reflected point on m : 〈Ru(p,q)− s〉1 ∧ (t− s) = 0

unit vector : u ∗ u = 1

u on the base plane : u ∧ i3 = 0

Figure 11 shows the geometric configuration of (O5) before the fold. This
corresponds to the origami of Fig. 5a.

m

p

q

s tRu(p,q)

u

Fig. 11: Geometric configuration of (O5) in G3

4.6 O6 in G3

Finally, we derive the following equations from the statement (O6). We assume
that the pairs of distinct points A and B, and of distinct points C and D determine
lines m and n, respectively. Recall that we stipulate all the points A, B, C, D, P
and Q of the arguments of (O6) are on the base face.

The desired fold line satisfies

(x−w) ∧ u = 0,

where g and u satisfy the following conditions.

non-degeneracy : a 6= b

reflected point on m : 〈Ru(p,w)− a〉1 ∧ (b− a) = 0

non-degeneracy : c 6= d

reflected point on n : 〈Ru(q,w)− c〉1 ∧ (d− c) = 0

unit vector : u ∗ u = 1

u on the base plane : u ∧ i3 = 0

A New Formalization of Origami in Geometric Algebra 131

Figure 12 shows the geometric configuration of (O6) before the fold. This
corresponds to the origami of Fig. 6a.

σ1

a

b

c

d

p

q

Ru(p,w)

Ru(q,w)

w
un

m

σ2

σ3

Fig. 12: Geometric configuration in (O6) in G3

5 Example - trisection of an arbitrary angle

In this section, we give a simple example of trisecting an angle by origami.
We consider both the construction and verification of a geometric problem of
trisecting an arbitrary angle. We may regard this as an example pertinent to
origami, as trisecting an arbitrary angle is impossible by the Euclidean tool of a
straightedge and a compass. Abe devised a method for trisecting an arbitrarily
given angle using Huzita’s elementary operations [8]. Figure 13 shows the steps of
his construction, excluding the steps of creating an angle ∠EAB. This construction
is even simpler than Abe’s, in that it requires only one supporting horizontal
crease.

Let us see the construction in detail. Let E be an arbitrary point on the edge
of D C (cf. Fig. 13a). The problem is to trisect ∠EAB. If we exclude the steps
of unfolding, the number of the folds from step 3 is only three. At step 4 in
Fig. 13b, we superpose points A and D. Step 6 in Fig. 13d is the crucial step
of the construction. We superpose point D and line A E , and point A and line
G F , simultaneously. We can find such fold lines that make these superpositions
possible.

To find such fold lines, we need to solve a cubic equation whose solutions give
the three possible fold lines. We choose the fold line that leads to the trisection
of the interior angle ∠EAB. So we fold the origami along fold line M N as shown
in Fig. 13d. In Fig. 13e, we project points D , F and A onto the base plane and
create points L , K and J , respectively, and then unfold the origami. At step 8;
we fold the origami along line A J , and at step 9 we unfold the resulting origami.
This completes the construction. Figure 13h is not a part of the construction,
but is to emphasize the trisectors. Further details can be found in [9].

132 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

(a) Step 3: Angle ∠EAB (b) Step 4: (O2) (c) Step 5: Unfold

(d) Step 6: (O6) (e) Step 7: Unfold (f) Step 8:(O1)

(g) Step 9: Unfold (h) Two trisectors of ∠EAB

Fig. 13: Abe’s method for trisecting angle ∠EAB

A New Formalization of Origami in Geometric Algebra 133

From these operations, we obtain the trisector A J , which is the solution of
xof the equation

(x−w) ∧ u = 0,

with the following relations:

〈Ru(d,w)− a〉1 ∧ (e− a) = 0 (7)

〈Ru(a,w)− g〉1 ∧ (f− g) = 0 (8)

w =
1

2
〈a+Ru(a,w))〉1 (9)

j = 〈Ru(a,w)〉1 (10)

l = 〈Ru(d,w)〉1 (11)

k = 〈Ru(f,w)〉1 (12)

u ∗ u = 1 (13)

Point W is the pivot of the reflection in the above equations, and is the intersection
of the fold line M N and line A J as shown in Figs. 13f and 13h.

Next, we prove that lines AK and AJ are the trisectors of ∠EAB. To that end,
we show that vectors j, k and l are obtained by rotating vectors b, j and k with
a as the pivot, by an angle θ, respectively. We therefore have the following three
goals of the proof. If the goals are proven to be correct, then we have θ = 1

3∠EAB.

〈(b− a) ∗ ei3θ〉1 ∧ (j− a) = 0 (14)

〈(j− a) ∗ ei3θ〉1 ∧ (k− a) = 0 (15)

〈(k− a) ∗ ei3θ〉1 ∧ (l− a) = 0 (16)

We negate each equations (14) ∼ (16). Let us denote them by (14’), (15’), and
(16’). We translate equations (7) ∼ (13), and (14’) to the set of polynomial
equations. The Gröbner basis computation of the polynomials thus obtained
yields the reduced Gröbner base {1}. The same computing procedures for the
other two goals also yield {1}. Thus, the proof is successful. Note that ei3θ

is an expression of G3, and should be interpreted in the following way. The
multiplications with ei3θ in Eqs. (14) ∼ (16) generate sinusoidal functions. These
have to be transformed to polynomials using the identity sin2 θ + cos2 θ = 1 for
arbitrary θ before they are processed by Gröbner basis computations.

6 Related works

We have two sources to recall in relating our present work to previous works,
i.e., origami and geometric algebra. As for the former, we see the significant
difficulties and challenges ahead in constructing 3D origamis. To circumvent
the difficulties, Lang introduced search heuristics to find fold patterns in 3D
[10] and Streinu et al. analyzed Lang’s algorithm and made it more reliable

134 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

in more cases [11]. While our approach is axiomatic, at some stage of further
development, we will explore the possibility of incorporating heuristics for finding
new folds. Especially, to place appropriate constraints on the use of parameters
to a fold operation is necessary for feasible 3D origami construction.

As for the latter, geometric algebra, now commonly coined as such, is a
family of algebras and has the fascinating history. There exist many kinds of
literature including textbooks at the undergraduate and graduate levels and
research monographs on it. We will point out the publications in the context
of automated geometric theorem proving, and limit ourselves to those relating
directly to our present study of origami. The main motivation of the use of GA is
to explore computational methods of geometric theorem proving, that are freed
from the dimensions and the coordinates. The work of Wang et al [12][13], among
others, is one of the pioneering ones with this motivation. They tried to apply
the equations of GA systematically and successfully proves classical geometrical
theorems of Euclidean geometry. Yhey went on to construct a rewrite system
with nice computational properties such as strong normalization and confluence.
To define a rewrite system from a large number of employable equations, a proper
choice of rules and/or Knuth-Bendix completion procedure seem a formidable
task.

Our approach in the context of the origami research is a hybrid approach in
which we use GA in formalizing geometrical properties and use polynomial rings
that we can obtain by compiling GA expressions, for computationally intensive
tasks. The work was initiated to formalize 2D origami geometry in 2014. We
introduced a variant of G2 [14]. In the similar vein, our axiomatic study of
algebraic treatment of origami may benefit from a variant of geometric algebra,
conformal geometric algebra, proposed by Mizoguchi et al. [15].

Another work that has similar motivation, but differs from our approach is
that of Fuchs’ and Théry’s [16, 17]. They formalized GA in Coq using the data
structure of a binary tree. Their goal is not only to formalize GA but also to
derive a set of efficient functions that we can use for non-trivial computations.

As for the implementation of GA in general, depending on the applications,
a wide range of software libraries and systems are available. Among them, we
note the work of Aragón-Camerasa et al. on the Mathematica package imple-
mentation of GA [18]. As our GA is designed and implemented to be a part
of Eos system (also implemented in Mathematica), the analysis of the package
would be of benefit to our further system development. However, the direct use
of the package by us is unlikely as it would involve much efforts of transforming
the data structures, among others.

7 Concluding remarks

We have shown a rigorous approach to the use of the geometric algebra in com-
putational origami. We proved in Isabelle/HOL most of the useful identities
that hold among algebraic expressions of G3. Thus, we can state the elementary
origami operations in geometric algebra and further correctly apply the equations

A New Formalization of Origami in Geometric Algebra 135

to compute the transformations of the objects under study both symbolically and
numerically. Furthermore, we can now use G3 to geometric theorem proving. The
example we have given in Section 5 is simple enough to show how we can use our
methodology to automated theorem proving in geometry. However, it is scalable
to other more sophisticated geometric problems.

We can observe the importance of the geometric algebra as the layer of ab-
straction between the language for the origami geometry and the algebraic ex-
pressions. We also see that the distinctions between points, lines and vectors
disappear and that the derived expressions do not depend on the dimensionality
of the coordinate system.

Since we want to integrate the functionality of G3 into the computational sys-
tem tightly, we start with the formalization of G3 in Isabelle/HOL with the help
of Mathematica, and then for most computational, i.e. simplification, purposes,
we use Mathematica. In this paper, we focussed on the transformation from HO
to G3. Further work is in progress to incorporate the obtained results to extend
Eos to 3D visualization and the verification of 3D origami.

Acknowledgments

This work was supported by JSPS KAKENHI Grants Numbers 25330007 and
16K00008.

References

1. D. Hestenes: New Foundations for Classical Mechanics (Second Edition). Kluwer
Academic Publishers (1986)

2. Ida, T., Takahashi, H., Marin, M., Ghourabi, F., Kasem, A.: Computational Con-
struction of a Maximal Equilateral Triangle Inscribed in an Origami. In: Mathe-
matical Software - ICMS 2006. Volume 4151 of Lecture Notes in Computer Science.,
Springer (2006) 361–372

3. Haftmann, F.: Haskell-style Type Classes with Isabelle/Isar.
http://isabelle.in.tum.de/doc/classes.pdf (2014)

4. C. Doran and A. Lasenby: Geometric Algebra for Physicists. Cambridge University
Press (2003)

5. L. Dorst and D. Fontijne and S. Mann: Geometric Algebra for Computer Science.
Elsevier Inc. (2007)

6. Huzita, H.: Axiomatic Development of Origami Geometry. In Huzita, H., ed.:
Proceedings of the First International Meeting of Origami Science and Technology.
(1989) 143–158

7. Ida, T., Ghourabi, F., Takahashi, K.: Formalizing Polygonal Knot Origami. Journal
of Symbolic Computation (2014)

8. Abe, H.: Trisecting an Angle by Origami. Sugaku Seminar (1980) cover page
http://www.phoenix-c.or.jp/ tokioka/n!/suu(underscore)semi.html.

9. Ida, T., Kasem, A., Ghourabi, F., Takahashi, H.: Morley’s Theorem Revisited:
Origami Construction and Automated Proof. Journal of Symbolic Computation
46 (2011) 571 – 583

136 Tetsuo Ida, Jacques Fleuriot, and Fadoua Ghourabi

10. Lang, R.J.: A computational algorithm for origami design. In: The 12th annual
ACM symposium on computational geometry. (1996) 98–105

11. Bowers, J.C., Streinu, I.: Rigidity of Origami Universal Molecules. In Ida, T.,
Fleuriot, J., eds.: Automated Deduction in Geometry. Volume 7993 of LNAI.,
Springer Heidelberg New York Dordrecht London (2013) 120–142

12. Wang, D. In: Clifford algebraic calculus for geometric reasoning. Springer Berlin
Heidelberg, Berlin, Heidelberg (1997) 115–140

13. Fèvre, S., Wang, D. In: Combining algebraic computing and term-rewriting for
geometry theorem proving. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)
145–156

14. Ida, T.: Huzita’s basic origami fold in geometric algebra. In: Post-Proceedings of
the 16th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC 2014), IEEE Computer Society Conference Publishing
Services (CPS) (2015) 11 – 13

15. Kondo, M., Matsuo, T., Mizoguchi, Y., Ochiai, H.: A mathematica module for
conformal geometric algebra and origami folding. In Davenport, J.H., Ghourabi,
F., eds.: SCSS 2016: 7th International Symposium on Symbolic Computation in
Software Science. Volume 39 of EPiC Series in Computing., EasyChair (2016) 68–
80

16. Fuchs, L., Théry, L. In: A Formalization of Grassmann-Cayley Algebra in COQ
and Its Application to Theorem Proving in Projective Geometry. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011) 51–67

17. Fuchs, L., Théry, L.: Implementing geometric algebra products with binary trees.
Advances in Applied Clifford Algebras 24 (2014) 589–611

18. Arag/’on-Camarasa, G., Arag/’on-Gonz/’alez, G., Arag/’on, J.J.,
Rogr/’iguez-Andrade, M.A.: Clifford Algebra with Mathematica.
http://arxiv.org/dbs/0810.2412 (2008)

Automatic Rewrites of Input Expressions in
Complex Algebraic Geometry Provers

Extended Abstract

Zoltán Kovács1, Tomás Recio2 and Csilla Sólyom-Gecse3

1 Private University College of Education
of the Diocese of Linz, Austria

zoltan@geogebra.org
2 Depto. de Matemáticas, Estad́ıstica y Computación

Universidad de Cantabria, Santander
tomas.recio@unican.es

3 Babeş-Bolyai University, Cluj-Napoca, Romania
solyom-csilla@yahoo.com

Abstract. We present an algorithm to help converting expressions hav-
ing non-negative quantities (like distances) in Euclidean geometry theo-
rems to be usable in a complex algebraic geometry prover. The algorithm
helps in refining the output of an existing prover, therefore it supports
immediate deployment in high level prover systems.

Keywords: Automatic Theorem Proving, Automatic Theorem Deduction,
Complex Algebraic Geometry, Elementary Geometry, Dynamic Geometry Soft-
ware, GeoGebra

1 Introduction

Many dynamic geometry systems support covering textbook problems by offer-
ing an intuitive interface to construct geometry diagrams. When combined with
automated theorem proving tools, the first steps are the graphical construction
of the hypotheses and the final step is the definition of the thesis. In many text-
book theorems in elementary geometry the thesis is a relation between some
geometry objects in the diagram, but sometimes the thesis is an equation con-
taining variables representing lengths, angles, areas or volumes. Such an example
is the Pythagorean theorem, among many others, including Ptolemy’s theorem
or Heron’s formula.

The most adequate way for entering such expressions is not yet completely
discussed. Some software tools like JGEX [13] or OpenGeoProver [11] have their
own user interface and rewrite mechanism to reformulate the input equation
(e.g. a = 2b, here a and b are distances) to a more suitable form (e.g. a2−4b2 = 0).
The problem with the equation a = 2b is that complex algebraic geometry
(CAG) solvers cannot assume that the quantities a and b are non-negative since

138 Zoltán Kovács, Tomás Recio and Csilla Sólyom-Gecse

the variables are always chosen from the set of complex numbers. By using the
more suitable form a2 − 4b2 = 0 we can implicitly ignore the difference between
positive and negative values for the quantities.

The first references about the need to reformulate the thesis expression are in
Chou’s book [4], by specifying different rewrites for the various input expressions
to be more suitable for the CAG method.

In this work we propose a general way to handle a large number of possible
algebraic input expressions defined in the thesis equation. We use computer
algebra to determine the more suitable expression instead of using the input
equation, namely by elimination of certain variables. We claim that the number
of terms of the more suitable expression is double exponential in the number of
odd powers in the term form of the input—the suggested way for the computation
is still achievable for the usual classroom situations.

We also suggest a modification of the typical workflow for a CAG proof of an
elementary geometry theorem by factorizing the more suitable expression. The
notion of “essential conditions” of a statement will be introduced, which may play
an important role similarly to non-degeneracy conditions. As an illustration we
recall Viviani’s theorem and its one-dimensional specific case by demonstrating
our algorithm implemented in GeoGebra.

2 The problem

Chou’s book [4] presents a list of cases when translating statements into un-
ordered geometry requires further considerations. In its Part II, section 2 (p. 97)
Chou mentions

– the length of a segment (which should be substituted by its square),
– the equality of length of two segments (for a = b ⇐⇒ a − b = 0 the

polynomial a2 − b2 is used),
– the equality of product of two segments (for a · b = c · d ⇐⇒ ab − cd = 0

the polynomial a2b2 − c2d2 will be utilized),
– a ratio of length of two segments (for 3a = 7b the expression 9a2 − 49b2 is

used),
– the sum of length of two segments is a third length (for a + b = c the

polynomial (a− b− c) · (a− b + c) · (a + b− c) · (a + b + c) is used).

Here the last case is the most difficult one. Let us illustrate it by a simple
statement:

Example 1. Let a be the length of the segment joining the free points A and B.
Define point C as an arbitrary point of this segment and and let the length of
segment AC be b and that of BC be c. Now a = b + c.

Let us try to prove this easy theorem with the usual CAG approach. A
possible translation of the geometric diagram into algebraic equations is to use
variables v1, v2, v3, v4, v5, v6 to describe the Cartesian coordinates of points A,

Automatic Rewrites of Input Expressions in CAG Provers 139

B and C: A = (v1, v2), B = (v3, v4), C = (v5, v6). Now we can state that
v1v4 + v3v6 + v5v2 − v1v6 − v3v2 − v5v4 = 0, and we can also claim that a2 =
(v1−v3)2 +(v2−v4)2, b2 = (v1−v5)2 +(v2−v6)2, c2 = (v3−v5)2 +(v4−v6)2 by
using the Pythagorean theorem for distances of the vertices. Here 4 equations
describe the hypotheses. By following [8] and the Gröbner bases method, let us
use the negated form of a = b+ c as z(a− b− c) = 1 to describe the thesis. Now
we use the prover algorithm from [5] (chapter 6, §4), implemented in Singular
4.0.2 [6], and enter the following program code:

ring r=(0,v1,v2,v3,v4,v5),(v6,a,b,c,z),dp;

ideal i=v1*v4+v3*v6+v5*v2-v1*v6-v3*v2-v5*v4,

a^2-(v1-v3)^2-(v2-v4)^2,

b^2-(v1-v5)^2-(v2-v6)^2,

c^2-(v3-v5)^2-(v4-v6)^2,

z*(a-b-c)-1;

groebner(i);

We recall that (in the standard framework for automatic theorem proving
as in [4]) the output is 〈1〉 if and only if the statement is true interpreted in an
algebraic closed field. But our statement is not true in the complex numbers: in
fact, the output is an ideal (a reduced Gröbner basis) with several elements. On
the other hand, in the complex numbers the following can be proved:

(a− b− c) · (a− b + c) · (a + b− c) · (a + b + c) = 0

as one can check by changing in the above list, the thesis polynomial to

z*((a-b-c)*(a-b+c)*(a+b-c)*(a+b+c))-1

In this case we have the expected result, the reduced minimal Gröbner basis is
〈1〉.

One important note must be remarked: the proven statement is actually the
following:

Theorem 1. Let us denote by a the length of the segment AB by joining the free
points A and B. Define point C as an arbitrary point of the line going through
A,B, and let length(AC) = b and length(BC) = c. Now a = b + c, unless
b = a + c or c = a + b.

It is easy to see that the last condition a + b + c(= 0) in our modified input
has no essential geometrical meaning, it is a degenerate case, therefore it can
be omitted from the precise statement. On the other hand, the other excluded
conditions do have geometrical meanings:

1. b = a + c, in this case C is not on the segment, but on a line which joins A
and B; C is on the red dotted ray in Fig. 1. Here we must admit that our
problem setting is not even compatible with CAG since we cannot distinguish
a segment from a line. That is, in the geometric approach we need to clarify
if we allow points outside the segment (but still on the line) or not. It is
quite straightforward that in the CAG approach the only possible approach
is to extend the meaning of a segment to be a line.

140 Zoltán Kovács, Tomás Recio and Csilla Sólyom-Gecse

2. c = a + b, this is a similar case, but C is on the blue dotted ray.

Fig. 1. Example 1

We call these two extra assumptions essential conditions to highlight their
geometrical importance and distinguish them from the degeneracy conditions
which are geometrically a “much smaller” set.

3 A detailed example

Given the input polynomial equation p = 0 where p is squarefree, we perform
the following computation by using a computer algebra system (here Giac [7]
will be used). In our example, let p = a− b− c.

