M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964.

D. H. Bailey, MPFUN2015: A thread-safe arbitrary precision computation package, 2015.

D. H. Bailey and J. M. Borwein, High-Precision Arithmetic in Mathematical Physics, Mathematics, vol.3, issue.2, pp.337-367, 2015.
DOI : 10.3390/math3020337

D. H. Bailey, J. M. Borwein, and R. E. Crandall, Integrals of the Ising class, Journal of Physics A: Mathematical and General, vol.39, issue.40, pp.12271-12302, 2006.
DOI : 10.1088/0305-4470/39/40/001

D. J. Bernstein, Fast multiplication and its applications, Algorithmic Number Theory, pp.325-384, 2008.

]. R. Bloemen, Even faster ?(2n) calculation! https, 2009.

A. I. Bogolubsky and S. L. Skorokhodov, Fast evaluation of the hypergeometric function p F p?1 (a; b; z) at the singular point z = 1 by means of the Hurwitz zeta function ?(?, s), Programming and Computer Software, pp.32-145, 2006.

A. R. Booker, A. Strömbergsson, and A. Venkatesh, Effective computation of Maass cusp forms, International Mathematics Research Notices, 2006.
DOI : 10.1155/IMRN/2006/71281

J. M. Borwein, D. M. Bradley, and R. E. Crandall, Computational strategies for the Riemann zeta function, Journal of Computational and Applied Mathematics, vol.121, issue.1-2, pp.247-296, 2000.
DOI : 10.1016/S0377-0427(00)00336-8

J. M. Borwein and I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA Journal of Numerical Analysis, vol.12, issue.4, pp.519-526, 1992.
DOI : 10.1093/imanum/12.4.519

P. Borwein, An efficient algorithm for the Riemann zeta function, pp.29-34, 2000.

P. B. Borwein, Reduced complexity evaluation of hypergeometric functions, Journal of Approximation Theory, vol.50, issue.3, p.50, 1987.
DOI : 10.1016/0021-9045(87)90017-7

A. Bostan, P. Gaudry, and E. Schost, Linear Recurrences with Polynomial Coefficients and Application to Integer Factorization and Cartier???Manin Operator, SIAM Journal on Computing, vol.36, issue.6, pp.1777-1806, 2007.
DOI : 10.1137/S0097539704443793

URL : https://hal.archives-ouvertes.fr/inria-00103401

R. P. Brent, The complexity of multiple-precision arithmetic, The Complexity of Computational Problem Solving, pp.126-165, 1976.

R. P. Brent and F. Johansson, A bound for the error term in the Brent-McMillan algorithm, Mathematics of Computation, vol.84, issue.295, pp.2351-2359, 2015.
DOI : 10.1090/S0025-5718-2015-02931-7

S. Chevillard and M. Mezzarobba, Multiple-Precision Evaluation of the Airy Ai Function with Reduced Cancellation, 2013 IEEE 21st Symposium on Computer Arithmetic, pp.175-182
DOI : 10.1109/ARITH.2013.33

URL : https://hal.archives-ouvertes.fr/hal-00767085

D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, pp.375-472, 1988.

D. V. Chudnovsky and G. V. Chudnovsky, Computer algebra in the service of mathematical physics and number theory, Computers in mathematics, pp.125-109, 1990.

M. Colman, A. Cuyt, and J. V. Deun, Validated computation of certain hypergeometric functions, ACM Transactions on Mathematical Software, vol.38, issue.2, p.38, 2011.
DOI : 10.1145/2049673.2049675

Z. Du, Guaranteed precision for transcendental and algebraic computation made easy, 2006.

Z. Du, M. Eleftheriou, J. E. Moreira, and C. Yap, Hypergeometric Functions in Exact Geometric Computation, Electronic Notes in Theoretical Computer Science, vol.66, issue.1, pp.66-53, 2002.
DOI : 10.1016/S1571-0661(04)80378-5

A. Enge, P. Théveny, and P. Zimmermann, MPC: a library for multiprecision complex arithmetic with exact rounding, 2011.

R. Fateman, [[Maxima] numerical evaluation of 2F1] from RW Gosper, 2006.

S. Fillebrown, Faster computation of Bernoulli numbers, Journal of Algorithms, vol.13, issue.3, pp.431-445, 1992.
DOI : 10.1016/0196-6774(92)90048-H

P. Flajolet and I. Vardi, Zeta function expansions of classical constants, 1996.

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann, MPFR, ACM Transactions on Mathematical Software, vol.33, issue.2, pp.1-13, 2007.
DOI : 10.1145/1236463.1236468

URL : https://hal.archives-ouvertes.fr/inria-00103655

B. Haible, T. Papanikolaou-iii, and J. P. Buhler, Fast multiprecision evaluation of series of rational numbers ANTS, Algorithmic Number Theory: Third International Symposium, pp.338-350, 1998.

F. Johansson, Arb, ACM Communications in Computer Algebra, vol.47, issue.3/4, pp.166-169, 2013.
DOI : 10.1145/2576802.2576828

URL : https://hal.archives-ouvertes.fr/hal-01394258

F. Johansson, Evaluating parametric holonomic sequences using rectangular splitting, Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pp.256-263, 2014.
DOI : 10.1145/2608628.2608629

F. Johansson, Fast and rigorous computation of special functions to high precision, 2014.

F. Johansson, Efficient implementation of elementary functions in the mediumprecision range, 22nd IEEE Symposium on Computer Arithmetic, pp.83-89, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01079834

F. Johansson, mpmath: a Python library for arbitrary-precision floating-point arithmetic, 2015.

F. Johansson, Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numerical Algorithms, pp.253-270, 2015.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001.

