D. Armbruster, P. Degond, and C. Ringhofer, A Model for the Dynamics of large Queuing Networks and Supply Chains, SIAM Journal on Applied Mathematics, vol.66, issue.3, pp.896-920, 2006.
DOI : 10.1137/040604625

C. Bardos, A. Y. Le-roux, and J. Nédélec, First order quasilinear equations with boundary conditions, Communications in Partial Differential Equations, vol.2, issue.33, pp.1017-1034, 1979.
DOI : 10.1090/S0025-5718-1977-0478651-3

G. Bastin, A. M. Bayen, X. Ciro-d-'apice, B. Litrico, and . Piccoli, Open problems and research perspectives for irrigation channels, Netw. Heterog. Media, vol.4, issue.2, p.i?v, 2009.

]. A. Bressan, Hyperbolic systems of conservation laws, Revista Matem??tica Complutense, vol.12, issue.1, 2000.
DOI : 10.5209/rev_REMA.1999.v12.n1.17204

A. Bressan and A. Nordli, The Riemann solver for traffic flow at an intersection with buffer of vanishing size, 2016.

A. Bressan, M. Sun?icasun?ica?sun?ica?ani´sun?ica?ani´c, M. Garavello, B. Herty, and . Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, vol.1, issue.1, pp.47-111, 2014.
DOI : 10.4171/EMSS/2

G. Bretti, R. Natalini, and B. Piccoli, Fast algorithms for a traffic flow model on networks, Discrete and Continuous Dynamical Systems - Series B, pp.427-448, 2006.

Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars flow, Discrete Contin. Dyn. Syst. Ser. B, vol.5, issue.3, pp.599-630, 2005.

G. M. Coclite, M. Garavello, and B. Piccoli, Traffic Flow on a Road Network, SIAM Journal on Mathematical Analysis, vol.36, issue.6, pp.1862-1886, 2005.
DOI : 10.1137/S0036141004402683

R. Courant, K. Friedrichs, and H. Lewy, On the Partial Difference Equations of Mathematical Physics, IBM Journal of Research and Development, vol.11, issue.2, pp.215-234, 1967.
DOI : 10.1147/rd.112.0215

C. F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory, Transportation Research Part B: Methodological, vol.28, issue.4, pp.269-287, 1994.
DOI : 10.1016/0191-2615(94)90002-7

D. Ciro, B. Apice, and . Piccoli, Vertex flow models for vehicular traffic on networks, Math. Models Methods Appl. Sci, vol.18, pp.1299-1315, 2008.

M. L. Delle-monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin et al., A PDE-ODE Model for a Junction with Ramp Buffer, SIAM Journal on Applied Mathematics, vol.74, issue.1, pp.22-39, 2014.
DOI : 10.1137/130908993

URL : https://hal.archives-ouvertes.fr/hal-00786002

M. Garavello and B. Piccoli, Traffic flow on networks, AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), vol.1, 2006.

S. K. Godunov, A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics, Mathematicheckii Sbornik, vol.47, pp.271-290, 1959.

M. Herty, J. Lebacque, and S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, vol.4, pp.813-826, 2009.

H. Holden and N. H. Risebro, A Mathematical Model of Traffic Flow on a Network of Unidirectional Roads, SIAM Journal on Mathematical Analysis, vol.26, issue.4, pp.999-1017, 1995.
DOI : 10.1137/S0036141093243289

S. N. Kru?hkov, FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES, Mathematics of the USSR-Sbornik, vol.10, issue.2, pp.228-255, 1970.
DOI : 10.1070/SM1970v010n02ABEH002156

R. J. Leveque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, 2002.

M. J. Lighthill and G. B. Whitham, On Kinematic Waves. II. A Theory of Traffic Flow on Long Crowded Roads, Proc. Roy. Soc. London Ser. A, pp.317-346, 1955.
DOI : 10.1098/rspa.1955.0089

A. Marigo and B. Piccoli, -Junctions, SIAM Journal on Mathematical Analysis, vol.39, issue.6, pp.2016-2032, 2008.
DOI : 10.1137/060673060

URL : https://hal.archives-ouvertes.fr/hal-00655571

P. I. Richards, Shock Waves on the Highway, Operations Research, vol.4, issue.1, pp.42-51, 1956.
DOI : 10.1287/opre.4.1.42

S. Samaranayake, J. Reilly, W. Krichene, M. L. Delle-monache, P. Goatin et al., Discrete-time system optimal dynamic traffic assignment (SO-DTA) with partial control for horizontal queuing networks . preprint, https, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01095707