>> factor(eliminate([a-b-c,a^2=A^2,b^2=B^2,c^2=C^2],[a,b,c]))

that is, we eliminate all terms from p which are not of even powers of a, b, c and
the obtained output is:

[(A-B-C)*(A-B+C)*(A+B-C)*(A+B+C)]

This technique works in general, and as special cases it covers all instances
reported by Chou. We tested this idea for several elementary geometry theo-
rems and successfully proved them without any manual computations or further
challenges. Our tests include the Pythagorean theorem, the cathetus, the geo-
metric mean, the angle bisector, the intercept, Ceva’s, Menelaus’ and Ptolemy’s
theorems, and Heron’s formula. A detailed list of our tests can be found at
http://tinyurl.com/adg16-formula-rewrite which is generated on a daily
basis automatically from the latest source code of the open dynamic geometry
system GeoGebra.

As an illustration, we recall Viviani’s theorem (see [12]). It is a generalization
of our example in two dimensions. On the other hand, here 7 of the appearing 8
factors are essential, while one is degenerate.

Example 2. Let ABC be a regular triangle and D an internal point of it. Let i,
j and k be the distance of D from the sides of the triangle, respectively. Then
i + j + k is a constant (it is actually the height m of the triangle, see Fig. 2).

Similarly to Example 1 here we cannot restrict D to be an internal point of
the triangle. We can divide the plane to 7 different areas and enumerate them
from 1 to 7. In area 1 the equation i+ j +k−m = 0 holds, in 2–4 the equations

Automatic Rewrites of Input Expressions in CAG Provers 141

Fig. 2. Example 2: Viviani’s theorem

i− j − k + m = −(−i + j + k −m) = 0, i− j + k −m = 0, i + j − k −m = 0,
respectively, and in 5–7 the equations i− j − k −m = −(−i + j + k + m) = 0,
i− j + k + m = 0, i + j − k + m = 0, respectively.

When using our method with input as the left hand side of any of these 7
equations, the output expression is a product of the 7 ones and an extra one,
i+ j +k+m. It is clear that this last 8th one cannot be zero, only if the triangle
collapses to a point, that is, A = B = C(= D), which is obviously a degenerate
case.

Our method finally modifies Viviani’s theorem in the following form:

Theorem 2. Let ABC be a regular triangle and D another point on the plane.
Let i, j and k be the distance of D from the sides of the triangle, respectively.
Let m be the height of the triangle. Then, provided that none of the conditions

– i + m = j + k,
– i + k = j + m,
– i + j = k + m,
– i = j + k + m,
– j = i + k + m,
– k = i + j + m

hold, i + j + k = m follows.

This process is purely automatic, since both the rewrite and also adding the
essential conditions can be done without any human intervention. The essential
conditions will be those factors of the output which are not appearing in the
input p, except the only factor which is a sum of the quantities.

Viviani’s theorem can also be generalized for 3 dimensions, see [1].

142 Zoltán Kovács, Tomás Recio and Csilla Sólyom-Gecse

4 Other uses, future work

The same idea can be applied when putting equations containing quantities
among the hypotheses. An important question in the CAG approach how to dis-
tinguish between an ellipse and a hyperbola, since their definition—by using the
foci A, B and a circumpoint C—cannot be separated. Actually, some theorems
can be even generalized by using this fact (see [9] for an example). On the other
hand, a better understanding can be obtained with the help of the factorized
elimination.

For instance, given a hyperbola with foci A and B and point C, another point
P is an element of the hyperbola if and only if |AC − CB| = |AP − PB|, that
is, (AC − CB)2 = (AP − PB)2. Now let ph = (AC − CB)2 − (AP − PB)2 =
(AC−CB−AP +PB)·(AC−CB+AP−PB). Similarly, for an ellipse described
with the same points, the equation AC + CB = AP + PB can be assumed, so
we set pe = AC + CB −AP − PB. By using our method for the inputs ph and
pe we get the same output ph · pe · (AC + CB −AP − PB) · (AC + CB + AP −
PB) · (AC +CB +AP +PB) · (AC−CB−AP −PB) · (AC−CB +AP +PB).
Here the last 5 factors are geometrically degenerate cases, that is, the hyperbola
and the ellipse are undistinguishable, but there are no other geometrical curves
which can be mixed with them in the CAG approach.

This example also supports the fact that given an input polynomial p with l
terms which are not of even power, (independently of the number of even powers
in p) the output polynomial will consist of 2l (or eventually 2l−1) factors. In other
words, the expansion of the output polynomial will consist of doubly exponential
number of terms of the number of not even powers. For example, for l = 6 the
computation will not finish in a feasable time in Giac:

factor(eliminate([x1+x2+x3+x4+x5+x6,x1^2=X1^2,x2^2=X2^2,x3^2=X3^2,

x4^2=X4^2,x5^2=X5^2,x6^2=X6^2],[x1,x2,x3,x4,x5,x6]))

The opportunity to type arbitrary expressions (involving distances, lengths,
volumes, etc.) is, in our opinion, a desirable feature of theorem provers in a
dynamic geometry system, allowing the user to access new horizons in studying,
discovering and enjoying Euclidean geometry.

Acknowledgments

Computing the output formula by elimination was suggested by Bernard Parisse,
inventor of Giac.

We are thankful to Predrag Janičić, Julien Narboux and Francisco Botana
for their suggestions to improve the text of this paper.

Second author is partially supported by the Spanish Research Project
‘Construcciones Algebra-geométricas: fundamentos, algoritmos y aplicaciones’
(MTM2014-54141-P).

Automatic Rewrites of Input Expressions in CAG Provers 143

References

1. A. Bogomolny. Viviani’s 3D Analogue from Interactive Mathematics Miscel-
lany and Puzzles. Downloaded from http://www.cut-the-knot.org/triangle/

VivianiTetrahedron.shtml, accessed in April 2016.
2. F. Botana, M. Hohenwarter, P. Janičić, Z. Kovács, I. Petrović, T. Recio and S.

Weitzhofer. Automated Theorem Proving in GeoGebra: Current Achievements. J
Autom Reasoning, 55(1):39–59, March 2015.

3. K. Brown. Polynomials For Sums of Square Roots. Downloaded from http://

www.mathpages.com/home/kmath111/kmath111.htm, accessed in February 2016.
4. S.-C. Chou. Mechanical Geometry Theorem Proving. Springer Science + Business

Media, 1987.
5. D. Cox, J. Little and D. O’Shea. Ideals Varieties and Algorithms. Springer New

York, 2007.
6. W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 4-0-2 —

A computer algebra system for polynomial computations. 2015. http://www.

singular.uni-kl.de.
7. Z. Kovács and B. Parisse. Giac and GeoGebra – Improved Gröbner basis com-

putations. Computer Algebra and Polynomials, Volume 8942 of the series Lecture
Notes in Computer Science, 126–138. Springer, 2015.

8. D. Kapur. Using Gröbner bases to reason about geometry problems. Journal of
Symbolic Computation, 2(4):399–408, December 1986.

9. Z. Kovács, C. Sólyom-Gecse. GeoGebra Tools with Proof Capabilities, 2016. http:
//arxiv.org/abs/1603.01228.

10. B. Kutzler and S. Stifter. On the application of Buchberger’s algorithm to auto-
mated geometry theorem proving. Journal of Symbolic Computation, 2(4):389–397,
December 1986.

11. I. Petrović and P. Janičić. Integration of OpenGeoProver with Ge-
oGebra, 2012. http://argo.matf.bg.ac.rs/events/2012/fatpa2012/slides/

IvanPetrovic.pdf.
12. T. J. Recio Muñiz. Cálculo simbólico y geométrico. Editorial Śıntesis. Madrid,

1998.
13. Z. Ye, S.-C. Chou and X.-S. Gao. An Introduction to Java Geometry Expert. In

Automated Deduction in Geometry, pages 189–195. Springer Science + Business
Media, 2011.

Two Ways of Using Rabinowitsch Trick for
Imposing Non-degeneracy Conditions

Manuel Ladra1, Pilar Páez-Guillán1, and Tomás Recio2

1 Universidad de Santiago, Santiago de Compsotela, Spain
manuel.ladra@usc.es,

pilarpaez06@hotmail.com
2 Depto. de Matemáticas, Estadística y Computación, Universidad de Cantabria,

Santander, Spain
tomas.recio@unican.es

Abstract. In the algebraic-geometry-based theory of automated prov-
ing and discovery, it is usually required that the user includes, as com-
plementary hypotheses, some intuitively obvious non-degeneracy condi-
tions. There are two main procedures to introduce such conditions into
the hypotheses set, and both of them rely on the well known Rabinow-
itsch trick. But it happens that each of these very close methods can
lead to very different situations (truth/false statements). The aim of this
extended abstract is to present and to discuss in detail this usually for-
gotten dilemma,highlighting the need to do some further work on this
issue.
We present one example, in the context of automatic discovery, where it
will be checked that, after imposing the thesis to be true and eliminating
the non-independent variables, different additional hypotheses appear,
depending on the chosen approach when including the non-degeneracy
conditions; this fact is directly related to the change in the way we pro-
ceed eliminating variables and introducing hypotheses. All the calcula-
tions have been carried out using the software Singular in the FinisTerrae
2 supercomputer.

Keywords: Automated discovery, non-degeneracy conditions, Rabinowitsch
trick, saturation

1 Introducing non-degeneracy conditions as hypotheses

The framework of this paper is the automated theorem proving theory initiated,
forty years ago, by Wu on his seminal paper ‘On the decision problem and
the mechanization of theorem-proving in elementary geometry’ [8]. Its goal is to
provide computer algebra algorithms to automatically decide if a given geometric
statement is generally true or not, i.e. true except for some exceptional cases,
usually not explicitly declared, such as the collinearity of the three vertices of a
generic triangle or dealing with circle of radius zero.

Rabinowitsch Trick 145

Roughly speaking, this method proceeds by assigning coordinates and equa-
tions to the elements (points, lines, circles, etc.) and conditions (perpendicularity,
incidence, etc.) of the involved geometric hypotheses H and theses T , creating,
in this way, two systems of polynomial equations H, T . Then it declares the va-
lidity of the geometric statement H =⇒ T over an algebraically closed field K by
considering the inclusion V (H) ⊆ V (T) between the solution set of the system
of equations H and that of the corresponding system T . Finally, this inclusion
is tested by some computational algebraic geometry methods (triangularization,
Gröbner basis, etc.).

Now, it is often the case that in many elementary geometric statements the
algebraic variety defined by the hypotheses is not totally contained in the one
defined by the thesis. In fact, in most cases the output of an automatic proving
algorithm is that the tested statement is false unless the hypotheses variety is
further restricted by adding some complementary constraints such as: these two
points must be different, this triangle should not collapse to a line, etc. These
additional hypotheses are known as non-degeneracy conditions and statements
that are true except in theses cases are called generally true. See [2, Chapter 6,
Section 4] or [7] for further details on this issue.

As shown long time ago by the quantity and quality of the examples in [1],
it is clear that this computer algebra approach to mechanical theorem proving
is quite successful. Yet, it is also well known the high complexity of the involved
polynomial Gröbner basis algorithms [2]. For this reason it is often the case
that the user attempts to prevent the failure of the computation by manually
introducing, before starting to run the proving algorithm, some easy-to-guess
non-degeneracy conditions.

The main problem here is that the methods we are describing are, basically,
designed only to deal with equalities, not with inequations. Thus we have got to
find a way to introduce non-degeneracy conditions that both reflects (as closely
as possible) the geometric meaning of the condition (i.e. to avoid some degenerate
cases) and expresses it by means of equations.

2 Different ways. . .

Traditionally (at least since [5]) the refutation of a given property f = 0, i.e.
three points not aligned, two points not coincident, etc., is handled as an equation
by adding some auxiliary variable t and considering the equation f · t− 1 = 0 as
representing ¬{f = 0}, emulating Rabinowitsch trick3.

3 Originally, this “trick” was designed to deduce the general Hilbert Nullstellensatz
(about the vanishing of a polynomial f on the solution set of some system of poly-
nomial equations) from the Weak Nullstellensatz (about the existence of solution for
a systems of equations), by introducing some extra variable and considering f · t − 1.
Thus, if f vanishes on some solution set, f · t − 1 can not have a solution on this set.
Thus, the Weak Nullstellensatz implies that 1 is a combination of the polynomials
in the set of equations and of f · t − 1. Next, replace t by 1/f in this expression of

146 Manuel Ladra, Pilar Páez-Guillán, and Tomás Recio

For instance, if we want to declare that points A(x1, x2), B(x3, x4), C(x5, x6)
should not lie on a line, we can proceed as follows. First notice that (x1x4−x1x6−
x2x3 + x2x5 + x3x6 − x4x5) = 0 is the condition for the alignment of the three
points A, B, C. Then notice that every solution to the equation (x1x4 − x1x6 −
x2x3 + x2x5 + x3x6−x4x5) · t−1 = 0 has to verify (x1x4−x1x6−x2x3 + x2x5 +
x3x6 − x4x5) 6= 0, i.e. that A, B, C are not aligned. And conversely, for every
choice of coordinates for A, B, C such that A, B, C are not aligned, we will have
(x1x4−x1x6−x2x3 +x2x5 +x3x6−x4x5) 6= 0, and, then, there will be a value of
t = 1/(x1x4−x1x6−x2x3+x2x5+x3x6−x4x5) such that (x1, x2, x3, x4, x5, x6, t)
is a solution to (x1x4 − x1x6 − x2x3 + x2x5 + x3x6 − x4x5) · t− 1 = 0.

Speaking in general, if f(x1, . . . , xn) · t − 1 = 0, then the inequality
f(x1, . . . , xn) 6= 0 holds, and conversely, if f(x1, . . . , xn) 6= 0, then we can take
t = 1/f(x1, . . . , xn) and so f(x1, . . . , xn) · t− 1 = 0. Therefore, if we are dealing
with an ideal of hypotheses H, and we want to add the condition ¬{f = 0} to
it, we must consider the ideal H + (f · t− 1).

It is easy to generalize this procedure for the case of having to negate the
conjunction or the disjunction of several conditions. Clearly, the assertion ¬{f1 =
0 ∧ . . .∧ fr = 0} translates into ¬{f1 = 0} ∨ . . .∨ ¬{fr = 0}. So, we will have to
deal with the ideal H +(f1 · t1−1) · · · (fr · tr−1) (although we could also employ
the same slack variable t for all the conditions). Regarding ¬{f1 = 0 ∨ . . .∨ fr =
0}, it can be expressed as ¬{f1 = 0} ∧ . . . ∧ ¬{fr = 0}. Therefore, the ideal
which we must consider is H + (f1 · t1 − 1, . . . , fr · tr − 1). In this case, we
cannot use a single auxiliary variable t. However, in practice we can express
¬{f1 = 0} ∧ . . . ∧ ¬{fr = 0} as (f1 · · · fr · t− 1).

But imposing, as part of the hypotheses, the avoidance of some condition
f = 0, i.e. requiring that our hypothesis solution set V (H) verifies f 6= 0, can be
done in a different, although quite similar, way. Say, by considering the Zariski
closure of the difference V (H) \ V (f), i.e. by considering as new hypotheses the
polynomial equations expressing the smallest set that verifies the given hypothe-
ses and not the condition f = 0. As it is well known ([2]) this smallest algebraic
set is defined, when H is radical, by means of the zeroes of the quotient ideal
(H) : (f). On the other hand let us remark that, geometrically, it is the same to
consider V (f) or V (fn), for whatever n-th power of f ; thus, we can deal simul-
taneously with the collection of ideals (H) : (f)n. And this is, precisely, the idea
of saturation of the ideal H by the ideal (f). More generally, let I, J be ideals of
a polynomial ring K[X]. Recall that I : J = {x | xJ ⊂ I}. Then, the saturation
of I by J is defined as Saturate(I, J) = I : J∞ = ∪n(I : Jn) (see [2, 3]), and
it satisfies V (Saturate(I, J)) = V (I) \ V (J). In summary, the other option we
are considering here to include non-degeneracy conditions ¬{f = 0} is to satu-
rate the ideal of hypotheses by the condition f . Again, it is straightforward the
generalization of this idea of saturation to the case of several conditions (see [3]).

This second option, by means of saturation, could seem, at first glance, more
sophisticated than the first option, the one relying on the implementation of

1 and clear denominators to obtain some power of f as a combination of the given
polynomials (see [6]).

Rabinowitsch Trick 147

Rabinowitsch trick. But there is not a big difference. In fact, [3, Proposition 6
and Corollary 2 of Appendix] as well as in [2, Theorem 14 of Chapter 4, Section
4] show that the saturation of ideal I by polynomial f is equal to the result of
eliminating the variable t in the ideal I + (f · t− 1).

Thus, the actual dilemma is: do we want to add non degeneracy conditions as
in Rabinowitsch trick, by carrying around an extra, alien, variable, which should
be eliminated at the end of the theorem proving or discovery process; or should
we deal, from the beginning, with the non degeneracy condition expressed in
terms of the “real” variables of our statement, by saturation? Warning: elimina-
tion implies, in geometric terms, taking the Zariski closure of the projection [2];
while, as reported above, saturation involves taking the closure of the difference
of two sets by eliminating the variable t in the ideal I + (f · t− 1).

Thus, we can summarize the characteristic feature of both approaches as fol-
lows: do we want to deal with inequations by doing an early closure or elimination
step or is it better to postpone it until the end of the proving method?

3 . . . different consequences

We think the analysis of the different ways of introducing non-degeneracy condi-
tions is an important issue, seemingly forgotten by the automated proving and
discovery community. Important because the decision about which one of the
two described approaches is more suitable (i.e more efficient to prove or more
successful to discover interesting theorems) could have relevant consequences.

Thus, in [3] it is presented one specific example of how both methods differ
in a common context, yielding, if non-degeneracy is introduced by means of Ra-
binowitsch trick, an interesting theorem discovering the conditions for the orthic
triangle of a given triangle with non-collinear vertices, to be equilateral. On the
other hand, if the non-collinearity of the vertices is introduced by saturation,
there is no discovery at all. It is remarkable that the approaches to discovery
in [3] and the one we employ here are slightly different.

Generally speaking, we have the following relation between both approaches:

Proposition 1. Let H be the ideal of hypotheses of a given statement, and
let f = 0 be a new degenerate condition. Let I1 = H + (f · t − 1) and let
I2 = Saturate(H, f) be the new ideals of hypotheses corresponding to the two
possibilities of introducing the non-degeneracy conditions. Then I2 ⊆ I1.

Proof. In fact, as mentioned above, Saturate(H, f) ⊂ H + (f · t− 1), since the
saturation is equal to the elimination of the variable t in the ideal at the right
side, and, thus, it is contained in it.

Example 1. The following trivial example H = (0), f = x shows that, in gen-
eral, the inclusion Saturate(H, f) ⊂ H + (f · t − 1) is strict, since in this case
Saturate(H, f) = (0) and H + (f · t− 1) = (x · t− 1).

148 Manuel Ladra, Pilar Páez-Guillán, and Tomás Recio

Now let us recall (c.f. [7]) that a statement H =⇒ T is called generally true
if it is not zero the elimination of all variables, except the independent ones
ruling our statement (say x1, . . . , xs) , in the ideal H + (T · t − 1); and it is
called generally false if it is not zero the elimination of all variables, except the
independent ones ruling our statement, in the ideal H + T . Obviously, if two
ideals J, I verify J ⊆ I, the result of adding to each one the same new ideal
and intersecting the sum with K[x1, . . . , xs] will preserve the inclusion. So, if
the result of some elimination yields zero for an ideal, the same happens for all
smaller ideals contained in it. Thus:

Corollary 1. Notation as above. If the statement I1 =⇒ T is not generally
true, then, the same happens to the statement I2 =⇒ T ; and if I1 =⇒ T is not
generally false, then, the same happens to the statement I2 =⇒ T . That is,

{I2 =⇒ T generally false} =⇒ {I1 =⇒ T generally false} (GF)
{I2 =⇒ T generally true} =⇒ {I1 =⇒ T generally true}. (GT)

We can informally say that I2 can be a more “exigent” hypotheses set for a
statement to be true than I1, for proving (see statement (GT)) and for discovery
(see (GF)).

