
HAL Id: hal-01337728
https://inria.hal.science/hal-01337728

Submitted on 27 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Higher-order interpretations and program complexity
Patrick Baillot, Ugo Dal Lago

To cite this version:
Patrick Baillot, Ugo Dal Lago. Higher-order interpretations and program complexity. Information
and Computation, 2016, �10.1016/j.ic.2015.12.008�. �hal-01337728�

https://inria.hal.science/hal-01337728
https://hal.archives-ouvertes.fr

Higher-order Interpretations
and Program Complexity

Patrick Baillota, Ugo Dal Lagob

aLaboratoire d’Informatique du Parallélisme, Université de Lyon, CNRS, Ecole Normale
Supérieure de Lyon, INRIA, Université Claude Bernard Lyon 1

bUniversità di Bologna & INRIA

Abstract

Polynomial interpretations and their generalizations like quasi-interpretations
have been used in the setting of first-order functional languages to design crite-
ria ensuring statically some complexity bounds on programs [10]. This fits in the
area of implicit computational complexity, which aims at giving machine-free
characterizations of complexity classes. In this paper, we extend this approach
to the higher-order setting. For that we consider simply-typed term rewrit-
ing systems [35], we define higher-order polynomial interpretations for them,
and we give a criterion ensuring that a program can be executed in polyno-
mial time. In order to obtain a criterion flexible enough to validate interesting
programs using higher-order primitives, we introduce a notion of polynomial
quasi-interpretations, coupled with a simple termination criterion based on lin-
ear types and path-like orders.

Keywords: implicit computational complexity, term rewriting systems, type
systems, lambda-calculus

1. Introduction

The problem of statically analyzing the performance of programs can be
attacked in many different ways. One of them consists in verifying complexity
properties early in the development cycle, when programs are still expressed in
high-level languages, like functional or object-oriented idioms. And in this sce-
nario, results from an area known as implicit computational complexity (ICC in
the following) can be useful: often, they consist in characterizations of complex-
ity classes in terms of paradigmatic programming languages (recursion schemes

URL: patrick.baillot@ens-lyon.fr (Patrick Baillot), dallago@cs.unibo.it (Ugo Dal
Lago)

This work has been partially supported by ANR Project ELICA ANR-14-CE25-0005 and
by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program
”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research
Agency (ANR).

Preprint submitted to Elsevier June 27, 2016

[30, 8], λ-calculus [31], term rewriting systems [10], etc.) or logical systems
(proof-nets, natural deduction, etc.), from which static analysis methodologies
can be distilled. Examples are type systems, path-orderings and variations on
the interpretation method. The challenge here is defining ICC systems which
are not only simple, but also intensionally powerful: many natural programs
among those with bounded complexity should be recognized as such by the ICC
system, i.e., should actually be programs of the system.

One of the most fertile direction in ICC is indeed the one in which programs
are term rewriting systems (TRS in the following) [10, 11], whose complex-
ity can be kept under control by way of variations of the powerful techniques
developed to check termination of TRSs, namely path orderings [20], depen-
dency pairs [33] and the interpretation method [29]. Many different complexity
classes have been characterized this way, from polynomial time to polynomial
space, to exponential time to logarithmic space. And remarkably, many of the
introduced characterizations are intensionally powerful, in particular when the
interpretation method is relaxed and coupled with recursive path orderings, like
in quasi-interpretations [11]. These techniques can be fruitfully combined into
concrete tools (see, e.g., [4])

The cited results indeed represent the state-of-the art in complexity anal-
ysis for first-order functional programs, i.e. when functions are not first-class
citizens. If the class of programs of interest includes higher-order functional
programs, the techniques above can only be applied when programs are either
defunctionalized or somehow put in first-order form, for example by applying
a translation scheme due to the second author and Simone Martini [19]. How-
ever, it seems difficult to ensure in that case that the target first-order programs
satisfy termination criteria such as those used in [11], although some promising
results in this direction have been recently obtained [3]. The article [13] pro-
posed to get around this problem by considering a notion of hierarchical union
of TRSs, and showed that this technique allows to handle some examples of
higher-order programs. This approach is interesting but it is not easy to as-
sess its generality, besides particular examples. In the present work we want
to switch to a higher-order interpretations setting, in order to provide a more
abstract account of such situations.

