Hybrid Recommender System based on Autoencoders

Florian Strub 1, 2 Romaric Gaudel 1, 2 Jérémie Mary 1, 2
2 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : A standard model for Recommender Systems is the Matrix Completion setting: given partially known matrix of ratings given by users (rows) to items (columns), infer the unknown ratings. In the last decades, few attempts where done to handle that objective with Neural Networks, but recently an architecture based on Autoencoders proved to be a promising approach. In current paper, we enhanced that architecture (i) by using a loss function adapted to input data with missing values, and (ii) by incorporating side information. The experiments demonstrate that while side information only slightly improve the test error averaged on all users/items, it has more impact on cold users/items.
Type de document :
Communication dans un congrès
the 1st Workshop on Deep Learning for Recommender Systems, Sep 2016, Boston, United States. pp.11 - 16, 2016, 〈10.1145/2988450.2988456〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01336912
Contributeur : Romaric Gaudel <>
Soumis le : vendredi 2 décembre 2016 - 11:00:17
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32
Document(s) archivé(s) le : mercredi 22 mars 2017 - 23:53:17

Fichiers

AutoEnc.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Copyright (Tous droits réservés)

Identifiants

Collections

Citation

Florian Strub, Romaric Gaudel, Jérémie Mary. Hybrid Recommender System based on Autoencoders. the 1st Workshop on Deep Learning for Recommender Systems, Sep 2016, Boston, United States. pp.11 - 16, 2016, 〈10.1145/2988450.2988456〉. 〈hal-01336912v2〉

Partager

Métriques

Consultations de la notice

204

Téléchargements de fichiers

474