It is also interesting to remark that, in the theory of automated discovery,
the polynomials in (H + T) ∩K[x1, . . . , xs] are seen as necessary conditions for
the thesis to be true (see [7]), and must be added to the set of hypotheses. As
we stated before,

(I2 + T) ∩K[x1, . . . , xs] ⊆ (I1 + T) ∩K[x1, . . . , xs]. (1)
So, the Rabinowitsch trick is able to provide more additional conditions for

discovery than the saturation, increasing the differences between the two sets of
hypotheses.

Example 2. Again, we present a simple example to illustrate that the inclu-
sion in (1) is, in general, strict. Consider the ideal H = (x + y), and let x be
an independent variable, while y is non-independent. Consider also the non-
degeneracy condition x 6= 0, and the thesis x · y = 0. With the above notation,
I1 = (x + y, x · t− 1) and I2 = (x + y). If we add T to our ideals and eliminate
variables y, t, we obtain, respectively, (x2) and (1).

Situations as the previous one can happen, as already remarked, because the
saturation method involves the early consideration of the closure. For instance,
considering Example 1, the saturation of (0) by (x) is (0), and its zero set –the
whole line– surely includes a point where x = 0, although we wanted to avoid
such instances!

4 An example

Finally, we would like to present a particular example in order to show in some
detail the described situation. Our example is based on the already cited theorem

Rabinowitsch Trick 149

about the orthic triangle, but with a different approach to the one presented
in [3]–the conclusions will be different too. We wish to show that the orthic
triangle associated to an equilateral triangle is also equilateral (see Fig. 1). Since
we want to address the theorem from the point of view of discovery, we decide
to ignore the hypothesis about the original triangle being equilateral and take a
completely arbitrary one, with the purpose of obtaining the condition for it to
be equilateral as necessary.

So, we take A = (0, 0), B = (u1, 0) and C = (u2, u3) as the vertices of the
main triangle, and set D = (u2, 0), E = (x1, x2) and F = (x3, x4) the vertices of
the orthic one. We force the segments AE and BC to be perpendicular, as well as
E to be collinear with B and C; analogously, BF and AC must be perpendicular,
and F must be aligned with A and C. By construction, it is obvious that the
point D is collinear with A and B, and that CD is perpendicular to AC. As
for our desired conclusion, we state it using two polynomials, each one forcing
two sides of the orthic triangle to have the same length. We deal with them
separately.

A B

C

D

E

F

Fig. 1. Orthic triangle

Besides the main hypotheses, we choose as non-degeneracy conditions those
which force the triangle ABC not to collapse to a line, i.e., u1 6= 0 and u3 6= 0.
These two conditions can be summarised in just one: u1u3 6= 0. We introduce
this new hypothesis in the two ways described above: by adding to the primitive
hypotheses the polynomial u1u3 · t − 1 or by saturating the hypotheses by the
ideal (u1u3). It can be shown that the resulting ideals are different in the sense
of Proposition 1. Moreover, with the choice of saturation it is easy to see that
the assertion stating that the orthic triangle is equilateral is generally false.
Thus, by Corollary 1, it is also generally false with the choice of Rabinowitsch
trick. After that, we continue to find new hypotheses by imposing the thesis –the
orthic triangle to be equilateral– to be true and eliminating the non-independent
variables.

As we expected, we obtain necessary conditions for the thesis to verify related,
in both cases, with the main triangle to be equilateral. What is interesting is
that we find here another example of the inclusion 1 being strict. On the one

150 Manuel Ladra, Pilar Páez-Guillán, and Tomás Recio

hand, using saturation we obtain as generators the polynomials

− u1(u1 − 2u2)(u1u2 − u2
2 + u2

3)(−u1u2 + u2
2 + u2

3) (2)

and
u2(−u2

1 + u2
2 + u2

3)(−u2
1u2 + 2u1u2

2 + 2u1u2
3 − u3

2 − u2u2
3), (3)

corresponding to the two polynomials in the thesis ideal. On the other hand,
using the traditional approach, we find a very similar output: two polynomials,
the first of them having the same factors as (2), except u1, and the second one
equal to (3). As a consequence of the choice of the non-degeneracy condition,
the factor u1 does not give any new information. Is is easy to check that if the
triangle ABC is equilateral, the polynomials vanish. Nevertheless, there are more
possible configurations of that triangle which make them vanish, and should be
carefully studied.

The next step consists on including the “discovered” polynomials in the set
of hypotheses, and check if the theorem holds under these new conditions. Using
the approach of saturation, the calculations present no difficulties, and we easily
check that the theorem is generally true–more non-degeneracy conditions are
needed. Regarding the traditional approach, one of the polynomials in the thesis
ideal follows directly from the augmented set of hypotheses, without needing
more non-degeneracy conditions. As for the other one, no calculations are needed:
in particular, with the approach of saturation, it holds when taking as hypotheses
just the primitive ones and (3). Therefore, and since polynomial (3) appears
again with this focus, Corollary 1 assures that the statement is also generally
true employing Rabinowitsch trick.

Thus, we have discovered two “different” (in a formal sense) theorems con-
cerning the posed problem, although their geometrical meanings are the same.

The calculations have been carried out using the software Singular [4] in the
FinisTerrae 2 supercomputer.

Acknowledgement

The first author was supported by Ministerio de Economía y Competitividad
(Spain), grant MTM2013-43687-P (European FEDER support included) and by
Xunta de Galicia, grant GRC2013-045 (European FEDER support included).
The third author was partially supported by the Spanish Research Project ‘Con-
strucciones Algebra-geométricas: fundamentos, algoritmos y aplicaciones’, grant
MTM2014-54141-P (European FEDER support included). We also gratefully
thank CESGA (Centro de Supercomputación de Galicia, Santiago de Com-
postela, Spain) for providing access to the FinisTerrae 2 supercomputer.

References
1. Chou, S.C.: Mechanical geometry theorem proving, Mathematics and its Applica-

tions, vol. 41. D. Reidel Publishing Co., Dordrecht (1988), with a foreword by Larry
Wos

Rabinowitsch Trick 151

2. Cox, D.A., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. An introduc-
tion to computational algebraic geometry and commutative algebra. 4th revised ed.
Undergraduate Texts in Mathematics, Springer, Cham (2015)

3. Dalzotto, G., Recio, T.: On protocols for the automated discovery of theorems in
elementary geometry. J. Automat. Reason. 43(2), 203–236 (2009)

4. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 — A com-
puter algebra system for polynomial computations. http://www.singular.uni-kl.
de (2015)

5. Kapur, D.: A refutational approach to geometry theorem proving. Artificial Intelli-
gence 37(1-3), 61–93 (1988)

6. Rabinowitsch trick. Bronawell, W. D. (originator), Encyclopedia of Math-
ematics, http://www.encyclopediaofmath.org/index.php?title=Rabinowitsch_
trick&oldid=12019

7. Recio, T., Vélez, M.P.: Automatic discovery of theorems in elementary geometry. J.
Automat. Reason. 23(1), 63–82 (1999)

8. Wu, W.T.: On the decision problem and the mechanization of theorem-proving in
elementary geometry. Sci. Sinica 21(2), 159–172 (1978), Reprinted in: Automated
theorem proving: After 25 years (Bledsoe, W. W., Loveland, D. W., eds.), Contem-
porary Mathematics, 29. AMS, Providence, RI, pp. 213–234, 1984

Portfolio Methods in Theorem Proving for
Elementary Geometry?

Extended Abstract

Vesna Marinković1, Mladen Nikolić1, Zoltán Kovács2, and Predrag Janičić1

1 Faculty of Mathematics, University of Belgrade, Serbia
2 The Private University College of Education of the Diocese of Linz, Austria

Abstract. Portfolio problem solving is an approach in which for an
individual instance of a specific problem, one particular solver or one
particular solving technique is selected among several available ones and
used. This approach has given many successes in recent years, in many
areas, including automated theorem proving, especially in SAT solving.
We report on our first attempts at using the portfolio approach in prov-
ing geometry theorems. There are several challenges in this, including:
domains of the popular geometry provers are not the same (some provers
support some constructs and some not), there is no standard format for
storing geometry theorems, available geometry provers are implemented
in different programming languages, etc. However, the biggest challenge
is defining a set of relevant features that characterize a specific theorem
and that should serve for choosing an appropriate prover. Our first pre-
liminary experiments are promising and we believe there is a big room
for further progress in this direction.

1 Introduction

Theorems in geometry are often given in terms of a construction and a goal [1,2].
Hence, conjectures of this form can also be seen as correctness statements about
specific constructions (i.e., statements that the constructions meet the given
constraints). For proving such theorems, one can use a number of automated
theorem provers developed so far.

Portfolio problem solving is an approach in which for an individual instance
of a specific problem, one particular solver or one particular solving technique is
selected among several available ones (based on some specifics of the input in-
stance) and used. An expected gain is that for a number of future input instances
the percentage of solved problems will be higher than for any individual solver
and/or that overall solving time will be lower than for any individual solver.
In that, it is assumed that choosing of the appropriate solvers takes negligi-
ble computing time (compared to solving time). This approach has given many
successes in recent years, in many areas, including automated theorem proving

? The first, the second, and the fourth authors have been partly supported by the
grant 174021 of the Ministry of Science of Serbia.

Portfolio Methods in Geometry Theorem Proving 153

and related problems, and especially in SAT solving [3,4]. One of the most im-
portant challenges in building successful portfolio system is identifying suitable
features—properties of input instances that influence performance of individual
solvers.

The portfolio approach in proving geometry theorems has not been used so
far. However, there are already systems that need and actually can support port-
folio theorem proving in geometry. For instance, tools GeoGebra [5] and GCLC
[6] have several theorem provers built-in and should be able to automatically
choose an appropriate one given a goal to be proved. Using the portfolio ap-
proach in geometry seems like a promising idea, but there are several challenges
with integrating several automated geometry provers within one portfolio sys-
tem (challenges not present in some other domains, such as SAT). One problem
is that their domains are not the same—some provers support some constructs
and some not (say, intersections of two circles). The second problem is that
there is no standard format for storing geometry theorems. The third problem
is that available geometry provers are implemented in different programming
languages. However, probably the hardest challenge is identifying a set of appro-
priate features, harder than in problems such as SAT. In this paper we present
our first experiences and experiments with portfolio proving in geometry. The
steps of portfolio development we will follow consist of choosing: the corpus of
instances, the set of provers, the set of instance features, and the prover selection
mechanism.

2 Corpora of Theorems

The corpus of theorems that we consider are theorems obtained as correctness
theorems for solutions of 560 triangle construction problems from Wernick’s
list [7]. The solutions (i.e. the constructions) and the corresponding correctness
theorems were generated automatically by a system ArgoTriCS [8,9,10].

In order to prove that the generated construction is correct, one has to prove
that the points given by the problem setting (for each three) are indeed the
corresponding points of the constructed triangle ABC. One example of such
(automatically generated) conjecture follows. It states that for a given construc-
tion of the triangle ABC given its vertex A, circumcenter O and midpoint Ma

of the side BC, the point Ma is indeed a midpoint of the side BC of the con-
structed triangle ABC (this conjecture follows from problem 28:{A,O,Ma} from
Wernick’s corpus). The list of primitive constructions supported in ArgoTriCS
is given in the Appendix.

Example 1. Given a point A, a point O and a point Ma, construct the triangle
ABC.

Construction:

1. Using the point A and the point Ma, construct a point G (rule W01);
2. Using the point O and the point G, construct a point H (rule W01);
3. Using the point A and the point H, construct a line ha (rule W02);

154 Vesna Marinković, Mladen Nikolić, Zoltán Kovács, and Predrag Janičić

4. Using the point A and the point O, construct a circle k(O,C) (rule W06);
5. Using the point Ma and the line ha, construct a line a (rule W10);
6. Using the circle k(O,C) and the line a, construct a point C and a point B

(rule W04);
7. Using the point B and the point C, construct a point Ma (rule W01);
8. Using the point A and the point C construct the line b (rule W02);
9. Using the point C and the point A, construct a point Mb (rule W01);

10. Using the point B and the point C construct the line a (rule W02);
11. Using the point Ma and the line a construct the line ma (rule W10);
12. Using the point Mb and the line b construct the line mb (rule W10);
13. Using the line ma and the line mb construct the point O (rule W03);

Statement: Prove that the point Ma is identical to the point Ma.

The illustration of the generated construction is given in Figure 1.

A

O

Ma

G

H

CB

Fig. 1. Illustration of the construction

We tried to prove all conjectures generated this way using four theorem
provers: three provers integrated in GCLC [6] (there is support for three methods:
the area method, simple Wu’s method, and the Gröbner bases method) and
OpenGeoProver [11] (it currently provides support only for simple Wu’s method)
with a timeout set to 5 minutes. However, some conjectures are beyond the
scope of specific provers (for instance, conjectures which include intersections
of circles in the area method), for some of them the prover concludes that it

Portfolio Methods in Geometry Theorem Proving 155

can neither prove nor disprove, while for some the timeout is reached without
getting any answer. Here we focus only on solvable construction problems that
ArgoTriCS succeeded to solve and for each of these problems 3 conjectures are
generated.3 There were 828 conjectures altogether, 537 theorems were proved by
at least one prover, Wu’s method implemented within OpenGeoProver proved
486 conjectures, the same method in GCLC proved 295, area method 350, while
the Gröbner bases method proved 264 conjectures. So, the prover that showed
the best performance is Wu-OpenGeoProver, but the total number of conjectures
proved is 537 which shows that there is a room for the portfolio approach.

3 Set of Features and Portfolio Design

A construction will be represented by a vectors of some numbers—values of
selected features. The basic features should reflect complexity of the construction
and of the construction steps used. The additional statistics over these basic
features will be inspired by similar statistics used in SAT portfolios. For most
of them there is no corresponding geometrical meaning—still, we consider them
mimicking the SAT portfolios and hoping that we might capture some relevant
property not covered by the basic features.

We define a construction graph as a directed labeled graph consisting of a
set of labeled nodes and a set of edges. Each node corresponds to one step of
the construction and is labeled by a rule applied and an object constructed in
that step. Edges are pairs of nodes such that first node corresponds to the step
in which an object is derived which is used in the step corresponding to the
second node. The construction graph of the construction given in Example 1 is
illustrated in Figure 2.

We consider the following features over the construction graph:

– the number of nodes in the graph,
– the number of nodes whose in-degree is zero,
– the number of edges in the graph,
– the ratio of number of nodes and edges and its reciprocal,
– the ratio of longest path length and number of nodes and its reciprocal,
– the ratio of longest path length and number of edges and its reciprocal,
– the node degree statistics,
– the node in-degree statistics,
– the node out-degree statistics,
– the number of nodes whose in-degree is zero and that are not labeled by A,
B, or C,

– the rule application frequencies (normalized) and their statistics,
– the object type frequencies (normalized) and their statistics,
– statistics of normalized frequencies of referencing each specific object,
– the statement size.

3 Some of these conjectures are trivial—in cases when one of the points given by the
problem setting is one of the vertices {A,B,C}.

156 Vesna Marinković, Mladen Nikolić, Zoltán Kovács, and Predrag Janičić

A O Ma

G,W01 k(O,C),W06

H,W01
ha,W02

a,W10

B,W04 C,W04

Ma,W01 b,W02 Mb,W01 a,W02

ma,W10 mb,W10

O,W03

Fig. 2. Example construction graph

We consider the following statistics over the set of basic features: the mean,
variation coefficient, minimum, maximum, and entropy of the distributions of
those statistics.

Alltogether, currently there are 67 features. For instance, the construction
graph illustrated in Figure 2 has 17 nodes, 28 edges, the mean of in-degrees of
its nodes is 1.647, while their variation is 0.581.

The first portfolio system for the prover selection that we formulate is based
on the k nearest neighbors technique [12] and is similar to existing portfolio
systems for SAT [3,4]. The method assumes that the training set is available
that consists of feature vectors and proving times for each prover. If the prover
did not finish in some fixed predetermined cutoff time (5 minutes in our case),
then for that instance ten times the cutoff time is recorded. For a given instance
to be proven, its feature vector is computed and k instances from the training
set, with feature vectors closest to the input one, are found. The prover with the
best performance on these k instances is invoked for the input instance.

The second portfolio system is based on multinomial logistic regression (MLR)
[13] as a second natural approach to multiclass classification, where each prover
is treated as a separate class and MLR models the probability over provers for
each instance. In the training phase, instead of using clear-cut assignment of
provers to instances, as is usual in classification, MLR allows assigning relative
desirability of different provers based on the amount of time provers saved with
respect to the cutoff time. In the exploitation phase, the feature vector is com-
puted for the input instance, and the prover with highest probability predicted
by the MLR model is invoked.

Portfolio Methods in Geometry Theorem Proving 157

4 Results and Portfolio Performance

We evaluate the above two portfolios on our set of conjectures. Both the proving
and the exploitation cutoff are set to be 300 seconds. Evaluation is performed by
5-fold nested crossvalidation [14]. This procedure is generally used for evaluation
of machine learning models with metaparameters (e.g. k in k nearest neighbors).
One of its qualities is that the whole data set is used for evaluation and yet
training and test instances are always separated. Since the crossvalidation splits
the training set randomly into subsets (each of which will at one point serve as
the testing set, while the others will serve the training set), there might be some
variation in the results due to particular split. In order to avoid that, we average
the results over 100 such splits, having performed crossvalidation for each of
them. As the reference prover, we used the best prover among component provers
of portfolios and the virtual best prover which represents the best performance
one could hope for with the given provers. The results are given in Table 1.
The proposed portfolios perform very well—they cover around 80% of the gap
between reference solvers both in terms of number of solved instances and in
terms of proving time. Two portfolio approaches perform roughly the same. The
CPU time needed by the portfolios to select a prover for an input instance is
less than 0.001 second, so it is virtually negligible. The CPU time needed for
computing feature values for input instance is also negligible (less than 0.01s).

Prover # proved σ % increase Time (s) σ % decrease

Best prover 486.0 0 0 15831 0 0
MLR portfolio 525.4 2.44 77 4250 724 77
k-nn portfolio 526.5 2.47 79 3776 731 80.1
Virtual best prover 537.0 0 100 776 0 100

Table 1. Results of evaluation of two portfolios compared to two reference provers (best
single prover and, idealized, virtual best prover). For each portfolio we provide average
number of instances proved and its standard deviation over 100 runs, percentage of
gap between two reference provers which is covered, average time per one run on whole
corpus and its standard deviation over 100 runs, and percentage of gap between two
reference solvers which is covered.

Aside of selecting an appropriate prover, in practical contexts, it is important
to provide some information to the user regarding the time required for the prover
to finish. The simplest requirement would be to estimate whether the prover
will finish in the given cutoff time. We model this problem as a classification
problem. One class consists of conjectures for which the prover finishes in 300
seconds and the other class consists of all other instances. For classification we
use regularized logistic regression and evaluate it using nested crossvalidation.
We enriched the feature set by adding products of features to the base feature
set. That way we model feature interactions—presence of product xixj allows
the change in feature xi to contribute to the model value proportionally to xj .

158 Vesna Marinković, Mladen Nikolić, Zoltán Kovács, and Predrag Janičić

The classification accuracy obtained ranges from 94% to 98%, depending on the
prover, which is very high (especially considering that the classes are relatively
well balanced), meaning that for future conjectures we can predict if they will
be proven in the given time with very high probability.

We also deal with prediction of prover runtime and its logarithm. Considering
that provable formulae are easily identified by classification, we evaluate runtime
prediction only on the subset of conjectures which are proven within cutoff time.
For prediction we use ridge regression and for evaluation we again use nested
crossvalidation. The root mean square error [13] for runtime prediction ranges
from 0.07 to 3.07s, depending on the prover, which is good, except for one prover
for which it is 13.16s. The root mean square error for prediction of logarithm
of runtime ranges from 0.04 to 0.39s which we consider to be a good result. In
almost all cases, r2 (coefficient of determination [15]) testifies that the variance
of prediction by the model is reduced more then 80% compared to the variance
of prediction using the test set mean as a predictive model, meaning that the
learning process was successful. We conclude that for future conjectures we ex-
pect to be able to predict proving time roughly with error of several seconds,
and to predict the order magnitude of the proving time rather accurately.