We thus propose to generalize TRS techniques to systems of higher-order
rewriting, which come in many different flavours [26, 28, 35]. The majority of
the introduced higher-order generalizations of rewriting are quite powerful but
also complex from a computational point of view, being conceived to model
not only programs but also proofs involving quantifiers. As an example, even
computing the reduct of a term according to a reduction rule can in some cases
be undecidable. Higher-order generalizations of TRS techniques [27, 34], in
turn, reflect the complexity of the languages on top of which they are defined.
Summing up, devising ICC systems this way seems quite hard.

In this paper, we consider one of the simplest higher-order generalizations of
TRSs, namely Yamada’s simply-typed term rewriting systems [35] (STTRSs in
the following), we define a system of higher-order polynomial interpretations [34]
for them and prove that, following [10], this allows to exactly characterize the

2

class of polynomial time computable functions. We show, however, that this
way the class of (higher-order) programs which can be given a polynomial in-
terpretation does not include interesting and natural examples, like foldr, and
that this problem can be overcome by switching to another technique, designed
along the lines of quasi-interpretations [11]. This is the subject of sections 4
and 5, which also show how non-trivial examples can be proved polytime this
way.

Another problem we address in this paper is related to the expressive power
of simply-typed term rewriting systems. Despite their simplicity, simply-typed
term rewriting systems subsume the simply-typed λ-calculus and extensions of
it with full recursion, like PCF. This can be proved following [19] and is the
subject of Section 3.

A preliminary version of this work appeared as a conference paper in [6].
Compared to this short version, the main contributions of the present paper are
the following ones:
• detailed proofs of the results (several of them had to be omitted or only

sketched in [6] because of space constraints);
• description of translations of typed λ-calculus and PCF into STTRS (Section

3);
• more examples of programs to which one can apply the complexity criterion

of higher-order quasi-interpretations (Section 5.6);
• discussion of embeddings of other ICC systems into our setting (Section 6).

2. Simply-Typed Term Rewriting Systems

2.1. Basic Definitions and Notation

We recall here the definition of a simply-typed term rewriting systems (STTRS),
following [35, 2]. We will actually consider a subclass of STTRSs, basically the
one of those STTRSs whose rules’ left hand side consists of a function sym-
bol applied to a sequence of patterns. For first-order rewriting systems this
corresponds to the notion of a constructor rewriting system.

We consider a denumerable set of base types, which we call data-types, that
we denote with metavariables like D And E. Types are defined by the following
grammar:

A,Ai ::= D | A1 × · · · ×An → A.

A functional type is a type which contains an occurrence of →. Some examples
of base types are the type Wn of strings over an alphabet of n symbols, and the
type NAT of tally integers.

We denote by F the set of function symbols (or just functions), C the set of
constructors and X the set of variables. Constructors c ∈ C have a type of the
form D1 × · · · ×Dn → D, for n ≥ 0. For instance Wn has constructors empty
of type Wn and c1, . . . , cn of type Wn → Wn. Functions f ∈ F , on the other
hand, can themselves have any functional type. Variables x ∈ X can have any
type. Terms are typed and defined by the following grammar:

t, ti := xA | cA | fA | (tA1×···×An→A tA1
1 . . . tAn

n)A,

3

where xA ∈ X , cA ∈ C, fA ∈ F . We denote by T the set of all terms. Observe
how application is primitive and is in general treated differently from other
function symbols. This is what makes STTRSs different from ordinary TRSs.
FV (t) is the set of variables occurring in t. t is closed iff FV (t) = ∅. STTRS,
in other words, can be seen as a generalized, typed form of combinatory logic.

To simplify the writing of terms, we often elide their type. We will also write
(t s) for (t s1 . . . sn). Therefore any term t is of the form (. . . ((α s1) s2) . . . sk)
where k ≥ 0 and α ∈ X ∪ C ∪ F . We will also use the following convention:
any term t of the form (. . . ((s s1) s2) . . . sk) will be written ((s s1 . . . sk))
or ((s s11 . . . s1n1

. . . sk1 . . . sknk
)). Observe however that, e.g., if r has type

A1 × A2 → (B1 × B2 → B), ti has type Ai for i ∈ {1, 2}, si has type Bi for
i ∈ {1, 2}, then both (r t) and ((r t) s) are well-typed (with type B1 ×B2 → B
and B, respectively), but (r t1) and ((r t) s1) are not well-typed. We define the
size |t| of a term t as the number of symbols (elements of F ∪C ∪X) it contains.
We denote t{x/s} the substitution of term s for x in t.

