R. Amadini, M. Gabbrielli, and J. Mauro, A Constraint-Based Model for Fast Post-Disaster Emergency Vehicle Routing, International Journal of Interactive Multimedia and Artificial Intelligence, vol.2, issue.4, pp.67-75, 2013.
DOI : 10.9781/ijimai.2013.248

URL : https://hal.archives-ouvertes.fr/hal-00909296

R. Amadini, M. Gabbrielli, and J. Mauro, An Empirical Evaluation of Portfolios Approaches for Solving CSPs, CPAIOR, pp.316-324, 2013.
DOI : 10.1007/978-3-642-38171-3_21

URL : https://hal.archives-ouvertes.fr/hal-00909297

R. Amadini, M. Gabbrielli, and J. Mauro, An enhanced features extractor for a portfolio of constraint solvers, Proceedings of the 29th Annual ACM Symposium on Applied Computing, SAC '14, pp.1357-1359, 2014.
DOI : 10.1145/2554850.2555114

URL : https://hal.archives-ouvertes.fr/hal-01089183

R. Amadini, M. Gabbrielli, and J. Mauro, Abstract, Theory and Practice of Logic Programming, vol.41, issue.4-5, pp.4-5, 2014.
DOI : 10.1007/s10601-008-9051-2

R. Amadini, M. Gabbrielli, and J. Mauro, A Multicore Tool for Constraint Solving, IJCAI, pp.232-238, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01227592

R. Amadini and P. J. Stuckey, Sequential Time Splitting and Bounds Communication for a Portfolio of Optimization Solvers, CP, pp.108-124, 2014.
DOI : 10.1007/978-3-319-10428-7_11

URL : https://hal.archives-ouvertes.fr/hal-01091664

R. Amadini, M. Gabbrielli, and J. Mauro, Why CP Portfolio Solvers Are (under)Utilized? Issues and Challenges, LOPSTR, pp.349-364, 2015.
DOI : 10.1007/978-3-319-27436-2_21

URL : https://hal.archives-ouvertes.fr/hal-01227598

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics Surveys, vol.4, issue.0, pp.40-79, 2010.
DOI : 10.1214/09-SS054

URL : https://hal.archives-ouvertes.fr/hal-00407906

B. Bischl, P. Kerschke, L. Kotthoff, M. T. Lindauer, Y. Malitsky et al., ASlib: A benchmark library for algorithm selection, Artificial Intelligence, vol.237, 2015.
DOI : 10.1016/j.artint.2016.04.003

B. Broes-de-cat, J. Bogaerts, M. Devriendt, and . Denecker, Model Expansion in the Presence of Function Symbols Using Constraint Programming, ICTAI, pp.1068-1075, 2013.

C. Gebruers, A. Guerri, B. Hnich, and M. Milano, Making Choices Using Structure at the Instance Level within a??Case Based Reasoning Framework, CPAIOR, pp.380-386, 2004.
DOI : 10.1007/978-3-540-24664-0_27

I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, C. A. Neil et al., Learning when to use lazy learning in constraint solving, ECAI, pp.873-878, 2010.

C. P. Gomes and B. Selman, Algorithm portfolios, Artificial Intelligence, vol.126, issue.1-2, pp.43-62, 2001.
DOI : 10.1016/S0004-3702(00)00081-3

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, 2009.
DOI : 10.1145/1656274.1656278

H. Hoos, M. T. Lindauer, and T. Schaub, Advances in algorithm selection for answer set programming, TPLP, vol.2, issue.14, pp.4-5, 2014.

H. Holger, M. T. Hoos, F. Lindauer, and . Hutter, From Sequential Algorithm Selection to Parallel Portfolio Selection, In LION LNCS, vol.8426, pp.21-35, 2015.

A. Bernardo, . Huberman, M. Rajan, T. Lukose, and . Hogg, An economics approach to hard computational problems, Science, vol.275, issue.5296, pp.51-54, 1997.

B. Hurley, L. Kotthoff, Y. Malitsky, O. Barry, and . Sullivan, Proteus: A Hierarchical Portfolio of Solvers and Transformations, CPAIOR, pp.301-317, 2014.
DOI : 10.1007/978-3-319-07046-9_22

F. Hutter, H. H. Hoos, and K. Leyton-brown, Identifying Key Algorithm Parameters and Instance Features Using Forward Selection, In LION LNCS, vol.7997, pp.364-381, 2013.
DOI : 10.1007/978-3-642-44973-4_40

F. Hutter, L. Xu, H. H. Hoos, and K. Leyton-brown, Algorithm runtime prediction: Methods & evaluation, Artificial Intelligence, vol.206, pp.79-111, 2014.
DOI : 10.1016/j.artint.2013.10.003

S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, Algorithm Selection and Scheduling, CP, 2011.
DOI : 10.1007/978-3-642-23786-7_35

S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, ISAC -Instance-Specific Algorithm Configuration, ECAI, 2010.