5 Current and Future Work

As we hoped, the portfolio approach in theorem proving in geometry gives good
performance, at least in the domain of theorems obtained from construction
problems. There are gains, even without any geometrical considerations, apart
from considerations within designing the set of features.

The experiments performed do not exhaust opportunities in this domain. The
GeoGebra system currently has at its disposal several geometry provers [16,17]
and could, therefore, benefit from our portfolio approach (a response will be more
quickly given to the user). Currently, we are constructing a similar portfolio
over those provers. Preliminary evaluation on a corpus of classroom oriented
geometry statements yields encouraging results. We also plan to consider other
corpora of problems, such as those obtained on the basis of Connelly’s corpus of
construction problems [18].

Portfolio systems are built expecting gains in proving performance. However,
one may be interested in explaining a deeper relationship between feature values
and the provers which were selected. Considering the high dimension of feature
vectors and statistical nature of the models, such relationships are very hard to
establish, but we will look at this problem it in future. In this context, we intend
to explore performance of portfolios using subsets of currently used 67 features.
Feature selection techniques used in machine learning may be useful in finding
most relevant ones.

It would be also interesting to explore if some features can be used for setting
parameters of the provers (in order to make it more efficient for that particular
instance). However, most of provers used in geometry do not have adjustable
parameters. Instead of setting parameters, one can use the portfolio in the phase

Portfolio Methods in Geometry Theorem Proving 159

of constructing a theorem (for choosing a most promising formulation), but such
approach is yet to be considered.

References

1. Chou, S., Gao, X., Zhang, J.: Machine Proofs in Geometry. World Scientific,
Singapore (1994)

2. Chou, S.C.: Mechanical geometry theorem proving. Kluwer Academic Publishers
Norwell, MA, USA (1987)

3. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based
algorithm portfolios for SAT. In: Theory and Applications of Satisfiability Testing
(SAT). (2011)

4. Nikolić, M., Marić, F., Janičić, P.: Simple algorithm portfolio for sat. Artificial
Intelligence Review (2012) 1–9

5. Hohenwarter, M.: GeoGebra: Ein Softwaresystem für dynamische Geometrie und
Algebra der Ebene. Master’s thesis, Paris Lodron University, Salzburg, Austria
(2002)

6. Janičić, P.: GCLC – A Tool for Constructive Euclidean Geometry and More than
That. In Takayama, N., Iglesias, A., Gutierrez, J., eds.: Proceedings of International
Congress of Mathematical Software (ICMS 2006). Volume 4151 of Lecture Notes
in Computer Science., Springer-Verlag (2006) 58–73

7. Wernick, W.: Triangle constructions vith three located points. Mathematics Mag-
azine 55 (1982) 227–230

8. Marinković, V.: ArgoTriCS – Automated Triangle Construction Solver. Journal of
Experimental & Theoretical Artificial Intelligence (2016)

9. Marinković, V., Janičić, P.: Towards Understanding Triangle Construction Prob-
lems. In Jeuring et al., J., ed.: Intelligent Computer Mathematics - CICM 2012.
Volume 7362 of Lecture Notes in Computer Science., Springer (2012)

10. Marinković, V., Janičić, P., Schreck, P.: Computer Theorem Proving for Verifiable
Solving of Geometric Construction Problems. In: 10th International Workshop on
Automated Deduction in Geometry (ADG 2014). Volume 9201 of Lecture Notes
in Computer Science., Springer (2015) 72–93

11. Marić, F., Petrović, I., Petrović, D., Janičić, P.: Formalization and implementation
of algebraic methods in geometry. In Quaresma, P., Back, R.J., eds.: Proceedings
First Workshop on CTP Components for Educational Software, Wroc law, Poland,
31th July 2011. Volume 79 of Electronic Proceedings in Theoretical Computer
Science., Open Publishing Association (2012) 63–81

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer New York Inc. (2001)

13. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press
(2012)

14. Krstajic, D., Buturovic, L.J., Leahy, D.E., Thomas, S.: Cross-validation pitfalls
when selecting and assessing regression and classification models. Journal of Chem-
informatics 6 (2014) 1–15

15. Rao, C.R.: Linear Statistical Inference and its Applications. Wiley (1973)
16. Botana, F., Hohenwarter, M., Janičić, P., Kovács, Z., Petrović, I., Recio, T.,

Weitzhofer, S.: Automated theorem proving in GeoGebra: Current achievements.
Journal of Automated Reasoning 55 (2015) 39–59 http://dx.doi.org/10.1007/

s10817-015-9326-4.

160 Vesna Marinković, Mladen Nikolić, Zoltán Kovács, and Predrag Janičić

17. Kovács, Z.: The portfolio prover in GeoGebra 5. In Botana, F., Quaresma, P.,
eds.: Proceedings of the 10th International Workshop on Automated Deduction in
Geometry (ADG 2014), 9-11 July 2014. University of Coimbra, Portugal (2014)
191–205

18. Connelly, H.: An Extension of Triangle Constructions from Located Points. Forum
Geometricorum 9 (2009) 109–112

A List of primitive constructions used by ArgoTriCS

1. Given points X, Z, and W , and a rational number r one can construct a

point Y for which holds:
−−→
XY /

−−→
ZW = r; NDG condition is that the points Z

and W are distinct4.
2. Given points X and Y one can construct a line XY ; DET condition is that

the points X and Y are distinct5.
3. Given two lines, it is possible to construct their intersection point; NDG

condition is that lines are not parallel, while DET condition is that lines are
not equal.

4. Given a line and a circle, it is possible to construct their intersection points;
NDG condition is that they do intersect.

5. Given a line, a circle, and one intersection point, it is possible to construct
their second intersection point; NDG condition is that the line and the circle
intersect.

6. Given two distinct points X and Y it is possible to construct a circle k(X,Y)
centered at point X which passes through the point Y ; NDG condition is
that the points X and Y are distinct.

7. Given two circles, one can construct their intersection points; NDG condi-
tion is that the circles intersect, while DET condition is that the circles are
distinct.

8. Given two circles and one intersection point, one can construct their second
intersection point; NDG condition is that the circles intersect, while DET
condition is that the circles are distinct.

9. Given points X and Y one can construct a circle with diameter XY ; NDG
condition is that points are distinct.

10. Given a point X and a line p one can construct a line q which passes through
the point X and which is perpendicular to the line p.

11. Given a line p and a point X which does not belong to the line p one can
construct a circle k centered at point X which touches the line p; NDG
condition is that the point X does not belong to the line p.

12. Given a circle k and a point X outside the circle k, one can construct two
tangents from the point X to the circle k; NDG condition is that the point
X is outside the circle k.

4 NDG conditions denote non-degeneracy conditions which guarantee that the con-
structed objects indeed exist.

5 DET conditions denote determination conditions which enable that the constructed
objects are uniquely determined.

Portfolio Methods in Geometry Theorem Proving 161

13. Given a circle k, a point X outside the circle k, and one tangent from the
point X to the circle k, one can construct the second tangent from the point
X to the circle k; NDG condition is that the point X is outside the circle k.

14. Given points X and Y one can construct bisector of the segment XY ; NDG
condition is that points X and Y are distinct.

15. Given a point X, a line p and a rational number r, one can construct a line
which is an image of the line p in homothety with center at the point X with
coefficient r.

16. Given a point X and a line p one can construct a line which passes through
the point X and which is parallel to the line p.

17. Given points X and Y and an angle α one can construct the line q such that
that ∠(XY , q) = A · α/2B + C · π/2D holds.6

18. Given points X and Y and an angle α one can construct a line q such that
∠(q,XY) = A · α/2B + C · π/2D holds.

19. Given points X, Y , and Z one can construct a point W which is harmonic
conjugate of Z with respect to X and Y ; NDG conditions are that points
X and Y are distinct, points Y and Z are distinct and point Y is not a
midpoint of the segment XZ.

20. Given points X and Y and an angle α one can construct a locus of points
such that the segment XY can be seen at angle A · α/2B + C · π/2D.

21. Given a point X and a line p one can construct a foot of the perpendicular
from the point X to the line p.

22. Given a point X and a circle k1 one can construct a circle k2 centered at
point X which internally touches the circle k1; NDG conditions are that the
point X is inside the circle k1 and that the point X is not the center of the
circle k1.

23. Given a point A, a circle C, and a rational number r one can construct
an image of the circle C in homothety with a center at the point A with
coefficient r.

6 Here we use the fact that if an angle α is constructible, then the angle K1 ·α/2K2 +
K3 · π/2K4 is constructible as well, where K1,K2,K3, and K4 are natural numbers.

On a Certain Class of Cubic Surfaces Related to
the Simson–Wallace Theorem

Extended Abstract

Pavel Pech

Faculty of Education, University of South Bohemia,
České Budějovice, Czech Republic

pech@pf.jcu.cz

Abstract. Properties of a cubic surface which is related to the Simson–
Wallace theorem are studied. Given a skew quadrilateral in the real Eu-
clidean 3D-space E3, then the locus of a point whose orthogonal projec-
tions onto the sides of the quadrilateral are coplanar is a cubic surface.
Properties of this locus such as decomposability, structure of lines on the
surface and existence of singular points are investigated using computer
aided analytical method.

Keywords: Simson–Wallace locus. Skew quadrilaterals. Cubic surfaces.

1 Introduction

The well-known Simson–Wallace theorem reads [5]:

Feet of perpendiculars from a point P onto the lines AB,BC and CA of a triangle
ABC are collinear iff P lies on the circumcircle of ABC.

There are several generalizations of the Simson–Wallace theorem, see [2], [3], [5],
[9], [10]. The following is a generalization on skew quadrilaterals [6–8]:

Theorem 1. Let K,L,M,N be orthogonal projections of a point P onto the
sides AB, BC, CD, AD of a skew quadrilateral ABCD respectively. Let A =
(0, 0, 0), B = (a, 0, 0), C = (b, c, 0) and D = (d, e, f). Then the locus of P =
(p, q, r) such that the tetrahedron KLMN has a constant volume s is a cubic
surface F in (2).

Outline of the proof [8]: Suppose that acf 6= 0 since otherwise the quadrilateral
is planar. Denote K = (k1, 0, 0), L = (l1, l2, 0), M = (m1,m2,m3), N =
(n1, n2, n3) and P = (p, q, r). Then

PK ⊥ AB ⇔ h1 := a(p− k1) = 0,

L ∈ BC ⇔ h2 := l2(b− a)− c(l1 − a) = 0,

PL ⊥ BC ⇔ h3 := (p− l1)(b− a) + c(q − l2) = 0,

On Cubic Surfaces Related to the Simson–Wallace Theorem 163

M ∈ CD ⇔ h4 := (d− b)(m2 − c)− (e− c)(m1 − b) = 0,

h5 := (e− c)m3 − (m2 − c)f = 0, h6 := (m1 − b)f −m3(d− b) = 0,

PM ⊥ CD ⇔ h7 := (p−m1)(d− b) + (q −m2)(e− c) + (r −m3)f = 0,

N ∈ DA ⇔ h8 := dn2 − en1 = 0, h9 := dn3 − fn1 = 0,

h10 := fn2 − en3 = 0,

PN ⊥ DA ⇔ h11 := (p− n1)d+ (q − n2)e+ (r − n3)f = 0,

Volume of KLMN = s ⇔

h12 :=

∣∣∣∣∣∣∣∣

k1, 0, 0, 1
l1, l2, 0 1
m1, m2, m3, 1
n1, n2, n3, 1

∣∣∣∣∣∣∣∣
− 6s = 0. (1)

Elimination of k1, . . . , n3 in the system h1 = 0, h2 = 0, . . . , h12 = 0 yields the
formula1

F := cfH + sR = 0, (2)

where

H = p3(c2d(d− a)− (be2 + bf2 − 2cde)(a− b))− p2qc(ae(c− e) + f2(a− 2b))−
p2rcf(ac−2cd−2e(a−b))+pq2(c2(d2+f2−ad)+e(2cd−be)(a−b))+2pqrf(cd−
be)(a−b)−pr2f2(ab−b2−c2)−q3ace(c−e)−q2racf(c−2e)+qr2acf2+p2(cd(a2(c−
2e) + e(ab + b2 + c2)) + (e2 + f2)(ab + b2 + c2)(a − b) − c(e2 + f2 + d2)(cd +
ae− be)) + pq(cd(d− a)(ab− b2 − c2 − ad+ bd)− de(a− b)(b2 + c2) + a2ce(c−
e)− cf2(ab+ b2 + c2 − a2) + (a− b)((e2 + f2)(be− cd) + bd2e))− prf((ab− b2 −
c2)(bd+ ce− d2 − e2 − f2)− ac(2be+ ac− 2cd− 2ae)) + q2ae(c(bd+ ce− d2 −
e2 − f2)− (c− e)(ab− b2 − c2))+ qra(cf(bd+ ce− d2 − e2 − f2)− f(c− 2e)(ab−
b2 − c2))+ r2af2(ab− b2 − c2)− pa(cd(c(ad− d2 + ce)− (be+ de)(a− b))+ (e2 +
f2)((b2+ c2− ce)(a− b)− c2d))+ (qe+ rf)a(bd+ ce− d2 − e2− f2)(ab− b2− c2)

and

R = 6(d2 + e2 + f2)((b− d)2 + (c− e)2 + f2)((a− b)2 + c2).

Hence P ∈ F is the necessary condition for the feet K,L,M,N to be coplanar.
Similarly, with the use of program Epsilon [12, 13], we prove that P ∈ F is the
sufficient condition as well [8]. �
We see that F = 0 describes a cubic surface.

We can also proceed in another way to find F. Expressing k1, . . . , n3 from the
system above we get:

k1 = p,

1 We use software CoCoA which is freely distributed at
http://cocoa.dima.unige.it and Epsilon library which is freely distributed
at http://www-calfor.lip6.fr/∼wang/epsilon/

164 Pavel Pech

l1 = (p(a− b)2 + qc(b− a) + ac2)/((a− b)2 + c2),

l2 = (pc(b− a) + c2q + ac(a− b))/((a− b)2 + c2),

m1 = (p(b− d)2+ q(b− d)(c− e)+ rf(d− b)+ c(cd− be− de)+ b(e2 + f2))/((b−
d)2 + (c− e)2 + f2),

m2 = (p(b− d)(c− e) + q(c− e)2 + fr(e− c)− bcd+ cd2 + b2e− bde+ cf2)/

((b− d)2 + (c− e)2 + f2),

m3 = (pf(d− b) + qf(e− c) + f2r + f(b2 + c2 − bd− ce))/

((b− d)2 + (c− e)2 + f2),

n1 = (d2p+ deq + dfr)/(d2 + e2 + f2),

n2 = (dep+ e2q + efr)/(d2 + e2 + f2),

n3 = (dfp+ efq + f2r)/(d2 + e2 + f2).

Substitution for k1, l1, l2, . . . , n3 into (1) gives F in the form (2), where

H = c(dp + eq + fr)(p(d − b) + (e − c)q + fr − (d − b)d − (e − c)e − f2)(cp +
q(a− b)− ac) + (p(b− a) + cq + a(a− b))((−p(e2 + f2) + qde+ rdf)(p(d− b) +
q(e− c) + rf + b2 + c2 − bd− ce) + (dp+ eq+ fr)(p((c− e)2 + f2)− q(b− d)(c−
e)− rf(d− b)− c(cd− be− de)− b(e2 + f2))),

i.e., H = K1K2K3 +K4(K5K6 +K1K7), where K1,K2,K3,K4,K5,K6 and K7

are linear factors in p, q, r.

Later we will express F even in the more concise form.

2 Properties of the locus

In the following suppose that s = 0 in (2). Then F = H, since cf 6= 0. In
this section some properties of the cubic H which is associated with a skew
quadrilateral ABCD are investigated.

Particularly the following properties of H are studied:

a) decomposability,

b) structure of lines on the cubic,

c) singular points.

2.1 Decomposability

The next theorem is on decomposability of the locus H:

Theorem 2. The cubic surface which is associate with a skew quadrilateral
ABCD is decomposable iff two pairs of sides — either adjacent or opposite

On Cubic Surfaces Related to the Simson–Wallace Theorem 165

— of ABCD are of equal lengths p, q.
If p 6= q the cubic decomposes into a plane and a one–sheet hyperboloid,
if p = q, i.e., if ABCD is equilateral, the cubic decomposes into three mutually
orthogonal planes.

In the following example a cubic H is associated with the quadrilateral ABCD
whose two pairs of opposite sides are of equal lengths.

Example 1. For a skew quadrilateral ABCD with a = 1, b = 0, c = 1, d = 0,
e = 1, f = 1 we get a cubic surface

(pq − q2 − pr − qr + q + r)(p+ r − 1) = 0,

which decomposes into a plane and hyperboloid, Fig. 1.

Fig. 1. A cubic (pq− q2 − pr− qr+ q+ r)(p+ r− 1) = 0 decomposes into a plane and
hyperboloid

2.2 Structure of lines on the cubic

The well-known Salmon–Cayley theorem [1], [11] states that a smooth cubic
surface over algebraic closed field contains exactly 27 lines. In the following the
number of real lines which lie on the cubic H are investigated.

Planes A1, A2, A3, A4, A5, A6, A7 and A8 which are perpendicular to the sides of
ABCD and pass through its vertices are crucial for investigation of the structure

166 Pavel Pech

of lines on the cubic:

A1 : A1 ⊥ DA, D ∈ A1, A5 : A5 ⊥ BC, B ∈ A5,

A2 : A2 ⊥ DA, A ∈ A2, A6 : A6 ⊥ BC, C ∈ A6,

A3 : A3 ⊥ CD, C ∈ A3, A7 : A7 ⊥ AB, A ∈ A7,

A4 : A4 ⊥ CD, D ∈ A4, A8 : A8 ⊥ AB, B ∈ A8.

We will see later that they belong to the system of tritangent planes which
intersect the cubic H in three lines.

We can easily verify that it holds

H = A1A3A5A7 −A2A4A6A8, (3)

or

H = (dp + eq + fr − d2 − e2 − f2)((d − b)p + (e − c)q + fr − (d − b)b − (e −
c)c)((b− a)p+ cq − (b− a)a)p− (dp+ eq + fr)((d− b)p+ (e− c)q + fr − (d−
b)d− (e− c)e− f2)((b− a)p+ cq − (b− a)b− c2)(p− a).

Note that this is one of the most concise forms of H.

The importance of (3) appears by searching for lines lying on the cubic. Namely
from H = 0 and (3) we get that the line Ai ∩ Aj , i = 1, 3, 5, 7, j = 2, 4, 6, 8
belongs to H.
From (3) we obtain the following 12 lines which belong to the cubic surface:

a = A2 ∩A7, b = A8 ∩A5, c = A6 ∩A3, d = A4 ∩A1,

e = A2 ∩A5, f = A8 ∩A3, g = A6 ∩A1, h = A4 ∩A7,

i = A7 ∩A6, j = A2 ∩A3, k = A8 ∩A1, l = A5 ∩A4.

Another 6 tritangent planes given by pairs of parallel lines:

A9 = a ∪ k, A10 = b ∪ i, A11 = c ∪ l,

A12 = d ∪ j, A13 = e ∪ g, A14 = f ∪ h.

Denote:

C1 = ab− bd− ce,

C2 = b2 + c2 − ab− bd− ce, (4)

C3 = d2 + e2 + f2 − a2 + ab− bd− ce.

It holds:

Proposition 1.

a) The lines m,n coincide ⇔ C1 = 0 and C2 6= 0, C3 6= 0.

b) The lines m, o coincide ⇔ C2 = 0 and C1 6= 0, C3 6= 0.

c) The lines n, o coincide ⇔ C3 = 0 and C1 6= 0, C2 6= 0.

(5)

On Cubic Surfaces Related to the Simson–Wallace Theorem 167

If C1 6= 0, C2 6= 0, C3 6= 0 then we obtain another three lines m,n, o

m = A10 ∩A12, n = A9 ∩A11, o = A13 ∩A14

which belong to the cubic H.

In the Fig. 2 the cubic with 15 real lines is depicted.

