Multichannel Music Separation with Deep Neural Networks

Aditya Arie Nugraha 1 Antoine Liutkus 1 Emmanuel Vincent 1
1 MULTISPEECH - Speech Modeling for Facilitating Oral-Based Communication
Inria Nancy - Grand Est, LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : This article addresses the problem of multichannel music separation. We propose a framework where the source spectra are estimated using deep neural networks and combined with spatial covariance matrices to encode the source spatial characteristics. The parameters are estimated in an iterative expectation-maximization fashion and used to derive a multichannel Wiener filter. We evaluate the proposed framework for the task of music separation on a large dataset. Experimental results show that the method we describe performs consistently well in separating singing voice and other instruments from realistic musical mixtures.
Type de document :
Communication dans un congrès
European Signal Processing Conference (EUSIPCO), Aug 2016, Budapest, Hungary. pp.1748-1752, Proceedings of the 24th European Signal Processing Conference (EUSIPCO) 〈http://www.eusipco2016.org/〉
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01334614
Contributeur : Aditya Arie Nugraha <>
Soumis le : mercredi 14 juin 2017 - 12:38:58
Dernière modification le : vendredi 27 avril 2018 - 14:00:06
Document(s) archivé(s) le : mardi 12 décembre 2017 - 16:09:53

Fichier

eusipco_w_ack.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01334614, version 2

Citation

Aditya Arie Nugraha, Antoine Liutkus, Emmanuel Vincent. Multichannel Music Separation with Deep Neural Networks. European Signal Processing Conference (EUSIPCO), Aug 2016, Budapest, Hungary. pp.1748-1752, Proceedings of the 24th European Signal Processing Conference (EUSIPCO) 〈http://www.eusipco2016.org/〉. 〈hal-01334614v2〉

Partager

Métriques

Consultations de la notice

307

Téléchargements de fichiers

261