G. Katsirelos and F. Bacchus, Generalized NoGoods in CSPs, AAAI, pp.390-396, 2005.

G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon, Resolution and parallelizability: Barriers to the efficient parallelization of SAT solvers, AAAI, 2013.

L. Kotthoff, Algorithm Selection for Combinatorial Search Problems: A Survey, AI Magazine, vol.17, issue.10, pp.48-60, 2014.
DOI : 10.1007/978-3-642-31612-8_18

C. Kroer and Y. Malitsky, Feature Filtering for Instance-Specific Algorithm Configuration, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, pp.849-855, 2011.
DOI : 10.1109/ICTAI.2011.132

A. K. Mackworth, Consistency in networks of relations, Consistency in Networks of Relations, pp.99-118, 1977.
DOI : 10.1016/0004-3702(77)90007-8

Y. Malitsky, D. Mehta, O. Barry, and . Sullivan, Evolving Instance-Specific Algorithm Configuration, SOCS, 2013.
DOI : 10.1007/978-3-319-11230-5_9

Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, Parallel SAT Solver Selection and Scheduling, CP, pp.512-526, 2012.
DOI : 10.1007/978-3-642-33558-7_38

Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, Algorithm Portfolios Based on Cost- Sensitive Hierarchical Clustering, IJCAI. IJCAI/AAAI, 2013.

Y. Malitsky and M. Sellmann, Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation, CPAIOR, 2012.
DOI : 10.1007/978-3-642-29828-8_16

S. Minton, Automatically configuring constraint satisfaction programs: A case study, Constraints, vol.58, issue.1, pp.7-43, 1996.
DOI : 10.1007/BF00143877

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck et al., MiniZinc: Towards a Standard CP Modelling Language, CP, 2007.
DOI : 10.1007/978-3-540-74970-7_38

M. Nikolic, F. Maric, and P. Janicic, Instance-Based Selection of Policies for SAT Solvers, SAT, pp.326-340, 2009.
DOI : 10.1007/978-3-540-74970-7_50

O. Eoin, E. Mahony, A. Hebrard, C. Holland, . Nugent et al., Using case-based reasoning in an algorithm portfolio for constraint solving, AICS, 2008.

Z. Pooranian, M. Shojafar, H. Jemal, M. Abawajy, and . Singhal, GLOA: A New Job Scheduling Algorithm for Grid Computing, International Journal of Interactive Multimedia and Artificial Intelligence, vol.2, issue.1, pp.59-64, 2013.
DOI : 10.9781/ijimai.2013.218

L. Pulina and A. Tacchella, A Multi-engine Solver for Quantified Boolean Formulas, CP, pp.574-589, 2007.
DOI : 10.1007/978-3-540-74970-7_41

L. Pulina and A. Tacchella, A self-adaptive multi-engine solver for quantified Boolean formulas, Constraints, vol.2, issue.1, pp.80-116, 2009.
DOI : 10.1007/s10601-008-9051-2

J. R. Rice, The Algorithm Selection Problem, Advances in Computers, vol.15, pp.65-118, 1976.
DOI : 10.1016/S0065-2458(08)60520-3

O. Roussel and C. Lecoutre, XML Representation of Constraint Networks: Format XCSP 2.1. CoRR, abs/0902, p.2362, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00872825

A. Sabharwal and H. Samulowitz, Insights into Parallelism with Intensive Knowledge Sharing, CP, pp.655-671, 2014.
DOI : 10.1007/978-3-319-10428-7_48

H. Samulowitz, C. Reddy, A. Sabharwal, and M. Sellmann, Snappy: A Simple Algorithm Portfolio, SAT, pp.422-428, 2013.
DOI : 10.1007/978-3-642-39071-5_33

J. Seipp, S. Sievers, M. Helmert, and F. Hutter, Automatic configuration of sequential planning portfolios, AAAI, pp.3364-3370, 2015.

K. Smith-miles, Cross-disciplinary perspectives on meta-learning for algorithm selection, ACM Computing Surveys, vol.41, issue.1, 2008.
DOI : 10.1145/1456650.1456656

K. Stergiou, Heuristics for dynamically adapting propagation in constraint satisfaction problems, AI Commun, vol.22, issue.3, pp.125-141, 2009.

M. Stojadinovic, M. Nikolic, and F. Maric, Short portfolio training for CSP solving. CoRR, abs, 1505.

J. Peter, R. Stuckey, J. Becket, and . Fischer, Philosophy of the MiniZinc challenge, Constraints, vol.15, issue.3, pp.307-316, 2010.

L. Xu, F. Hutter, J. Shen, H. Hoos, and K. Leyton-brown, SATzilla2012: Improved algorithm selection based on cost-sensitive classification models. Solver description, SAT Challenge, 2012.

L. Xu, F. Hutter, H. Hoos, and K. L. Brown, Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors, SAT, pp.228-241, 2012.
DOI : 10.1007/978-3-642-31612-8_18

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-brown, The design and analysis of an algorithm portfolio for sat, CP, pp.712-727, 2007.

L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-brown, Satzilla: Portfolio-based algorithm selection for SAT, JAIR, vol.32, pp.565-606, 2008.