Fig. 2. The cubic p2q+ pq2 − p2r− q2r+ pr2 + qr2 − 2pq− r2 + r = 0 contains exactly
15 real lines

Finally we add the plane

A15 = m ∪ n ∪ o.

Note that A15 passes through the center S of the circumsphere of ABCD.

The planes above yield the following 10 canonical forms2 of the cubic H:

H = A2A4A10 +A5A7A12, H = A1A3A10 +A6A8A12,

H = A4A8A13 +A1A5A14, H = A3A7A13 +A2A6A14

H = A1A7A11 +A4A6A9, H = A2A8A11 +A3A5A9,

H = A1A2A15 +A9A12A13, H = A3A4A15 +A11A12A14,

H = A5A6A15 +A10A11A13, H = A7A8A15 +A9A10A14.

(6)

2 The cubic H is expressed in a canonical form if H = abc + def, where a, b, c, d, e, f
are linear factors.

168 Pavel Pech

2.3 27 lines on the cubic

So far we have investigated cubics H which contain 15 lines. Is there a case when
a cubic H contains 27 real lines? The answer gives the following theorem:

Theorem 3. Let C1 6= 0, C2 6= 0, C3 6= 0. Then a cubic H contains exactly 27
distinct real lines iff

(C1C2 − C2C3 + C3C1)
2 − 4a2C1C2C3 > 0 . (7)

Example 2. For a skew quadrilateral a = 1, b = −2, c = 1, d = 2, e = −1, f = 1
we get the cubic

2p3 − 3p2q− 3pq2 +2q3 − 3p2r− 3q2r+7pr2 + qr2 +24p2 +24pq− 3q2 − 74pr+
10qr − 7r2 − 26p− 77q + 77r = 0.

It holds C1 = 3, C2 = 12, C3 = 8 and

(C1C2 − C2C3 + C3C1)
2 − 4a2C1C2C3 = 144 > 0 .

Then by the Theorem 3 there exist 27 real lines on the cubic, Fig. 3. The com-

Fig. 3. The cubic 2p3 − 3p2q − 3pq2 + 2q3 − 3p2r− 3q2r+ 7pr2 + qr2 + 24p2 + 24pq −
3q2 − 74pr + 10qr − 7r2 − 26p− 77q + 77r = 0 contains 27 real lines

putation of all 27 lines was done in Maple.

On Cubic Surfaces Related to the Simson–Wallace Theorem 169

2.4 Singular points

The following theorem holds:

Theorem 4. If C1 = 0, C2 6= 0, C3 6= 0 or C2 = 0, C1 6= 0, C3 6= 0 or C3 = 0,
C1 6= 0, C2 6= 0 then H possesses 2 nodes.

Proof. First assume that C1 = 0, C2 6= 0, C3 6= 0. By (1) the lines m and n
coincide. As m = A10 ∩A12 and n = A9 ∩A11 then the planes A9, A10, A11 and
A12 have a common line. Further since A9 = a ∪ k, A10 = b ∪ i, A11 = c ∪ l and
A12 = d ∪ j, then the lines a, k, b, i, c, l, d, j intersect the common line m = n. It
is easy to verify that the lines a, c, i, j,m meet at

S1 =
[
0,

b2 + c2 − ab

c
,
e(ab− b2 − c2)

cf

]
,

and the lines b, d, k, l,m at

S2 =
[
a, 0,

d2 + e2 + f2 − ad

f

]
.

Since neither a, c, i, j,m nor b, d, k, l,m are coplanar, the points S1 and S2 are
conical singular points — nodes.

Similarly we proceed if C2 = 0 or C3 = 0. �
Remark 1. Note that the singular points S1 and S2 are intersections of opposite
normals a, c and b, d, and also of the lines i, j and k, l. This is guaranteed by the
condition C1 = 0 which means that the diagonals AC and BD are orthogonal.

Example 3. For a = 1, b = 0, c = 1, d = 0, e = 0, f = 2 we get the cubic

2p2q − 2pq2 + p2r + q2r − 2pr2 − 2qr2 − 2p2 + 3pr + 3qr + 2r2 + 2p− 4r = 0.

Since C1 = 0, C2 = 1, C3 = 3 then the cubic has two nodes at the points (0, 1, 0)
and (1, 0, 2), Fig. 4.

Remark 2. How to find singular points of H in general? Solving the system
{H = 0, ∂H

∂p = 0, ∂H
∂q = 0, ∂H

∂r = 0} together with the condition Ci = 0 for
i = 1, 2, 3 does not give any result at the moment.

3 Concluding remarks

In the text some properties of the cubic surface which is associated with a skew
quadrilateral in E3 were investigated. A few remarks and questions:

Some properties of H are still explored (e.g. Eckhards points, the set of all sin-
gular points, etc.).

We used 6 parameters a, b, c, d, e, f to describe a cubic H. Is it possible to de-
crease the number of parameters, for instance by C1, C2, C3 and ”an unknown

170 Pavel Pech

Fig. 4. The cubic 2p2q−2pq2+p2r+q2r−2pr2−2qr2−2p2+3pr+3qr+2r2+2p−4r = 0
with two nodes.

expression”?

So far we explored the case when orthogonal projections of a locus point onto
the sides of a skew quadrilateral were coplanar (the case s = 0 in (2)). Similarly
we can explore the case when orthogonal projections of a locus point onto the
sides of a skew quadrilateral form a tetrahedron of a constant non-zero volume
s. What are the properties of the locus (the case s 6= 0 in (2))?

What is the locus if we take 4 an arbitrary lines in 3D real Euclidean space
instead of 4 lines which form a skew quadrilateral?

The cubic H could serve as a model for demonstration of some types of cubic
surfaces.

References

1. Dolgachev, I. V.: Classical Algebraic Geometry: A Modern View. Cambridge Univ.
Press, Cambridge (2012)

2. Giering, O.: Affine and Projective Generalization of Wallace Lines. J. Geometry
and Graphics 1, 119–133 (1997)

3. Guzmán, M.: An Extension of the Wallace–Simson Theorem: Projecting in Arbi-
trary Directions. Amer. Math. Monthly 106, 574–580 (1999)

4. Holzer, S., Labs, O.: Illustrating the Classification of Real Cubic Surfaces. In:
Elkadi, Mourrain, M. B., Piene R. (eds.) Algebraic Geometry and Geometric Mod-
eling, pp. 119–134 (2006)

On Cubic Surfaces Related to the Simson–Wallace Theorem 171

5. Johnson, R.: Advanced Euclidean Geometry. Dover, New York (1960)
6. Pech, P.: On Simson–Wallace Theorem and Its Generalizations. J. Geometry and

Graphics 9, 141–153 (2005)
7. Pech, P.: On a 3D Extension of the Simson–Wallace Theorem. J. Geometry and

Graphics 18, 205–215 (2014)
8. Pech, P.: Extension of Simson–Wallace Theorem on Skew Quadrilaterals and Fur-

ther Properties. LNAI, vol. 9201, pp. 108–118. Springer, Heidelberg (2015)
9. Riesinger, R.: On Wallace Loci from the Projective Point of View. J. Geometry

and Graphics 8, 201–213 (2004)
10. Roanes–Lozano, E. M., Roanes–Lozano, M.: Automatic Determination of Geomet-

ric Loci. 3D-Extension of Simson–Steiner Theorem. LNAI, vol. 1930, pp. 157–173.
Springer, Heidelberg (2000)

11. Schläfli, L.: On the Distribution of Surfaces of the Third Order into Species, in
Reference to the Presence or Absence of Singular Points, and the Reality of their
Lines. Philos. Trans. Royal Soc. 153, 193–241 (1863)

12. Wang, D.: Elimination Methods. Springer, Wien New York (2001)
13. Wang, D.: Elimination Practice. Software Tools and Applications. Imperial College

Press, London (2004)

Automated Generation of Keywords from
Images for Geometric Information Search

Dan Song and Xiaoyu Chen?

SKLSDE–LMIB–School of Mathematics and Systems Science,
Beihang University, Beijing 100191, China

Abstract. We outline an approach for automated generation of
keywords in a domain of interest from an image to characterize the
domain information and knowledge that the image may imply. We
take geometry of Euclidean plane as our domain of study and show
how keywords with geometric meanings may be generated and be used
to search for geometric information on the web with image query.
The approach is based on our previous work on automated retrieval
of geometric information from images of diagrams. It works by first
retrieving basic geometric entities and relations from the query image
by means of pattern recognition and numerical verification respectively
and then generating advanced geometric information introduced along
the hierarchical definitions of derived geometric concepts. Finally, the
keywords of different levels are weighted for their influences on the
characterization of the image and are combined to generate several
groups of keywords ordered according to their weights. Experiments with
a preliminary implementation of the approach illustrate the feasibility of
automated generation of keywords for searching the web for geometric
information, in particular geometric theorems, which query images may
imply.

Keywords: geometric feature, pattern matching, image search, geometric
knowledge management

1 Introduction

To search for information or knowledge in a domain of interest from web resources
via popular search engines such as Google and Bing, one usually needs to
characterize queries in a group of keywords in the domain [5]. However, the
choice of keywords may heavily influence the quality of searching results. For
example, it is not easy to efficiently find appropriate keywords to search for
geometric theorems on the web. Images are widely used to represent information
in a domain. An interesting question is how to search for domain information on
the web with image query. Answers to this question may lead to more friendly
and robust interface for general search engines.

? Corresponding author.

Automated Generation of Keywords from Images 173

A lot of work has been dedicated to domain information retrieval with image
query. For example, to retrieve mathematical expressions, an expression-level
TF-IDF (term frequency-inverse document frequency) approach was proposed
using keyword search, where queries and indexed expressions are represented by
keywords taken from LaTeX strings in [7]. For general image retrieval, an efficient
approach was proposed in [4] by combining color information and keyword
information. Content-based image retrieval approaches have been studied to
search for images and perform automatic annotation [3].

In this paper, we will take geometry of Euclidean plane as our domain of study
and show how keywords with geometric meanings may be generated and be used
to search for deep geometric information on the web by taking images of diagrams
as queries. The approach is based on our previous work on automated retrieval
of basic geometric information from images of diagrams [2, 6], and then generate
advanced geometric information introduced along the hierarchical definitions of
derived geometric concepts. Finally, the keywords of different levels are weighted
for their influences on the characterization of the image and are combined to
generate several groups of keywords ordered according to their weights. In this
way, one is able to take an image of diagram as query and obtain geometric
information relevant to the query on the web.

The rest of the paper is organized as follows. In Section 2, a general
approach is outlined for automated generation of keywords in a domain of
interest from an image. The domain E of geometry of Euclidean plane is
briefly specified in Section 3. Then particular strategies and rules developed
for deriving advanced geometric entities and relations from the retrieved basic
information are presented in Section 4 followed by methods of generating groups
of keywords from the derived geometric information in Section 5. Discussions
on implementation issues with experimental results are given in Section 6. The
paper is concluded with some remarks in Section 7.

2 Generation of Keywords from Images: A General
Approach

In this section, we outline a general approach for automated generation of
keywords in a domain of interest from an image to characterize the domain
information and knowledge that the image may imply. The approach may lead
to methods of searching for domain information on the web with image query.
It consists of four main steps as shown in Fig. 1.

1. Specifying the domain of interest. Identify a set E of domain entities, a
set Q of quantities, and a set R of domain relations and represent the
entities, quantities, and their relations formally. Let an image I in the domain
involving the elements of E, Q, and R be given.

2. Retrieving basic domain information. First use pattern recognition and
machine learning techniques to detect domain objects from I and then use
numerical computation to mine domain relations among the detected objects
to obtain basic domain information that the image may imply.

174 Dan Song and Xiaoyu Chen

3. Deriving advanced domain information. Along the hierarchical definitions of
derived domain concepts, advanced domain information may be introduced
from the retrieved basic domain information.

4. Generating appropriate keywords. From the derived domain information,
keywords of different levels are weighted for their influences on the
characterization of the image and are combined to generate groups of
keywords ordered according to their weights.

Fig. 1: Overview of a general approach for generating keywords from images

The general approach may be applied to any concrete domain by
implementing the tasks proposed in each step. In the following sections, we
take geometry of Euclidean plane as the domain of our study and show how
keywords with geometric meanings may be generated and be used to search for
deep geometric information on the web with image query.

3 Specification of Plane Euclidean Geometric Information

To retrieve geometrically meaningful information from image data, it is necessary
to identify in which domain the data should be interpreted and to specify the
domain with formal representation of geometric concepts, so that geometric
information becomes meaningful and processable.

3.1 Representation of Basic Geometric information

Let the sets E0, Q0, and R0 of concepts of basic geometric entities, basic
geometric quantities, and basic geometric relations, respectively, in E be

Automated Generation of Keywords from Images 175

determined first. For example:

E0 = {point(a::Number, b::Number), line(A::Point, B::Point),
halfline(A::Point, B::Point), segment(A::Point, B::Point),
circle(A::Point, B::Point, C::Point), circle(A::Point, B::Point),
circle(A::Point, r::Distance)};

Q0 = {distance(A::Point, B::Point), angle(A::Point, B::Point, C::Point),
size(α::Angle)};

R0 = {incident(A::Point, l::Line), pointOnC(A::Point, o::Circle),
parallel(l::Line,m::Line), perpendicular(l::Line,m::Line),
equal(a::Distance, b::Distance), equal(a::Size, b::Size)}.

Instances of the concepts in E0, Q0, andR0 are given with types, representations,
explanations, and keywords as follows.1 Note that the keyword(s) of each
instance is/are ordered in a list with respect to the frequency of each keyword
appearing in geometric documents on the web, such as articles in Wikipedia
and other web pages. The higher the frequency of one keyword is, the top the
keyword is arranged.

Basic geometric entities

1. Type: Point
Representation: point(x, y)
Meaning: a point with coordinates (x, y)
Keywords: {point}

2. Type: Line
Representation: line(A,B) or halfline(A,B) or segment(A,B)
Meaning: a straight line or a halfline or a segment passing through two
different points A and B
Keywords: {line, halfline, segment}

3. Type: Circle
Representation: circle(A, r) or circle(A,B) or circle(A,B,C)
Meaning: a circle with center A and radius r or a circle with center A
and passing through another point B or a circle passing through three
different points A, B, C
Keywords: {circle}

Basic geometric quantities

1. Type: Distance
Representation: distance(A,B)
Meaning: the distance between A and B where A and B are two points
Keywords: {distance}

2. Type: Angle
Representation: angle(A,B,C)
Meaning: ∠ABC where A, B, and C are three different points
Keywords: {angle}

1 Given an instance I, we use I.type, I.representation, I.meaning, and I.keywords
to represent the type, representation, meaning, and keywords of I, respectively.

176 Dan Song and Xiaoyu Chen

3. Type: Size
Representation: size(α)
Meaning: the size of α where α is an angle
Keywords: {size}

Basic geometric relations

1. Type: Boolean
Representation: incident(A, l)
Meaning: a point A lies on a line l
Keywords: {collinear, incident}

2. Type: Boolean
Representation: pointOnC(A, o)
Meaning: a point A is on a circle o
Keywords: {incident}

3. Type: Boolean
Representation: parallel(l1, l2)
Meaning: a line l1 is parallel to a line l2
Keywords: {parallel}

4. Type: Boolean
Representation: perpendicular(l1, l2)
Meaning: a line l1 is perpendicular to a line l2
Keywords: {perpendicular}

5. Type: Boolean
Representation: equal(distance(A,B), distance(C,D))
Meaning: the distance between two points A and B is equal to the
distance between two points C and D
Keywords: {equidistant}

6. Type: Boolean
Representation: equal(size(angle(A,B,C)), size(angle(D,E, F)))
Meaning: the size of ∠ABC is equal to the size of ∠DEF
Keywords: {equal angle}

The sets of basic geometric entities, quantities, and relations in E given
above are not meant to be complete and they can be diminished or enlarged
as necessary. For instance, the set of basic geometric quantities can be enlarged
by adding the quantity Area.

3.2 Representation of Advanced Geometric information

Based on the concepts in E0,Q0, and R0, advanced geometric concepts may be
derived with formal definitions. For example, the following advanced concepts
can be defined and represented in the formal Geometry Description Language
(GDL [1]).

Advanced geometric entities

1. Advanced geometric entities with type Point

Automated Generation of Keywords from Images 177

(a) Name: Midpoint
Representation: M := midpoint(A,B)
Definition: midpoint(A::Point, B::Point) , [M ::Point where
incident(M, line(A,B)) ∧ equal(distance(M, A), distance(M,
B))]
Keywords: {midpoint, bisect}

(b) Name: Intersection
Representation: P := intersection(l1, l2)
Definition: intersection(l1::Line, l2::Line) , [P ::Point where
incident(P, l1) ∧ incident(P, l2)]
Keywords: {intersection, intersect}

(c) Name: Foot
Representation: A := foot(l1, l2)
Definition: foot(l1::Line, l2::Line) , [A::Point where
A := intersection(l1, l2) ∧ perpendicular(l1, l2)]
Keywords: {closest, foot}

2. Advanced geometric entities with type Line

(a) Name: Triangle
Representation: t := triangle(A,B,C)
Definition: triangle(A::Point, B::Point, C::Point) , [{segment(A,B),
segment(B,C), segment(C,A)}, where ¬incident(A, segment(B,C))]
Keywords: {triangle}

(b) Name: Quadrilateral
Representation: q := quadrilateral(A,B,C,D)
Definition: quadrilateral(A::Point, B::Point, C::Point, D::Point) ,
[{segment(A,B), segment(B,C), segment(C,D), segment(D,A)}, where
¬incident(A, segment(B,C)) ∧ ¬incident(B, segment(C,D)) ∧
¬incident(C, segment(D,A)) ∧ ¬incident(B, segment(D,A))]
Keywords: {quadrilateral}

(c) Name: Parallelogram
Representation: p := parallelogram(A,B,C,D)
Definition: parallelogram(A::Point, B::Point, C::Point, D::Point) ,
[quadrilateral(A::Point, B::Point, C::Point, D::Point, where
parallel(segment(A,B), segment(C,D))∧
parallel(segment(B,C), segment(A,D))]
Keywords: {parallelogram}

(d) Name: Isoscelestrapezoid
Representation: i := trapezoid(A,B,C,D)
Definition: trapezoid(A::Point, B::Point, C::Point, D::Point) ,
[quadrilateral(A::Point, B::Point, C::Point, D::Point), where
parallel(segment(A,B), segment(C,D))∧
¬parallel(segment(B,C), segment(A,D))∧
equal(distance(A, B), distance(C, D))]
Keywords: {isosceles trapezoid}

178 Dan Song and Xiaoyu Chen

(e) Name: n-Polygon (n ≥ 5)
Representation: t := npolygon(P1, . . . , Pn)
Definition: npolygon(P1::Point, . . . , Pn::Point) , [{segment(Pi, Pi+1),
i = 1, . . . , n−1, segment(Pn, P1)}, where ¬incident(Pi, segment(Pj , Pk)),
i, j, k ∈ {1, . . . , n}]
Keywords: {polygon}

3. Advanced geometric entities with type Circle

(a) Name: Circumcircle
Representation: c := circumcircle(t)
Definition: circumcircle(t::Triangle) , [circle(A,B,C) where
{A,B,C} := vertex(t)]
Keywords: {circumcircle}

(b) Name: Incircle
Representation: c := incircle(t)
Definition: incircle(t::Triangle)
, [c := circle(O::Point, r::Length) where t := triangle(A,B,C),
tangent(segment(A,B), c) ∧ tangent(segment(A,C), c)
∧tangent(segment(B,C), c)]
Keywords: {incircle}

Advanced geometric relations

1. Name: Tangent
Representation: tangent(l, c)
Definition: tangent(l::Line, c::Circle) , [pointOnC(foot(center(c), l), c)]
Keywords: {tangent}

2. Name: Bisector
Representation: bisect(A,B,C,D)
Definition: bisect(A::Point, B::Point, C::Point, D::Point) ,
[equal(size(angle(A,B,D)), size(angle(C,B,D)))]
Keywords: {angle bisector}

3. Name: Trisector
Representation: trisect(A,B,C,D)
Definition: trisect(A::Point, B::Point, C::Point, D::Point, E::Point) ,
[equal(size(angle(A,B,D)), size(angle(D,B,E)))∧
equal(size(angle(D,B,E)), size(angle(E,B,C)))])
Keywords: {trisector, trisect}

4. Name: Concurrent
Representation: concurrent(l1, l2, l3)
Definition: concurrent(l1::Line, l2::Line, l3::Line) ,
[incident(intersection(l1, l2), l3)∨
incident(intersection(l2, l3), l1)∨
incident(intersection(l1, l3), l2)]
Keywords: {concurrent}

Automated Generation of Keywords from Images 179

4 Derivation of Advanced Geometric Information

By using the approaches described in [2, 6], a set F of basic geometric entities
and relations can be retrieved from a given image of diagram. In this section,
we explain how to derive advanced geometric entities and relations from the
obtained basic information.