E. A. Karatsuba, Fast evaluation of the Hurwitz zeta function and Dirichlet Lseries , Problems of Information Transmission, p.34, 1998.

M. Kodama, Algorithm 912, ACM Transactions on Mathematical Software, vol.37, issue.4, pp.1-25, 2011.
DOI : 10.1145/1916461.1916471

S. Köhler and M. Ziegler, On the stability of fast polynomial arithmetic, Proceedings of the 8th Conference on Real Numbers and Computers, 2008.

K. Kuhlman, Unconfined: command-line parallel unconfined aquifer test simulator. https://github, 2015.

C. Lanczos, A Precision Approximation of the Gamma Function, Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, vol.1, issue.1, pp.86-96, 1964.
DOI : 10.1137/0701008

M. Mezzarobba, Rigorous multiple-precision evaluation of D-finite functions in Sage, Mathematical Software ? ICMS 2016, 5th International Congress

M. Mezzarobba, NumGfun, Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation, ISSAC '10, pp.139-146, 2010.
DOI : 10.1145/1837934.1837965

URL : https://hal.archives-ouvertes.fr/inria-00456983

M. Mezzarobba, Autour de l'´ evaluation numérique des fonctions D-finies, 2011.

M. Mezzarobba and B. Salvy, Effective bounds for P-recursive sequences, Journal of Symbolic Computation, vol.45, issue.10, pp.1075-1096, 2010.
DOI : 10.1016/j.jsc.2010.06.024

URL : https://hal.archives-ouvertes.fr/inria-00376219

N. Michel and M. V. Stoitsov, Fast computation of the Gauss hypergeometric function with all its parameters complex with application to the P??schl???Teller???Ginocchio potential wave functions, Computer Physics Communications, vol.178, issue.7, pp.535-551, 2008.
DOI : 10.1016/j.cpc.2007.11.007

F. W. Olver, Asymptotics and Special Functions, A K Peters, 1997.

J. Pearson, Computation of hypergeometric functions, master's thesis, 2009.

J. W. Pearson, S. Olver, and M. A. Porter, Numerical methods for the computation of the confluent and Gauss hypergeometric functions, Numerical Algorithms, vol.166, issue.3, 2014.
DOI : 10.1007/s11075-016-0173-0

N. Revol and F. Rouillier, Motivations for an arbitrary precision interval arithmetic library and the MPFI library, Reliable Computing, pp.275-290, 2005.

T. Schmelzer and L. N. Trefethen, Computing the Gamma Function Using Contour Integrals and Rational Approximations, SIAM Journal on Numerical Analysis, vol.45, issue.2, pp.558-571, 2007.
DOI : 10.1137/050646342

S. L. Skorokhodov-1, A method for computing the generalized hypergeometric function p F p?1 (a 1 , b p?1 ; 1) in terms of the Riemann zeta function, Computational Mathematics and Mathematical Physics, pp.45-574, 2005.

D. M. Smith, Efficient multiple-precision evaluation of elementary functions, Mathematics of Computation, vol.52, issue.185, pp.131-134, 1989.
DOI : 10.1090/S0025-5718-1989-0971406-0

D. M. Smith, Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions, ACM Transactions on Mathematical Software, vol.27, issue.4, pp.377-387, 2001.
DOI : 10.1145/504210.504211

M. Sofroniou and G. Spaletta, Precise numerical computation, The Journal of Logic and Algebraic Programming, vol.64, issue.1, pp.113-134, 2005.
DOI : 10.1016/j.jlap.2004.07.007

URL : http://doi.org/10.1016/j.jlap.2004.07.007

J. L. Spouge, Computation of the Gamma, Digamma, and Trigamma Functions, SIAM Journal on Numerical Analysis, vol.31, issue.3, pp.31-931, 1994.
DOI : 10.1137/0731050

T. P. Stefa´nskistefa´nski, Electromagnetic problems requiring high-precision computations, IEEE Antennas and Propagation Magazine, pp.344-353, 2013.

M. The, The MPFR library: algorithms and proofs

W. Tucker, Validated numerics: a short introduction to rigorous computations, 2011.

J. Van-der-hoeven, Fast evaluation of holonomic functions, Theoretical Computer Science, vol.210, issue.1, pp.199-215, 1999.
DOI : 10.1016/S0304-3975(98)00102-9

URL : https://hal.archives-ouvertes.fr/hal-01374898

J. Van-der-hoeven, Fast evaluation of holonomic functions near and in regular singularities, Journal of Symbolic Computation, pp.31-717, 2001.

A. Vogt, Computing the hypergeometric function 2F1 using a recipe of Gosper

J. L. Willis, Acceleration of generalized hypergeometric functions through precise remainder asymptotics, Numerical Algorithms, pp.447-485, 2012.

W. Research, The Wolfram Functions Site

N. Yamamoto and N. Matsuda, Validated computation of Bessel functions, 2005 International Symposium on Nonlinear Theory and its Applications (NOLTA2005)

M. Ziegler, Fast (multi-)evaluation of linearly recurrent sequences: Improvements and applications, 2005.