Genetic-based Decoder for Statistical Machine Translation

Ameur Douib 1 David Langlois 1 Kamel Smaili 1
1 SMarT - Statistical Machine Translation and Speech Modelization and Text
LORIA - NLPKD - Department of Natural Language Processing & Knowledge Discovery
Abstract : We propose a new algorithm for decoding on machine translation process. This approach is based on an evolutionary algorithm. We hope that this new method will constitute an alternative to Moses's decoder which is based on a beam search algorithm while the one we propose is based on the optimisation of a total solution. The results achieved are very encouraging in terms of measures and the proposed translations themselves are well built.
Type de document :
Chapitre d'ouvrage
Springer LNCS series, Lecture Notes in Computer Science, 2016
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01336546
Contributeur : Kamel Smaïli <>
Soumis le : jeudi 23 juin 2016 - 11:52:45
Dernière modification le : lundi 24 septembre 2018 - 09:04:03

Fichier

VersionFinalePapierCICLing16-A...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01336546, version 1

Collections

Citation

Ameur Douib, David Langlois, Kamel Smaili. Genetic-based Decoder for Statistical Machine Translation. Springer LNCS series, Lecture Notes in Computer Science, 2016. 〈hal-01336546〉

Partager

Métriques

Consultations de la notice

252

Téléchargements de fichiers

104