4.1 Strategies for deriving geometric information

From a set of basic geometric entities and relations, different advanced
entities and relations can be derived according to their definitions.
For instance, from basic relations incident(P, l), incident(P, line(C,D)),
and equal(distance(C,P), distance(D,P)), two advanced entities P :=
intersection(l, line(C,D)) and P := midpoint(C,D) can be obtained. In
order to help efficiently derive necessary advanced geometric information inquiry,
the following notations and strategies are introduced.

For each geometric instance O, we introduce a property level (denoted as
O.level), which is an integer in [0,+∞), to characterize the priority of O in the
derivation process.

1. If O is a basic geometric entity or a basic geometric relation, then O.level =
0;

2. if O is an advanced geometric entity P(O1, . . . ,On) with definition in the
form that P(O1, . . . ,On) , [O0 where S(R1, . . . ,Rm)], then O.level =
n

max
i=1
Oi.level + 1;

3. if O is an advanced geometric relation R(O1, . . . ,On) with definition
in the form that R(O1, . . . ,On) , [S(R1, . . . ,Rm)], then O.level =
m

max
i=1
Ri.level + 1.

With the property level of each geometric instance, advanced geometric
entities and relations can be derived according to the following strategies:

1. derive advanced geometric entities and relations in order from lower level to
higher level;

2. for each geometric instance with the same level, first derive advanced
geometric entities, and then derive advanced geometric relations;

3. when deriving advanced geometric entities, first generate derived entities
with type Point, then generate derived entities with type Line, and finally
generate derived entities with type Circle;

4. given geometric relations R1, . . . ,Rm ∈ F, create a new label P , derive an
advanced geometric entity P := P(O1, . . . ,On) by definition in the form that
P(O1, . . . ,On) , [O0 where S(R1, . . . ,Rm)], and add P := P(O1, . . . ,On)
into F; then remove R1, . . . ,Rm from F;

5. given geometric relations R1, . . . ,Rm ∈ F, derive an advanced geometric
relation R(O1, . . . ,On) by definition in the form that R(O1, . . . ,On) ,
[S(R1, . . . ,Rm)], add add R(O1, . . . ,On) into F; then remove R1, . . . ,Rm

from F.

180 Dan Song and Xiaoyu Chen

Remark 1. The reasons of removing relations R1, . . . ,Rm in the strategies 4
and 5 are as follows: (1) prevent F from explosion of geometric information; (2)
geometric information implied by R1, . . . ,Rm has been already contained in an
instance of derived entity or relation, therefore R1, . . . ,Rm are redundant for
characterizing the given image of diagram and for the generation of keywords.
The feasibility of these strategies can be demonstrated by our experiments
presented in Section 6. However, other strategies may be adopted according
to specific requirements.

4.2 Rules for generating advanced geometric information

In this subsection, we present procedural rules of deriving advanced geometric
entities and relations.2

Derive geometric entities with type Point

– Intersection
1. For each point P ∈ F with type Point, create a set GP =
{incident(P, li)|incident(P, li) ∈ F};3

2. For each set GP , if the cardinal number ‖GP ‖ < 2, then break; if
GP = {incident(P, l1), incident(P, l2)},
• if P.level > 0, then create an advanced geometric entity P :=
intersection(l1, l2) and add P := intersection(l1, l2) into F;

• otherwise, update P := intersection(l1, l2).
otherwise, ‖GP ‖ > 2, for each li, count the number Count(li) of lines
in F with the same endpoints of li, and then
• if P.level > 0, create an advanced geometric entity P :=
intersection(lt, lr) and add P := intersection(lt, lr) into F;

• otherwise, update P := intersection(lt, lr),
where Count(lt) and Count(lr) are the maximal two numbers among
{Count(li)| incident(P, li) ∈ GP }.

Derive geometric entities with type Line

1. Re-represent lines in F.
(a) For each entity l ∈ F with type Line, create a set Pl collecting all

the points P1, P2, . . . , PN (2 ≤ N) incident to l. Then for each point
Pi in Pl, we introduce two weights to measure the importance of Pi:
(1) Pi.cw denotes a weight for Pi which counts the number of circles
in F that Pi is incident to ; (2) Pi.lw denotes a weight for Pi which
counts the number of lines in F with Pi as an endpoint. With the
two weights, an order ≺ may be induced on Pl in the following rules.
Given any two points Pi, Pj ∈ Pl,

2 Since different kinds of advanced geometric entities and relations can be derived in a
similar way, we will illustrate the rules for deriving some typical advanced geometric
entities and relations.

3 If i = 0, then GP = ∅.

Automated Generation of Keywords from Images 181

i. if (Pi.cw = 1 and Pi.lw = 0) or (Pj .cw = 1 and Pj .lw = 0) or
(Pi.cw = Pj .cw), then if Pi.cw + Pi.lw ≤ Pj .cw + Pj .lw, then
Pi ≺ Pj ; else Pj ≺ Pi;

ii. else if Pi.cw < Pj .cw, then Pi ≺ Pj ;
iii. else Pj ≺ Pi.

(b) All the points in Pl can be ordered with respect to ≺. Suppose P1 ≺
P2 ≺ · · · ≺ PN , then re-represent l into l := Segment(PN−1, PN).

2. If there exists a nonempty set S of lines in F such that all the endpoints
of the lines in S are incident to a circle, then retrieve a set of n-polygons
(n ≥ 3) S by Algorithm 1 and add all the obtained n-polygons into F;

3. Retrieve a set of n-polygons (n ≥ 3) from F−S by Algorithm 1 and add
all the obtained n-polygons into F.

Derived geometric entities with type Circle

– Circumcircle
Among all the derived n-polygons (n ≥ 3), if there exist m polygons
p1, p2, . . . , pm which are inscribed to a circle c, then

1. if there exists pi (1 ≤ i ≤ m) such that the number of edges of
pi is greater than that of any pj (1 ≤ j ≤ m), then replace the
representation of c with c := circumcircle(pi);

2. otherwise, select pj (1 ≤ j ≤ m) such that there exists no other pi
the number of edges of which is greater than that of pj (1 ≤ j ≤ m),
and replace the representation of c with c := circumcircle(pj).

5 Generation of Keywords for Web and Image Search

In this subsection, we outline our approach of generating keywords from retrieved
geometric information for a given image of diagram. Given a set F of geometric
information and an positive integer N , the following procedure outputs a set K,
whose element is a set of keywords with cardinal number N .

1. Select a geometric entity Ol with type Line from F such that Ol.level ≥
O.level for all O ∈ F where O is with type Line. Then K′ := {∅}. For each
Ki ∈ K, Ki := {Ki∪{k} | k ∈ {Ol.keywords}}, K′ := K′∪Ki. Then K := K′
and F := F− {Ol}.

2. Select a geometric entity Oc with type Circle from F such that Oc.level ≥
O.level for all O ∈ F where O is with type Circle. Then K′ := ∅. For each
Ki ∈ K, Ki := {Ki∪{k} | k ∈ {Oc.keywords}}, K′ := K′∪Ki. Then K := K′
and F := F− {Oc}.

3. Select a geometric entity Op with type Point from F such that Op.level > 0
and Op.level ≥ O.level for all O ∈ F where O is with type Point.
Then K′ := ∅. For each Ki ∈ K, Ki := {Ki ∪ {k} | k ∈ {Op.keywords}},
K′ := K′ ∪Ki. Then K := K′ and F := F− {Op}.

182 Dan Song and Xiaoyu Chen

Algorithm 1 detectPolygon(Sg)

Require: A set Sg of segments.
Ensure: P, a set of set of segments, each P ∈ P is a set of segments, which implies a

polygon P by just containing all the edges of P.
1: P := ∅;
2: Collect all the endpoints of segments in Sg to V, and set n := ‖V‖, visited[i] :=

False, i = 1, . . . , n, curV := 0, E := ∅ denotes the used edges from original start
vertex to current one;

3: visited[curV] := True, ncount := 0, m := ‖Sg‖;
4: for i = 1, . . . ,m do
5: if curV is an endpoint of Sg[i] and all the segments in E lie on the

same side of Sg[i] then
6: idx := the index of the other endpoint of Sg[i] in ‖V‖ except V[curV];
7: if visited[idx] = True then
8: Construct the set C ⊂ E which denote a loop from V[idx] to

V[idx], P := P ∪ {C};
9: Sg := Sg ∪ E− {Sg[i]};

10: go to line 3;
11: else
12: E := E ∪ {Sg[i]}, Sg := Sg − {Sg[i]}, curV := idx;
13: go to line 3;
14: end if
15: else ncount := ncount + 1;
16: end if
17: end for
18: if ncount = m then
19: nE := E, visited[curV] := False, curV := the other endpoint of

E[nE] except V[curV], E := E− {E[nE]};
20: go to line 3;
21: end if
22: Combine polygons in P if they share some common edges;
23: return P;

4. Select a geometric relation R with type Boolean from F such that R.level ≥
R′.level for all R′ ∈ F where R′ is with type Boolean. Then K′ := ∅. For
each Ki ∈ K, Ki := {Ki ∪ {k} | k ∈ {R.keywords}}, K′ := K′ ∪Ki. Then
K := K′ and F := F− {R}.

5. In each of the above four steps, if for any K ∈ K, ‖K‖ ≥ N , then the
procedure stops; otherwise, repeat the four steps.

6 Implementation and Experiments

The techniques of keyword generation from an image of diagram described above
have been implemented in C++ development environment. Diagram images used
for our experiments were produced by using GeoGebra.

We have made some preliminary experiments with a number of selected
diagram images, for which keyword generation was carried out on a PC with

Automated Generation of Keywords from Images 183

2.83 GHz CPU and 4.00 GB of memory. In what follows, we give a complete
example to illustrate our approach of generating keywords from images of
diagrams for searching geometric information on the web. Selected experimental
results are listed in Appendix (see Table 1, where the form “A/B” in the
“Keywords” column means either A or B can be selected as the keyword for
web search).

Example 1. Given an image of diagram of Pascal Theorem (or Nine-point Circle
Theorem) as shown in Fig. 2.

Fig. 2: An image of diagram of Nine-Point Theorem

1. The following basic geometric information can be retrieved from Fig. 2.

– The set P of points of interest:

G := (108, 412), C := (484, 384), B := (36, 417), J := (103, 336),

A := (82, 58), H := (48, 329), I := (231, 179), N := (176, 299),

F := (261, 401), K := (93, 194), M := (294, 360), E := (285, 223),
L := (68, 378), D := (61, 231).

– The set L of lines:

a := segment(B,C), b := segment(A,G), c := segment(H,C),

d := segment(A,C), e := segment(B, I), f := segment(B,A).

– The set C of circles: g := circle(N, 133).

184 Dan Song and Xiaoyu Chen

– The set R of geometric relations:

incident(G, a), incident(J, b), incident(J, c), incident(J, e),

incident(H, f), incident(I, d), incident(F, a), incident(K, b),

incident(M, c), incident(E, d), incident(L, e), incident(D, f),

pointOnC(G, g), pointOnC(H, g), pointOnC(I, g),

pointOnC(F, g), pointOnC(K, g), pointOnC(M, g),

pointOnC(E, g), pointOnC(L, g), pointOnC(D, g),

perpendicular(a, b), perpendicular(c, f), perpendicular(d, e),

equal(distance(C,F), distance(B,F)),

equal(distance(J,K), distance(A,K)),

equal(distance(C,M), distance(J,M)),

equal(distance(C,E), distance(A,E)),

equal(distance(B,L), distance(J, L)),

equal(distance(B,D), distance(A,D)).

2. Advanced geometric information can be derived by using strategies and rules
presented in Section 4.

– The set E of advanced geometric entities:

C := (484, 384), B := (36, 417), A := (82, 58), N := (176, 299),

F := midpoint(C,B),K := midpoint(J,A),M := midpoint(C, J),
E := midpoint(C,A), L := midpoint(B, J), D := midpoint(B,A),
J := intersection(b, c), H := foot(c, segment(B,A)),
I := foot(segment(A,C), e), G := foot(segment(B,C), b),
b := halfline(A,G), c := segment(H,C), e := segment(B, I),

g := circle(N, 133), h := triangle(A,B,C).

– The set R of advanced geometric relations:

concurrent(b, c, e),

pointOnC(G, g), pointOnC(H, g), pointOnC(I, g),
pointOnC(F, g), pointOnC(K, g), pointOnC(M, g),

pointOnC(E, g), pointOnC(L, g), pointOnC(D, g).

3. When set N to be 5, the following four groups of keywords can be generated
by using the procedure shown in Section 5.

(a) {triangle, circle, closest, concurrent, midpoint};
(b) {triangle, circle, foot, concurrent, midpoint};
(c) {triangle, circle, closest, concurrent, bisect};
(d) {triangle, circle, foot, concurrent, bisect};

Automated Generation of Keywords from Images 185

4. By using the generated keywords, geometric information can be searched
from web via Google, as shown in Figs. 3 and 4. From the results, we found
that the second (or the fourth) group of keywords lead to more relevant
information than the first (or the third) group of keywords. The keyword
foot has more influences on the results than midpoint.

Fig. 3: Searching for web pages
via Google by using the generated
keywords

Fig. 4: Searching for images via
Google by using the generated
keywords

7 Concluding Remarks

We have presented an approach for automated generation of keywords
in geometry of Euclidean plane from an image to characterize geometric
information and knowledge that the image may imply. This approach can be used
to search the web for geometric information, in particular geometric theorems,
which a query image may imply. The approach may be also generalized to the
generation of keywords in any other domain of interest from an image in the
domain.

Acknowledgments. The authors wish to thank Professor Dongming Wang for
his insightful ideas on the problem and the referees for their helpful comments
on improving the paper. This work has been supported by the Foundation of
the State Key Laboratory of Software Development Environment under Grant
No. SKLSDE-2016ZX-18 and the Fundamental Research Funds for the Central
Universities under Grant No. YWF-16-SXXY-01.

186 Dan Song and Xiaoyu Chen

References

1. X. Chen. Representation and automated transformation of geometric statements.
Journal of Systems Science & Complexity 27(2):382–412, 2014

2. X. Chen, D. Song, and D. Wang. Automated generation of geometric theorems
from images of diagrams. Geometric Reasoning — Special issue of Annals of
Mathematics and Articial Intelligence 74(3-4):333–358, 2015

3. R. Datta, J. Li, and J. Wang. Content-based image retrieval approaches and trends
of the new age. Multimedia Information Retrieval, 2005

4. Y. Jiang, Z. Zhou, and M.U. Chowdhury. Image retrieval based on the combination
of color and keyword. In: Proceedings of the International Conference on
Computer Science, Software Engineering, Information Technology, e-Business
and Applications, pp. 450–453. International Society for Computers and Their
Applications (ISCA), 2003

5. S. Oyama, T. Kokubo, and T. Ishida. Domain-specific web search with keyword
spices. IEEE Transactions on Knowledge and Data Engineering 16(1):17–27, 2004

6. D. Song, D. Wang, and X. Chen. Discovering geometric theorems from scanned
and photographed images of diagrams. In: Automated Deduction in Geometry (F.
Botana and P. Quaresma, eds.), Lecture Notes in Computer Science 9201, pp.
149–165. Springer, Berlin Heidelberg, 2015

7. R. Zanibbi and B. Yuan. Keyword and image-based retrieval of mathematical
expressions. In: Proceedings of SPIE 7874, Document Recognition and Retrieval
XVIII, 78740I, 2011

Appendix.

Table 1: Selected experimental results

ID Diagram image Keywords

1 {quadrilateral, circumcircle,

closest/foot, midpoint/bisect}

2 {segment, circle,

midpoint/bisect, equidistant}

3 {triangle, circumcircle,

midpoint/bisect, perpendicular}

Automated Generation of Keywords from Images 187

Table 1: Selected experimental results
ID Diagram image Keywords

4 {triangle, midpoint/bisect,

concurrent,

intersection/intersect}

5 {triangle, circle, closest/foot,

concurrent, midpoint/bisect}

6 {triangle, circumcircle,

concurrent, closest/foot,

midpoint/bisect}

7 {triangle, trisector,

equidistant}

8 {triangle, midpoint/bisect,

collinear/incident,

intersection/intersect}

9 {quadrilateral, incircle,

midpoint/bisect,

collinear/incident}

10 {quadrilateral,
intersection/intersect,

collinear/incident}

188 Dan Song and Xiaoyu Chen

Table 1: Selected experimental results
ID Diagram image Keywords

101 {polygon, circumcircle,

intersection/intersect,

concurrent}

11 {polygon, incircle, concurrent}

12 {triangle, intersection, angle

bisector, equidistant}

13 {polygon, intersection,

collinear/incident, triangle}

14 {polygon, intersection,

perpendicular, equidistant}

15 {triangle, circumcircle,

midpoint, tangent}

16 {isosceles trapezoid,

midpoint/bisect, equidistant,

intersection/intersect}

Automated Generation of Keywords from Images 189

Table 1: Selected experimental results
ID Diagram image Keywords

17 {polygon, midpoint/bisect,

equidistant,

intersection/intersect}

18 {triangle, midpoint/bisect,

concurrent, closest/foot}

19 {quadrilateral,
intersection/intersect, angle

bisector,collinear/incident}

20 {triangle, concurrent,angle

bisector}

Formalization of a Surface Subdivision Allowing
a Region with Holes without Coordinates

Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto⋆

School of Science&Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, JAPAN

ktaka@kwansei.ac.jp, chiguri@acm.org, izconnect705@gmail.com

Abstract. This paper discusses how a surface subdivision is formalized
symbolically. We formalize a subdivision of a finite two-dimensional plane
allowing a region with holes. We use a data structure called PLCA. A
PLCA expression is defined using four constructors and represents a sur-
face subdivision without coordinates. We show construction of a configu-
ration for a subdivision and representation of a subdivision using PLCA.
Formalization and proofs are performed within Coq proof assistant.

Keywords: surface subdivision, formalization, PLCA, planarity, Coq

1 Introduction

A number of studies have been undertaken previously on symbolic treatment
of geometric or topological properties. Some of these studies used proof assis-
tants to give a computational model representing spatial data, and to certify
its formalization with a mechanical proof. They sometimes find drawbacks or
oversights in pen-and-paper proofs.

Surface subdivision is a basic concept in computational geometry and topol-
ogy. Intuitively, it is an embedding of a surface with a finite number of connected
regions. There are a number of geometric or topological topics related to sur-
face subdivision, for example, graph embedding, four color theorem and Jordan’s
simple curve theorem [1]. Surface subdivision determines locations of regions for
a given set of points, and it commonly uses a region without holes such as De-
launay triangulation [1]. On the other hand, we consider a case in which a region
with holes can be regarded as a subdivision. That is, we admit all configurations
shown in Figure 1 as a subdivision of a plane. Configuration here means that
a representation of a figure showing its geometric or topological characteristics.
In these figures, a red part shows a region with a hole and a green part shows
a region as a hole. When we admit such cases, the border of each region is not
always a Jordan curve, that is, a simple closed curve without a self-loop [10] (e.g,
Figure 1(c)(d)).

⋆ Currently, JFE Advantech Co., Ltd.

Formalization of a Surface Subdivision 191

(a) (b) (c) (d)

Fig. 1. Surface subdivision: (a) triangulation (no holes), (b) a region with holes, (c) a
region with holes which are connected with a point, and (d) a region with a hole which
is connected to itself with a point.