A pattern is a term generated by the following grammar:

p, pi := xA | (cD1×...×Dn→D pD1
1 . . . pDn

n).

P is the set of all patterns. Observe that patterns of functional type are neces-
sarily variables. We consider rewriting rules in the form l→ r, where:
1. l and r are terms of the same type A, FV (r) ⊆ FV (l), and any variable

occurs at most once in l;
2. l must have the form ((f p1 . . . pk)) where each pi for i ∈ {1, . . . , k} is a

pattern. The rule is said to be a rule defining f, while k ∈ N is the arity of
the rule. Notice that the arity of a rule is univocally defined.

Now, a simply-typed term rewriting system (STTRS in the following) is a set R
of non-overlapping rewriting rules such that for every function symbol f, every
rule defining f has the same arity, which is said to be the arity of f. A program
P = (f, R) is given by a STTRS R and a chosen function symbol f ∈ F .

In the next section, a notion of reduction will be given which crucially relies
on the concept of a value. More specifically, only values will be passed as argu-
ments to functions. Formally, we say that a term is a value if either:
1. it has a type D and is in the form (c v1 . . . vn), where v1, . . . , vn are them-

selves values;
2. or it has functional type A and is of the form ((f v1 . . . vn)), where the terms

in v1, . . . vn are themselves values and n is strictly smaller than the arity of
f.

Condition 2 is reminiscent of the λ-calculus, where an abstraction is a value.
Please observe that values are always closed, i.e., they cannot contain variables
from X . We denote values as v, u and the set of all values as V.

2.2. Dynamics

The evaluation of terms will be formalized by a rewriting relation. Before
giving it, we need to introduce notions of substitution and unification. A sub-
stitution σ is a map from variables to values with a finite domain, and such that

4

σ(xA) has type A. A substitution σ is extended in the natural way to a function
from T to itself, that we shall also write σ. The image of a term t under the
substitution σ is denoted tσ. Contexts are defined as terms but with the proviso
that they contain exactly one occurrence of a special constant •A (hole) having
type A. They are denoted with metavariables like C or D. If C is a context
with hole •A, and t is a term of type A, then C{t} is the term obtained from C
by replacing the occurrence of •A by t. Consider a STTRS R. We say that t
reduces to s in call-by-value, denoted as t →R s, if there exist a rule l → r of
R, a context C and a substitution σ such that lσ is a closed term, t = C{lσ}
and s = C{rσ}. When there is no ambiguity on R, we simply write → instead
of →R. Since we are considering non-overlapping systems and a call-by-value
reduction, we have the following property:

Proposition 1 (Strong Confluence). Let R be a STTRS and suppose we
have t→R s and t→R r. Then either s = r or there exists q such that s→R q
and r →R q.

Please notice that one of the advantages of STTRSs over similar formalisms
(like HORS [26] and CRS [28]) is precisely the simplicity of the underlying
unification mechanism, which does not involve any notion of binding and is
thus computationally simpler than higher-order matching. There is a price to
pay in terms of expressivity, obviously. In the next section, however, we show
how STTRSs are expressive enough to capture standard typed λ-calculi.

3. Typed λ-calculi as STTRSs

The goal of this Section is to illustrate the fact that the choice of the STTRS
framework as higher-order calculus is not too restrictive: indeed we will show
that we can simulate in it PCF equipped with weak reduction (i.e. where one
does not reduce under the scope of abstractions). This is achieved using ideas
developed for encodings of the λ-calculus into first-order rewriting systems [19].

3.1. A Few Words About PCF

We assume a total order ≤ on the set X of variables. PCF types are defined
as follows:

A,B ::= NAT | A→ A.

PCF terms, on the other hand, are defined as follows:

M,L ::= xA | (λxA.MB)A→B | (MA→BLA)B | (fix M (A→B)→A→B)A→B |
nNAT | succNAT→NAT | predNAT→NAT | (ifz MA LA)NAT→A,

where n ranges over the natural numbers, and x ranges over X . We omit types
in terms whenever this does not cause ambiguity. A PCF value is any term
different from an application. PCF values are indicated with metavariables like

5

V . A call-by-value operational semantics for PCF can be expressed by way of
some standard reduction rules:

(λx.M)V −→M{V/x};
(fix M)V −→M((fix M)V);

succ n −→ n + 1;

pred 0 −→ 0;

pred n + 1 −→ n;

(ifz M L) 0 −→M ;

(ifz M L) n + 1 −→ L.