(a) (b)

Fig. 2. Different configurations with a disconnected component.

There are few symbolic expressions focusing on topological aspects without
the use of coordinates and, to the best of our knowledge, none gives a mechanical
proof of the algorithms for handling disconnected components.

Disconnected components can be regarded as regions that are embedded into
the holes of another region. Therefore, when we admit disconnected components,
we have to explicitly represent the region with holes in which the component
is located, since no coordinate information is provided. For example, the two
configurations shown in Figure 2 should be considered as being different, which
makes formalization difficult.

In this paper, we describe formalization with PLCA to represent a surface
subdivision that allows disconnected components. PLCA is a data structure in
which all incidence relations between objects are stored [14]. Topological and
geometric aspects can be distinguished in this structure. Previously, we have
described its inductive construction and proved that the obtained class is pla-
nar [15]. We first gave a pen-and-paper proof and then a mechanical proof using
a proof assistant Coq [2]. As a rigorous specification is required in a symbolic
formalization, it was necessary to solve subtle problems that can be ignored in
a pen-and-paper proof [11].

In these studies, “planarity” means not only embedding a PLCA expression
in a two-dimensional plane, but also forming a subdivision of a plane. However,
we did not refer to subdivision explicitly, nor did we explain in detail the mean-
ing of the preconditions of each constructor; nevertheless, those are significant
factors in the symbolic treatment of geometric/topological data. In this paper,
we describe construction of PLCA from the viewpoint of subdivision, and how
conditions for surface subdivision are represented with PLCA.

192 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

isolated
point

isolated
line

bridge

Fig. 3. Disallowed configurations of a subdivision

We consider a surface subdivision as a configuration in which both side of
each line always belong to distinct regions. It means that there are no isolated
points or isolated lines, and no bridges (Figure 3). In addition, a configuration
can include a region with holes as a piece of subdivision and regions connected
with a point, which are shown in Figure 1. We represent these conditions in
the form of PLCA planarity. We give a more specific expression for a subdi-
vision and show that a planar PLCA forms a subdivision. Our final goal is to
implement computational geometry algorithms related to surface subdivision in
PLCA, based on the formalization described in this paper.

All the formalization is implemented in Coq. Although we will avoid describ-
ing the messy Coq code here, the entire formalization and proofs have been
uploaded to [12].

The remainder of this paper is organized as follows. In Section 2, we describe
a data structure of PLCA. In Section 3 we show how a surface subdivision is
constructed with PLCA in Coq. In Section 4, we discuss how surface subdivision
is represented in our formalization. In Section 5 we compare our work with
related work, and Section 6 concludes the paper.

2 PLCA

2.1 PLCA Expression

A PLCA data structure was originally designed to give a qualitative representa-
tion of a spatial object. The term “qualitative” implies no use of numerical data
such as coordinates, sizes or ratios etc.; instead, we perform reasoning focusing
on certain characteristics of a spatial object. So far, several qualitative spatial
representations have been proposed [13, 4]. Among them, PLCA is designed to
distinguish connection patterns of regions [14].

Definition 1 (PLCA expression). A PLCA expression is defined as a five-
tuple, 〈P,L,C,A, o〉, where P is a set of points, L ⊆ P 2, C ⊆ Ln (n ≥ 3),
A ⊆ Cm (m ≥ 1), o ∈ C.

In PLCA, there are four kinds of object: points, lines, circuits, and areas.

– Points are the most primitive objects. Points are distinguishable from each
other. We use p as a variable for points.

Formalization of a Surface Subdivision 193

p4

p0 p1 p2

p3 p5

p6

p7 p8

P = {p0, p1, p2, p3, p4, p5, p6, p7, p8}
L = {l0, l1, l2, l3, l4, l5, l6, l7, l8, l9}
C = {o, c0, c1, c2, c3}
A = {a0, a1, a2}

l0 = (p0, p1)
l1 = (p1, p2)
l2 = (p0, p3)
l3 = (p1, p4)
l4 = (p2, p5)
l5 = (p3, p4)
l6 = (p4, p5)
l7 = (p6, p7)
l8 = (p7, p8)
l9 = (p8, p6)

c0 = [l+2 , l
+
5 , l

−
3 , l−0]

c1 = [l+3 , l
+
6 , l

−
4 , l−1]

c2 = [l−9 , l−8 , l−7]
c3 = [l+7 , l

+
8 , l

+
9]

o = [l+0 , l
+
1 , l

+
4 , l

−
6 , l−5 , l−2]

a0 = {c0, c2}
a1 = {c1}
a2 = {c3}

Fig. 4. An example of a PLCA expression.

– A line represents segments between two points. It is defined as a pair of
distinct points, like (p0, p1)

1. We use l as a variable for lines. Each line has
a direction from the first to the second element of the pair. The direction of
a line l is denoted by l+, and its inverse direction by l−.

– A circuit represents a closed outline. It is defined as a list of lines, like
[l0, l1, . . . , ln]. Each circuit is closed, i.e., the first element of the first element
l0 and the second element of the last element ln are the same. We use c as
a variable for circuits.

– An area represents a region enclosed with circuits. It is defined as a set of
circuits, like {c0, c1, . . . , cn}. We use a as a variable for areas.

Additionally, we use a specific circuit in the outermost side of the figure denoted
by outermost. We use o as a variable for outermost.

We show an example of a PLCA expression and an instance of its corre-
sponding configuration in a two-dimensional plane in Figure 4. Note that this
expression has three areas: area a1 is an area without a hole, area a0 is an area
with a hole and area a2 fits in that hole.

1 The original PLCA allows curved lines. Our definition does not allow (p, p) as a line.

194 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

(a) (b)

Fig. 5. Same subdivision, different data structures.

2.2 Equivalence on objects

We use a list as a data type to implement P,L,C,A, each line, circuit and area,
as our first implementation in Coq. It causes us to define the equivalence relation
on lists 2.

Hereafter, the symbol ‘+’ denotes an operation of list contcatenation. For
example, when V = [v, w], [u] + V returns [u, v, w].

Two symbolic expressions that are not identical may stand for the same
configuration. For example, circuits [l1, l2, l3] and [l2, l3, l1] represent the same
circuit, and areas [c1, c2, c3] and [c3, c2, c1] represent the same area. This is due
to the cyclic structure of a circuit, and the data structure of a list for an area.
In this case, we should regard them as equivalent.

On the other hand, we have to distinguish between two expressions when they
stand for the same subdivision but have different configurations. For example, the
expressions for the two configurations shown in Figure 5 should be distinguished,
since the number of points and lines are different.

Considering the above points, we define an equivalence relation over PLCA
expressions.

As P,L,C and A are defined as lists, they are equivalent to permutations of
themselves. Each element of L is equivalent to its inverse, and each element of
C is equivalent to its rotation.

Definition 2 (PLCA-equivalence). Two expressions are PLCA-equivalent
iff the pair of them is in the transitive closure of the following binary relation
Req.

– 〈P, [l+] + L,C,A, o〉 Req 〈P, [l−] + L,C,A, o〉.
– 〈P,L, [c] +C, [[c] + a] +A, o〉 Req 〈P,L, [c′] +C, [[c′] + a] +A, o〉, where c′ is

a rotated circuit of c.
– 〈P,L,C,A, o〉 Req 〈P ′, L′, C ′, A′, o〉, where P ′, L′, C ′ and A′ are permuta-

tions of P , L, C and A, respectively.
– 〈P,L,C, [a] +A, o〉 Req 〈P,L,C, [a′] +A, o〉, where a′ is a permutation of a.
– 〈P,L, [o] + C,A, o〉 Req 〈P,L, [o′] + C,A, o′〉, where o′ is a rotated circuit of

o.

2 If we use data type from a Coq library, for example, MSet, then we may omit these
definitions.

Formalization of a Surface Subdivision 195

We call the above relation PLCA-equivalence.

Note thatReq is reflexive because of the third condition ofReq and the reflex-
ivity of permutations. Therefore, PLCA-equivalence is reflexive and transitive.

2.3 PLCA consistency

A PLCA expression is too permissive to find a corresponding topological space.
For example, if there exists more than one area that contain the same circuit,
such an expression does not make sense. And we should also avoid duplication
in a list. Therefore, we put consistency on this data structure so that it makes
sense.

Definition 3 (consistent PLCA). Let 〈P,L,C,A, o〉 be a PLCA expression.
The PLCA expression is said to be a consistent PLCA expression iff it satisfies
all of the following conditions.

– For each point p ∈ P , there exists l ∈ L such that p ∈ l.
– For each line l ∈ L, all points in l are in P .
– For each line l ∈ L, there exist circuits c, c′ ∈ C such that l+ ∈ c and

l− ∈ c′3.
– For each circuit c ∈ C, each line in c or its inverse line is in L.
– For each circuit c ∈ C except for o, there exists an area a ∈ A such that

c ∈ a.
– For each area a ∈ A, all circuits in a are in C.
– For any area a ∈ A, o 6∈ a.
– Each point p ∈ P appears only once in P .
– Each line l+ ∈ L appears only once in L and l− 6∈ L.
– Each circuit c ∈ C appears only once in C and any rotated circuits other

than c do not appear in C.
– Each area a ∈ A appears only once in A and any equivalent area other than

a does not appear in A.

3 Encoding PLCA

We show PLCA specification in Coq.

3.1 Construction of PLCA

We construct PLCA so that its configuration is a subdivision of a finite two-
dimensional plane allowing a region with holes. We use four constructors, and
explain each constructor according to the meaning of their preconditions.

3 In the formalization in Coq, we define this condition as “for each line l such that
l+ ∈ L or l− ∈ L, there exists the circuit c such that l ∈ c.” These conditions are
the same.

196 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

Initially, we make a finite area, then apply constructors sequentially. We
divide an existing area into two areas and as a result, the number of areas is
incremented by exactly one each time a constructor is applied. At this time,
we either add a connected component or a disconnected component depending
on whether we cut an existing circuit or not. We introduce a new object path
to divide an area. As PLCA has no coordinate information, we have to specify
the area in which such a path is added. As a symbolic operation, we delete one
existing area and add two new areas, and also reconfigure all related objects. The
difficulty on re-composition of a circuit is that we have to find the beginning of
a list, since a circuit has a cyclic structure.

3.2 Objects

Objects in PLCA are defined as follows, where nat denotes a natural number
and prod denotes a product of the two specified arguments.

Definition Point := nat.

Definition Line := prod Point Point.

Definition Circuit := list Line.

Definition Area := list Circuit.

3.3 Basics

Here we provide some definitions of basic functions. Functions reverse and
reverse linelist are prepared to make the reverse circuit (lists of lines), i.e.,
reverse linelist([l+1 , l

+
2 , ..., l

+
n]) = [l−n , ..., l

−
2 , l

−
1]). Proposition Rot is defined on a

pair of circuits to check whether one circuit is obtained by rotating the other,
i.e., Rot([l+1 , l

+
2 , ..., l

+
n], [l

+
2 , l

+
3 , ..., l

+
n , l

+
1]) is true, which is used to define PLCA-

equivalence. InL is a proposition that checks whether a line or its inverse is in
L.

Definition reverse(l : Line) := (snd l, fst l).

Definition reverse_linelist(ll : list Line) := rev (map reverse ll).

Inductive Rot : list A -> list A -> Prop :=

| rotSame : forall (l : list A), Rot l l

| rotNext : forall (l l’ : list A) (a : A), Rot l (a :: l’)

-> Rot l (l’ ++ [a]).

Definition InL (l: Line)(L: set Line) : Prop :=

set_In l L \/ set_In (reverse_linelinst l) L.

PLCA-equivalence is defined as a proposition on a pair of lists of points, a
pair of lists of lines, a pair of lists of circuits, a pair of lists of areas, and a
pair of circuits. Each condition of Definition 2 is encoded. For example, the last
condition, showing that the rotated outermost is equivalent to the original one,

Formalization of a Surface Subdivision 197

is encoded as follows: assume that one PLCA expression has C as a list of circuits
and o as outermost, and the other PLCA expression has C’ as a list of circuits
and o’ as outermost; if o’ is a rotated circuit of o, and C’ also contains o’

instead of o, then these PLCA expressions are equivalent.

rotateOutermost : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)

(o o’ : Circuit),

Rot o o’

-> PLCAequivalence P L C A o P L (map (replace_circuit o o’) C) A o’

We define a path as a sequence of lines with non-negative length. A path does
not have a point that appears more than once. We define another object trail
that is allowed to have a point that appears more than once but is not allowed to
have a line that appears more than once. A path is used as a divider of a circuit
to make a new area, while a trail shows a property of a segment of a circuit.
Note that a circuit is not always a Jordan curve. We can make a closed path (or
trail) by adding a line connecting their start and end points, which corresponds
to a circuit.

Definition 4 (path). A list of lines [(p0, p1), (p1, p2), . . . , (pn−1, pn)] (n > 0)
is said to be a path if p0, . . . , pn are distinct.

Definition 5 (trail). A list of lines [(p0, p1), (p1, p2), . . . , (pn−1, pn)] (n > 0) is
said to be a trail, if there exists no i, j (0 < i 6= j < n) such that (pi−1, pi) =
(pj−1, pj) or (pi−1, pi) = (pj , pj−1).

For example, in Figure 6, a path and a trail are depicted by a red line and
a green line, respectively. Circuits in Figure 6(a) are both closed paths, while
circuits in Figure 6(b)(c) are two closed paths and one closed trail.

(a) (b) (c)

Fig. 6. Circuits constructed by paths (red) and trails (green): (a) two closed paths
(b)(c) two closed paths and one closed trail.

An object trail is inductively defined as follows. The arguments show the
starting point, the ending point, inner points and inner lines. As a base case,

198 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

(a) (b)

rll(c)

C

c

rll(c)

x

y

z

s

e

x

y

z

(c) (d)

Fig. 7. Constructors: (a) single loop, (b) add loop, (c) add inpath, and (d) add inline.
In these figures, ‘rll’ denotes reverse line list.

make a nil trail that consists of a single point without lines 4. Make a step trail
by adding a point that is not included in the existing inner points, and a line
connecting to the new point and the ending point of the existing path. The
function also checks that the new line is not included in the existing inner lines.

Inductive trail : Point -> Point -> list Point -> list Line -> Prop :=

| nil_trail : forall(p : Point), trail p (p::nil) nil

| step_trail : forall(p1 p2 p3 : Point)(pl : list Point)(ll : list Line),

trail p2 p1 pl ll

-> p3 <> p2

-> ~LIn (p3, p2) ll

-> trail p3 p1 (p3::pl) ((p3, p2)::ll).

3.4 Constructors

We show four constructors together with their preconditions: single loop,
add loop, add inpath and add inline. A path is added in the inner side of the
outermost. In the previous work, we consider another constructor add outpath
that adds a path on the outer side of the outermost [11]. In that case, we allow
a trail as an outermost. We can construct PLCA that admits such a configura-
tion, but when focusing on subdivision, it is not suitable to consider such a case.
Therefore, the definition is little different from the one shown in the previous
work.

single loop: Constructor single loop is an initialization that corresponds to add
a Jordan curve to make outermost. It makes a simple path and adds a new line
that connects its start and end points (Figure 7(a)).

The preconditions are simple. (1) The length of a path is more than two to
make directions of its inner lines deterministic. (2) Points in the path should not
be existing ones.

4 A data structure [(p, p)] is taken as a base case in this implementation, which is
not allowed in the definition of a trail or path. And when trail or path is used in a
constructor in the implementation, condition on the length is added.

Formalization of a Surface Subdivision 199

add loop: Constructor add loop adds a Jordan curve to the specified area. It
makes a simple path and adds a new line that connects its start and end points
(Figure 7(b)).

The preconditions are the same as those of single loop. (1) The length of
a path is more than two to make directions of its inner lines deterministic. (2)
Points in the path should not be existing ones.

A new configuration is obtained after putting the closed path onto the exist-
ing area.

add inpath: Constructor add inpath is rather complicated. This constructor cor-
responds to the division of an area by cutting two points of the same existing
circuit that belongs to that area (Figure 7(c)).

The preconditions are as follows. (1) The length of a path is more than zero
to make directions of its inner lines deterministic. (2) Points in the path should
not be existing ones. (3) Two points (that may be the same) connected to the
start and end points of the path should be in the same circuit to avoid a bridge.

A new configuration is obtained after making an area by re-composing an
existing circuit with a new path. In this case, at least two lines are added to L.

add inline: Constructor add inline is similar to add inpath but simpler, since no
new points are added. Intuitively, it makes a shortcut between the two existing,
different points in the same circuit (Figure 7(d)).

The precondition is: (1) There is no line that connects two different points
in the same circuit to guarantee planarity.

A new configuration is obtained after making an area by re-composing an
existing circuit with a new line. In this case, only one line is added to L.

3.5 Inductive PLCA

The four described constructors are formalized below. A PLCA expression con-
structed in this way is called an inductive PLCA expression. In the following,
‘rll’ denotes a function reverse linelist.

single loop: Let p1, p2, ..., pn (n ≥ 3) be distinct points, P = [p1, p2, ..., pn],
L = [(pn, p1), (p1, p2), ..., (pn−1, pn)], c = [(pn, p1), (p1, p2), ..., (pn−1, pn)], C =
[c, rll(c)] and A = [[c]]. Then, 〈P,L,C,A, rll(c)〉 is an inductive PLCA expression.

add loop: Let 〈P,L,C,A, o〉 be an inductive PLCA expression. If p1, p2, ..., pn
(n ≥ 3) are distinct, pi for any i does not appear in P , c = [(pn, p1), (p1, p2), ...,
(pn−1, pn)] and a ∈ A, then 〈P ′, L′, C ′, A′, o〉 is an inductive PLCA expression,
where P ′, L′, C ′, A′ are as follows.

– P ′ = [p1, ..., pn] + P
– L′ = [(pn, p1), (p1, p2), ..., (pn−1, pn)] + L
– C ′ = [c, rll(c)] + C
– A′ = [[c]] + [[rll(c)] + a] + (A− [a])

200 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

add inpath: Let 〈P,L,C,A, o〉 be an inductive PLCA expression. Suppose that
s, p1, ..., pn, e are distinct, s, e and pi for any i do not appear in P . Let ap =
[s, p1, ..., pn, e], al = [(s, p1), ..., (pn, e)]. Note that if s = e, then ap = [s] and
al = []. Also suppose that c ∈ a, a ∈ A, and c = lxy + lyz + lzx where lxy , lyz
and lzx start with points x, y and z and end with points y, z and x, respectively.
At least one of y and z or s and e are different. 〈P ′, L′, C ′, A′, o〉 is an inductive
PLCA expression, where P ′, L′, C ′, A′ are as follows.

– P ′ = ap + P
– L′ = [(y, s), (e, z)] + al + L
– C ′ = [[(s, y)]+ lyz+[(z, e)]+rll(al), lxy+[(y, s)]+al+[(e, z)]+ lzx]+(C− [c])
– A′ = [[[(s, y)]+ lyz +[(z, e)]+ rll(al)], [lxy +[(y, s)]+al +[(e, z)]+ lzx]+ (a−

[c])] + (A− [a])

add inline: Let 〈P,L,C,A, o〉 be an inductive PLCA expression. Suppose that
c ∈ a, a ∈ A, and c = lxy + lyz + lzx where lxy , lyz and lzx start with points x, y
and z and end with points y, z and x respectively. If either (y, z) or its reverse
line is not in L, 〈P,L′, C ′, A′, o〉 is an inductive PLCA expression, where L′, C ′,
A′ are as follows.

– L′ = [(y, z)] + L
– C ′ = [[(z, y)] + lyz , lxy + [(y, z)] + lzx] + (C − [c])
– A′ = [[[(z, y)] + lyz], [lxy + [(y, z)] + lzx] + (a− [c])] + (A− [a])

Figure 8 shows examples of an area division by constructor add inpath. We
put a path on the specified area and connect its start and end points to the
circuit. Note that y and z are the cutting points of an existing circuit, while x
is the starting point of a circuit. Since the circuit has a cyclic structure, and the
rotation of a cycle is equivalent to the original one, reconfiguration of a cycle
begins with the original starting point. Figure 8(a) is a case to put a path on
the area without a hole, Figure 8(b) is a case to put a path on the area with
a hole, and Figure 8(c) is a case in which y and z are the same point, which
corresponds to adding a loop to the existing point.