The reduction rules above can be propagated to any applicative context by the
rules below, thereby defining a weak call-by-value semantics:

M −→ L
MP −→ LP

M −→ L
PM −→ PL

Example 1. As an example of a PCF program, consider the following term of
type NAT → NAT computing the factorial of any natural number:

FACT = (fix (λf.λy.(ifz 1 (PROD (f (pred y)) y)) y)),

where PROD is another program of type NAT → NAT → NAT computing the
product of two natural numbers. Now, one easily verifies that:

FACT 2→3 (ifz 1 (PROD (FACT (pred 2)) 2)) 2

→ PROD (FACT (pred 2)) 2

→3 PROD ((ifz 1 (PROD (FACT (pred 1)) 1)) 1) 2

→ PROD (PROD (FACT (pred 1)) 1) 2

→3 PROD (PROD ((ifz 1 (PROD (FACT (pred 0)) 0)) 0) 1) 2

→ PROD (PROD 1 1) 2

→∗ PROD 1 2

→∗ 2.

3.2. PCF as a STTRS

PCF can be turned into a STTRS RPCF with infinitely many function sym-
bols. First, for each term M of type B, with free variables x1 ≤ x2 ≤ . . . ≤ xn
of types A1, . . . , An, and possibly x of type A, we introduce a function symbol
absM,x of F , with type A1×· · ·×An → (A→ B). Please notice that in absM,x,
as it is a function symbol, no variable occurs free, even if M can of course be
open. Then, for each pair of terms M,L of type B, both with free variables

6

among x1 ≤ x2 ≤ . . . ≤ xn of types A1, . . . , An, we introduce a function ifzM,L

of F , with type A1 × · · · × An → (NAT → B). Similarly, for every M of type
(A → B) → A → B with free variables x1 ≤ . . . ≤ xn of types A1, . . . , An, we
need a function symbol fixM , with type A1 × · · · ×An → (A→ B) Finally, we
need function symbols for succ, pred. Now, the translation 〈M〉 is defined by
induction on M :

〈x〉 = x;

〈M L〉 = (〈M〉 〈L〉);
〈λx.M〉 = (absM,x x1 . . . xn),

if FV (M)− {x} = x1 ≤ . . . ≤ xn;

〈fix M〉 = (fixM x1 . . . xn),

if FV (M) = x1 ≤ . . . ≤ xn;

〈n〉 = (s (s (. . . (s︸ ︷︷ ︸
n times

0) . . .)))

〈succ〉 = succ;

〈pred〉 = pred;

〈ifz M L〉 =(ifzM,L x1 . . . xn),

if FV (M) ∪ FV (L) = x1 ≤ . . . ≤ xn.

A converse translation [·] can be easily defined. As an example, the following
equations hold:

[(absM,x t1 . . . tn)] = (λx.M){[t1]/x1, . . . , [tn]/xn};
[(fixL t1 . . . tm)] = (fix L){[t1]/y1, . . . , [tm]/ym};

[(ifzP,Q t1 . . . tp)] = (ifz P Q){[t1]/z1, . . . , [tp]/zp};

where x1 ≤ . . . ≤ xn are the free variables of λx.M , y1 ≤ . . . ≤ ym are the free
variables of L and z1 ≤ . . . ≤ zp are the free variables of P and Q. Please observe
that defining [·] requires a bit of care: the way an application (t s1 . . . sn) is
translated back into a PCF term depends on the nature of t.

Lemma 2. If M is a PCF term of type A, then 〈M〉 is a well-typed term, of
type A.

Proof. An easy induction on M . �

7

Reduction rules of the STTRS RPCF are the following:

((absM,x x1 . . . xn) x)→ 〈M〉;
((fixM x1 . . . xn) x)→ ((〈M〉 (fixM x1 . . . xn)) x);

(succ x)→ (s x);

(pred 0)→ 0;

(pred (s x))→ x;

((ifzM,L x1 . . . xn) 0)→ 〈M〉;
((ifzM,L x1 . . . xn) (s x))→ 〈L〉.

Example 2. Let us reconsider the term FACT from Example 1. Recall that

FACT = (fix (λx.λy.(ifz 1 (PROD (x (pred y)) y)) y)).

Now, define the following shortcuts:

M = λx.λy.(ifz 1 (PROD (x (pred y)) y)) y;

L = λy.(ifz 1 (PROD (x (pred y)) y)) y;

P = (ifz 1 (PROD (x (pred y)) y)) y;

Q = PROD (x (pred y)) y;

Among the rules of RPCF, one has, for example,

(fixM x)→ ((〈M〉 fixM) x);

(absL,x x)→ 〈L〉;

and similar rules for absP,y and ifz1,Q. It is then easy to verify that, as an
example,

〈FACT 2〉 = (fixM 〈2〉)→ ((〈M〉 fixM)〈2〉) = ((absL,x fixM)〈2〉)
→ ((〈L〉{fixM/x})〈2〉) = ((absP,y fixM) 〈2〉)
→ ((〈P 〉{fixM/x, 〈2〉/y} = ((ifz1,Q fixM 〈2〉) 〈2〉)
→ ((〈Q〉{fixM/x, 〈2〉/y} = ((〈PROD〉 (fixM (pred 〈2〉))) 〈2〉)
→ ((〈PROD〉 (fixM 〈1〉)) 〈2〉) = ((〈PROD〉 〈FACT 1〉) 〈2〉).

A term of RPCF is said to be canonical if it is either a first-order value or a
variable or if it is in the form ((f t1 . . . tn s1 . . . sm)), where n,m ≥ 0, n + 1 is
the arity of f, t1, . . . , tn are values and s1, . . . , sm are themselves canonical. The
following are technical intermediate results towards Theorem 8:

Lemma 3. For every PCF term M , [〈M〉] = M .

Proof. By induction on the structure of M . Some interesting cases:
• If M = ifz L P , then

[〈ifz L P 〉] = [(ifzL,P x1 . . . xn)]

= (ifz L P){x1/x1, . . . , xn/xn} = ifz M L.

8

• If M = λx.L, then

[〈λx.L〉] = [(absL,x x1 . . . xn)]

= (λx.L){x1/x1, . . . , xn/xn} = λx.L.

This concludes the proof. �

Lemma 4. For every closed PCF term M , 〈M〉 is canonical. Moreover, if t is
canonical and t→ s, then s is canonical.

Proof. The fact that 〈M〉 is always canonical can be proved by induction on
the structure of M . Some interesting cases:
• If M is either succ or pred or n, then 〈M〉 is a value, and values are always

canonical.
• If M is ifz L P , then t = 〈M〉 is in the form (ifzL,P x1 . . . xn) and the arity

of ifzL,P is n+ 1. As a consequence, t is canonical.
• If M is L P , then t = 〈M〉 is (〈L〉 〈P 〉). By induction hypothesis, s = 〈L〉

and r = 〈P 〉 are canonical. Moreover, s is of functional type, thus in the
form ((f t1 . . . tn s1 . . . sm)), where n,m ≥ 0, n+ 1 is the arity of f, t1, . . . , tn
are values and s1, . . . , sm are themselves canonical. Observe, however, that
t can be written as

((f t1 . . . tn s1 . . . sm r)),

which is itself canonical, because r is canonical.
The fact that canonicity is preserved by reduction is a consequence of the adop-
tion of a call-by-value notion of reduction: it is routine to prove that substitution
of values for variables in 〈M〉 ends up in a canonical term. �

Lemma 5. A closed canonical term t is a normal form iff [t] is a normal form.

Proof. Again, a simple induction of t, exploiting the following fact: for both
PCF and RPCF, the set of closed normal forms coincides with the set of val-
ues.
• If t is a first-order value, then it is in normal form and, moreover, also [t] is

in normal form.
• t cannot be a variable.
• Now, suppose that t is in the form ((f t1 . . . tn s1 . . . sm)), where n,m ≥ 0,
n+1 is the arity of f, t1, . . . , tn are values and and s1, . . . , sm are themselves
canonical. By some case analysis on f, one can easily reach the thesis.

This concludes the proof. �

Lemma 6. If t is canonical and t→ s, then [t]→ [s].