We show the corresponding Coq specification of each constructor in the Ap-
pendix.

4 Representation of Subdivision

We show that inductive PLCA represents a surface subdivision of a finite two-
dimensional plane that allows a region with holes as a subdivision.

The condition for subdivision is represented in a form of PLCA planarity
which consist of three properties: PLCA-constraint, PLCA-connectedness and
PLCA-euler.

Definition 6 (PLCA-constraints). Let 〈P,L,C,A, o〉 be a PLCA expression.
It is said that the expression satisfies PLCA-constraints iff it satisfies all of the
following conditions.

Formalization of a Surface Subdivision 201

x

y

z

lxy

lyz

lzx

(a)

paths

e

x

y

z

(b)

xy

z

lxy

lyz

lzx

path
s

e

xy

z

(c)

x

y z

lxy

lyz

lzx

path

s e

x

y z

Fig. 8. Examples of dividing an area by add inpath: (a) put a path on the area without
a hole, (b) put a path on the area with a hole, (c) two points in the circuit are the
same.

1. For each line (p, p′) ∈ L, p 6= p′.
2. For each circuit c ∈ C, |c| ≥ 3 and c is a closed trail.
3. For each area a ∈ A,

– if c, c′ ∈ a and c 6= c′, then c and c′ have no shared points or lines.
– if c ∈ a, then c appears in a only once and no rotated circuit of c appear

in a.
– |a| ≥ 1.

4. o is a closed path.

The first condition of PLCA-constraints guarantees that there is no iso-
lated point, and the second condition guarantees that there is no bridge be-
tween points. The third condition is for handling duplicated points in a sin-
gle circuit. For example, in Figure 9, a circuit [(p0, p1), (p1, p2), (p2, p3), (p3, p1),
(p1, p4), (p4, p5), (p5, p0)], that passes point p1 more than once, is included only
in the green area. Note that it is not a combination of two circuits. The fourth
condition is to guarantee that our target plane to be divided is a finite plane
encircled with a Jordan curve.

Definition PLCAconstraints(L : list Line)(C : list Circuit)

(A : list Area)(o : Circuit) : Prop :=

Lconstraint L /\ Cconstraint C /\ Aconstraint A

/\ Circuit_constraints o.

Each constraint is defined as a proposition. For example, the second condition
of Definition 6 is encoded as follows:

202 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

p1

p2

p3

p5p4

p0

Fig. 9. Treatment of circuit including a duplicated point.

Definition Circuit_constraints(c : Circuit) : Prop :=

(exists x : Point, exists pl : list Point, trail x x pl c)

/\ 3 <= length c.

Definition Cconstraint(C : list Circuit) : Prop :=

forall(c : Circuit), In c C -> Circuit_constraints c.

Definition 7 (PLCA-connect). Let 〈P,L,C,A, o〉 be a PLCA expression. A
pair of objects in the expression is said to be PLCA-connect iff it is in the
symmetric transitive closure of the following relation Rc.

1. If p ∈ P , l ∈ L and p ∈ l, then pRc l.
2. If l+ ∈ L or l− ∈ L, c ∈ C and l+ ∈ c, then l+ Rc c.
3. If c ∈ C, a ∈ A and c ∈ a, then cRc a.

Definition 8 (PLCA-connectedness). It is said that a PLCA expression sat-
isfies PLCA-connectedness iff any pair of objects in the expression are PLCA-
connected.

Intuitively, PLCA-connectedness guarantees that no objects are separated,
including the outermost. Each object is traceable from outermost.

Representing PLCA-connectedness has one difficulty: this property holds over
the different types of P,L,C and A. Therefore, we have to convert these data
types to a common data type object, and prepare a new incidence function OIn.

Inductive object :=

| o_point : Point -> object

| o_line : Line -> object

| o_circuit : Circuit -> object

| o_area : Area -> object.

Definition OIn (o : object) : Prop :=

match o with

| o_point p => In p P

| o_line l => In l L

| o_circuit c => In c C

| o_area a => In a A

end.

Formalization of a Surface Subdivision 203

Then, PLCA-connectedness is implemented as follows.

Inductive PLCAconnect : object -> object -> Prop :=

| PLcon : forall(p : Point)(l : Line),

In p P -> In l L -> InPL p l ->

PLCAconnect (o_point p) (o_line l)

| LCcon : forall(l : Line)(c : Circuit),

In l L -> In c C -> LIn l c ->

PLCAconnect (o_line l) (o_circuit c)

| CAcon : forall(c : Circuit)(a : Area),

In c C -> In a A -> In c a ->

PLCAconnect (o_circuit c) (o_area a)

| SYMME : forall(o1 o2 : object),

PLCAconnect o1 o2 -> PLCAconnect o2 o1

| TRANS : forall(o1 o2 o3 : object),

PLCAconnect o1 o2 -> PLCAconnect o2 o3 -> PLCAconnect o1 o3.

Definition PLCAconnected : Prop :=

forall(o1 o2 : object), OIn o1 -> OIn o2 -> PLCAconnect o1 o2.

Definition 9 (PLCA-euler). Let 〈P,L,C,A, o〉 be a PLCA expression. It is
said that the expression satisfies PLCA-euler iff |P | − |L| − |C|+ 2|A| = 0.

PLCA-euler guarantees that a PLCA expression can be embedded in a two-
dimensional plane so that the orientation of each circuit can be correctly defined.

Coq implementation is straightforward.

Definition PLCAeuler : Prop :=

length P + 2 * length A = length L + length C.

Definition 10 (planar PLCA). If a consistent PLCA satisfies PLCA-
constraints, PLCA-connectedness, and PLCA-euler, then it is said to be a planar
PLCA.

The following theorem shows that inductive PLCA satisfies planarity.

Theorem 1. Inductive PLCA is a planar PLCA.

This is proved by proving the following three lemmas.

Lemma PLCA_consistency_and_constraints :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o -> PLCAconsistency P L C A o /\ PLCAconstraints L C A o.

Lemma PLCAconnectedness :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o ->

(forall(p : Point)(l : Line),

204 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

In p P -> In l L -> PLCAconnect P L C A (o_point p) (o_line l))

/\ (forall(l : Line)(c : Circuit),

In l L -> In c C -> PLCAconnect P L C A (o_line l) (o_circuit c))

/\ (forall(c : Circuit)(a : Area),

In c C -> In a A -> PLCAconnect P L C A (o_circuit c) (o_area a)).

Lemma PLCAeuler :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

I P L C A o -> PLCAeuler P L C A.

The PLCA-equivalence preserves PLCA planarity.

Theorem 2. Let e, e′ be equivalent PLCA expressions. If e is a planar PLCA
then e′ is also a planar PLCA.

We define that an expression of subdivision mentioned in Section 1 as follows.
It is defined depending on the case whether a line is included in outermost or
not. Intuitively, this definition means that for each line, if it is not in outermost,
then distinct two areas are connected by this line; otherwise, there exists only
one area that is connected with the outside of the figure by this line.

Definition 11 (subdivision). Let e = 〈P,L,C,A, o〉 be a consistent PLCA
expression. For each l ∈ L, if the following condition is satisfied, then e is said
to be a subdivision: (i) there exist areas a, a′ ∈ A such that a 6= a′, l+ ∈ c ∈ a,
and l− ∈ c′ ∈ a′, for l 6∈ outermost, and (ii) there exists an area a and a circuit
c such that l ∈ c ∈ a, c 6= outermost, for l ∈ outermost.

Finally, we get the following theorem that means a planar PLCA forms a
subdivision.

Theorem 3. A planar PLCA is a subdivision.

It is proved by the following theorems by case split depending on whether a
line is included by the outermost.

Theorem PLCAsubdivision_area :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

PLCA_planar P L C A o ->

forall (l : Line),

In l L

-> ~LIn l o

-> exists (c c’ : Circuit),

In c C

/\ In c’ C

/\ In l c

/\ In (reverse l) c’

/\ exists (a a’ : Area),

In a A

Formalization of a Surface Subdivision 205

/\ In a’ A

/\ In c a

/\ In c’ a’

/\ a <> a’.

Theorem PLCAsubdivision_outermost :

forall(P : list Point)(L : list Line)(C : list Circuit)(A : list Area)

(o : Circuit),

PLCA_planar P L C A o ->

forall (l : Line),

LIn l o

-> exists (c : Circuit),

In c C

/\ LIn l c

/\ o <> c

/\ exists (a : Area),

In a A

/\ In c a.

5 Related Works

Hypermap is a well-known data structure for handling topological aspects of
spatial data; it is an algebraic data structure that consists of a set of darts and
two permutations. Hypermap uses a dart as a primitive, and an edge and a
vertex are defined as compositions of darts. Circuit and connected components
are calculated by permutations. Hypermap is a useful data structure but it is
hard to envisage, for example, a figure embedded in a two-dimensional plane,
since vertices, edges and faces are not represented directly. On the other hand,
PLCA provides a more straightforward expression of a figure.

There are several works that give a formalization based on hypermap and
a proof of geographic/topological properties using proof assistants. Brun et al.
showed a derivation of a program to compute a convex-hull for a given set of
points from their specification [3]. They specified the algorithm and proved its
correctness using a structural induction. Gonthier showed the four color theorem
based on surface subdivision [9]. However, they did not treat a disconnected com-
ponent. Dufourd discusses that embedding polyhedra onto a plane is a sufficient
condition for planarity [6]. In that work, a hypermap was applied to formalize
a discrete version of a Jordan curve and to prove its soundness [7]. Dufourd’s
most relevant work is a formalization of an Delaunay triangulation [8]. They
represented Delaunay triangulation in a form where all edges have two darts
and all faces have three vertices. A coordinate was used to represent a proper
triangle, and disconnected components were not handled. Our formalization on
subdivision includes disconnected components.

Besides a hypermap, Yamamoto et al. studied a graph embedded on a plane
using HOL [16]. That model is simpler since it does not handle regions. There are
few studies on qualitative spatial representation from the viewpoint of theorem
proving. Recently, an interesting work is done by Dapoigny et al. [5]. They

206 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

formalized Tarski’s mereogeometry using Coq. The representation is based on a
part-hole relationship between regions, which is completely different from that
of PLCA.

The doubly connected edge list is a popular data structure in computational
geometry for representing a surface subdivision allowing disconnected compo-
nents [1]. It contains records for each face, edge, vertex of the subdivision. Each
edge is regarded as two half-edges bounding different faces, and each half-edge
has a pointer to its connecting half-edges as well as its twin. Comparing its
data structure with PLCA, an edge (or a line) is represented in relating to the
two faces that share it in both data structures; however, incidence relations of
objects are represented as pointers in the record in doubly connected edge list,
whereas an object is explicitly defined using other existing objects in PLCA;
the location of each object is determined uniquely by the coordinates in doubly
connected edge list, which is different from our work. Moreover, the main goal
of computational geometry is to develop an algorithm that can reduce compu-
tational complexity, whereas here, we investigate the soundness of an algorithm.
The method proposed can handle geometric data on a more abstract level, and
can therefore be applied to prove the correctness of algorithms including doubly
connected edge lists.

6 Conclusion

We have shown a symbolic representation with PLCA for a surface subdivision of
a finite two-dimensional plane that allows holes in a region. All the formalization
and proofs are performed in Coq and consist of about 12,800 lines [12].

In future work, following issues are considered:

– To specify other intuitive definition of planarity and prove the equivalence
with PLCA-Euler.

– To implement high level computational geometry algorithms such as Delau-
nay triangulation or graph embedding algorithms in PLCA and prove them.

– To extend the proposed approach to handle more general surfaces such as
polyhedra or torus with an arbitrary genus.

References

1. de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O.: Computational
Geometry, Springer-Verlag (1997).

2. Bertot, Y. and Castéran, P.: Interactive Theorem Proving and Program Development
- Coq’Art: The Calculus of Inductive Constructions, Springer Verlag (1998).

3. Brun, C., Dufourd, J. -F. and Magaud, N,: Designing and Proving Correct a Convex
Hull Algorithm with Hypermaps in Coq. Computational Geometry : Theory and
Applications, 45(8):436-457 (2012).

4. Cohn, A. G. and Renz, J.: Qualitative Spatial Reasoning Handbook of Knowledge
Representation, F. Harmelen, V. Lifschitz and B. Porter(eds.), Chapt 13, pp.551-
596, Elsevier (2007).

Formalization of a Surface Subdivision 207

5. Dapoigny, R. and Barlatier, P.: A Coq-Based Axiomatization of Tarski’s Mereoge-
ometry, 12th Conference on Spatial Information Theory (COSIT2015), LNCS, vol.
9368, pp. 108–129, Springer-Verlag (2015).

6. Dufourd, J. -F.: Polyhedra Genus Theorem and Euler Formula: A hypermap-
formalized intuitionistic proof, Theoretical Computer Science, 403(2-3):133-159,
Elsevier (2008).

7. Dufourd, J. -F.: An Intuitionistic Proof of a Discrete Form of the Jordan Curve
Theorem Formalized in Coq with Combinatorial Hypermaps. Journal of Automated
Reasoning, 43(1):19-51 (2009).

8. Dufourd, J. -F. and Bertot, Y.: Formal Study of Plane Delaunay Triangulation. 1st
International Conference on Interactive Theorem Proving (ITP2010), LNCS, vol.
6172, pp. 211–226, Springer-Verlag (2010).

9. Gonthier, G.: Formal Proof - The Four Color Theorem. Notices of the AMS,
55(11):1382-1393 (2008).

10. Kosniowski, C.: A First Course in Algebraic Topology, Cambridge University Press
(1980).

11. Moriguchi, S., Goto, M., Takahashi, K.: Towards Verified Construction for Planar
Class of a Qualitative Spatial Representation. 7th International Symposium on
Symbolic Computation in Software Science (SCSS2016), EPiC Series in Computing,
vol.39, pp.117-129 (2016).

12. Moriguchi, S., Goto, M., Takahashi, K.: Formalization of IPLCA. http://ist.
ksc.kwansei.ac.jp/~ktaka/IPLCA2016Apr

13. Stock, O. (Ed.): Spatial and Temporal Reasoning. Kluwer Academic Publishers
(1997).

14. Takahashi, K., Sumitomo, T. and Takeuti, I.: On Embedding a Qualitative Rep-
resentation in a Two-Dimensional Plane. Spatial Cognition and Computation, 8(1-
2):4-26 (2008).

15. Takahashi, K., Goto, M. and Miwa, H.: Construction of a Planar PLCA Expression:
A Qualitative Treatment of Spatial Data. Agents and Artificial Intelligence, LNCS,
vol. 9494, pp. 298–315, Springer-Verlag (2015).

16. Yamamoto, M., Nishizaki, S., Hagiya, M. and Toda, Y.: Formalization of Planar
Graphs. Higher Order Logic Theorem Proving and Its Applications, LNCS, vol.971,
pp. 369–384, Springer-Verlag (2005).

208 Kazuko Takahashi, Sosuke Moriguchi, and Mizuki Goto

Appendix

Coq specification of each constructor.

Inductive I : list Point -> list Line -> list Circuit -> list Area

-> Circuit -> Prop :=

| single_loop : forall(pl : list Point)(ll : list Line)(x y : Point),

simplepath x y pl ll

-> x <> y

-> 2 <= length ll

-> I pl ((y,x)::ll) (((y,x)::ll)::(reverse_linelist ((y,x)::ll))::nil)

((((y,x)::ll)::nil)::nil) ((reverse_linelist ((y,x)::ll)))

| add_inline : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y z : Point)(pxy pyz pzx : list Point)

(lxy lyz lzx : list Line),

I P L C A o

-> In a A

-> In (lxy ++ lyz ++ lzx) a

-> trail x y pxy lxy

-> trail y z pyz lyz

-> trail z x pzx lzx

-> ~LIn (y, z) L

-> y <> z

-> 2 <= length lyz

-> 2 <= length (lxy ++ lzx)

-> I P

((y,z)::L)

(((z,y)::lyz)::(lxy++(y,z)::lzx)

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) C))

((((z,y)::lyz)::nil)

::((lxy++(y,z)::lzx)::(set_remove eq_listline_dec

(lxy ++ lyz ++ lzx) a))

::(set_remove eq_listcircuit_dec a A))

o

| add_inpath : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y z s e : Point)(ap pxy pyz pzx : list Point)

(al lxy lyz lzx : list Line),

I P L C A o

-> In a A

-> In (lxy ++ lyz ++ lzx) a

-> trail x y pxy lxy

-> trail y z pyz lyz

-> trail z x pzx lzx

-> simplepath s e ap al

-> 1 <= length (al ++ lyz)

-> 1 <= length (lxy ++ lzx)

Formalization of a Surface Subdivision 209

-> y <> z \/ s <> e

-> (forall(p : Point), In p ap -> ~In p P)

-> I (ap++P)

((y,s)::(e,z)::al++L)

((((s,y)::lyz)++((z,e)::(reverse_linelist al)))

::(lxy++((y,s)::al)++((e,z)::lzx))

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) C))

(((((s,y)::lyz)++((z,e)::(reverse_linelist al)))::nil)

::((lxy++((y,s)::al)++((e,z)::lzx))

::(set_remove eq_listline_dec (lxy ++ lyz ++ lzx) a))

::(set_remove eq_listcircuit_dec a A))

o

| add_loop : forall(P : list Point)(L : list Line)

(C : list Circuit)(A : list Area)(o : Circuit)

(a : Area)(x y : Point)(ap : list Point)(al : list Line),

I P L C A o

-> In a A

-> simplepath x y ap al

-> x <> y

-> 2 <= length al

-> (forall(p : Point), In p ap -> ~In p P)

-> I (ap++P)

((y,x)::al++L)

(((y,x)::al)::(reverse_linelist ((y,x)::al))::C)

((((y,x)::al)::nil)

::((reverse_linelist ((y,x)::al))::a)

::(set_remove eq_listcircuit_dec a A))

o.

Author Index

A
Abánades, Miguel A. 23
Alam, Md. Ashraful 32
B
Borcea, Ciprian 44
Botana, Francisco 23
Boutry, Pierre 78
Bowers, John C. 54
Braun, David 62
Braun, Gabriel 78
Bécar, Jean-Paul 97
C
Chen, Xiaoyu 172
F
Fleuriot, Jacques 117
G
Garnier, Lionel 97
Ghourabi, Fadoua 117
Goto, Mizuki 190
I
Ida, Tetsuo 117
J
Janičić, Predrag 1, 152
K
Kovács, Zoltán 23, 137, 152
L
Ladra, Manuel 144
M
Magaud, Nicolas 62
Marinković, Vesna 152
Michelucci, Dominique 15
Moriguchi, Sosuke 190
N
Narboux, Julien 78
Nikolić, Mladen 152
P
Pambuccian, Victor 21
Pech, Pavel 162
Páez-Guillán, Pilar 144
R
Recio, Tomás 23, 137, 144

S
Schreck, Pascal 62
Song, Dan 172
Streinu, Ileana 32, 44
Sólyom-Gecse, Csilla 23, 137
T
Takahashi, Kazuko 190

ADG 2016

This volume contains the 14 papers and 3 invited talks pre-
sented at ADG 2016: Eleventh International Workshop on
Automated Deduction in Geometry held on June 26-28,
2016 in Strasbourg, France.

ADG is a forum facilitating the exchange of ideas, pre-
sentation of new research results and demonstrations of
software tools lying at the intersection of geometry and
automated deduction. The selected papers, reviewed by
an international Program Committee, cover diverse topics
ranging from polynomial algebra, invariant and coordinate-
free methods, synthetic and logic approaches, techniques
for automated geometric reasoning from discrete mathe-
matics, symbolic and numeric methods for geometric com-
putation, geometric algorithms, geometric constraint solv-
ing, experimental studies with automated theorem provers,
applications to mechanics, origami and geometric model-
ing.

The previous ten workshops were held in Coimbra 2014,
Edinburgh 2012, Munich 2010, Shanghäı 2008, Ponteve-
dra 2006, Gainesville 2004, Linz 2002, Zurich 2000, Bei-
jing 1998, and Toulouse 1996.