Proof. Without any loss of generality, we can assume that t is the redex fired to
get s. Thus, the thesis is reached once a simple substitution lemma is proved: if
r and q are both canonical, then [r{x/q}] = [r]{x/[q]}. This is an easy induction
on r. �

9

Lemma 7. If M −→ L, t is canonical and [t] = M , then t→ s, where [s] = L.

Proof. Again, without any loss of generality we can assume that M is the redex
fired to get L. Then one can proceed by some case analysis on M , and easily
conclude. �

Theorem 8 (Term Reducibility). Let M be a closed PCF term. The follow-
ing two conditions are equivalent:
1. M −→∗ L where L is in normal form;
2. 〈M〉 →∗ t where [t] = L and t is in normal form.

Proof. Suppose M −→n L, where L is in normal form. Then, by applying
Lemma 7, we obtain a term t such that 〈M〉 →n t and [t] = L. By Lemma 4,
t is canonical and, by Lemma 5, it is in normal form. Now, suppose 〈M〉 →n t
where [t] = L and t is in normal form. By applying n times Lemma 6, we obtain
[〈M〉] −→n [t] = L. But [〈M〉] = M by Lemma 3 and L is a normal form by
Lemma 5, since 〈M〉 and t are canonical by Lemma 4. �

It is also instructive to consider a source language which is less expressive than
PCF, namely Gödel’s T. For that, remove in the language the unary construct
fix , and replace it with a binary construct

(rec MA LNAT→A→A)NAT→A,

obeying the following reduction rules:

(rec M L) 0 −→M ;

(rec M L) n + 1 −→ L n ((rec M L) n).

We translate it to a STTRS RT similar to RPCF: one adds function symbols
recM,L, each with the following rules:

((recM,L x1 . . . xn) 0)→ 〈M〉;
((recM,L x1 . . . xn) (s y))→ ((〈L〉 y)((recM,L x1 . . . xn) y));

where, as usual, x1 . . . xn are the variables occurring free in either M or L. This
encoding of system T then enjoys properties similar to the one of PCF.

Remark. The encodings of PCF and Gödel’s T we have just described give rise
to infinite STTRSs, called 〈PCF〉 and 〈T〉 respectively. On the other hand, if
we restrict our attention to, e.g., one T program M of type NAT → NAT , one
can prove that only finitely many symbols among the ones in 〈T〉 are sufficient
not only to encode M and all possible inputs for it, but also to evaluate them.
Of course, one cannot hope to catch all those fragments of 〈T〉 if his or her aim
is to be sound for polynomial time computability. But, as we will discuss in
Section 5.1, our termination criterion is powerful enough to catch (the encoding
of) many T terms. �

10

4. Higher-Order Polynomial Interpretations

We want to demonstrate how first-order rewriting-based techniques for ICC
can be adapted to the higher-order setting. Our goal is to devise criteria en-
suring complexity bounds on programs of first-order type possibly containing
subprograms of higher-order types. A typical application will be to find out
under which conditions a higher-order functional program such as e.g. map,
iteration or foldr, fed with a (first-order) polynomial time program produces
a polynomial time program.

As a first illustrative step we consider the approach based on polynomial
interpretations from [10], which offers the advantage of simplicity. We thus
build a theory of higher-order polynomial interpretations for STTRSs. It starts
from a particular concrete instantiation of the methodology proposed in [35] for
proving termination by interpretation, on which we prove additional properties
in order to obtain polynomial time complexity bounds.

Higher-order polynomials (HOPs) take the form of terms in a typed λ-
calculus whose only base type is that of natural numbers. To each of those
terms can be assigned a strictly increasing function in a category FSPOS with
products and functions. So, the whole process can be summarized by the fol-
lowing diagram:

STTRSs
[·] // HOPs

J·K // FSPOS

4.1. Higher-Order Polynomials (HOPs)

Let us consider types built from a base type N:

A,B ::= N | A→ A.

An → B stands for the type

A→ . . .→ A︸ ︷︷ ︸
n times

→ B.

Let CP be the following set of constants:

CP = {+ : N2 → N,× : N2 → N} ∪ {n : N | n ∈ N?}.

Observe that in CP we have constants of type N only for strictly positive inte-
gers. We consider the following grammar of Church-typed terms:

M,P := xA | cA | (MA→BPA)B | (λxA.MB)A→B ,

where cA ∈ CP and in (λxA.MB) we require that x occurs free in M . A higher-
order polynomial (HOP) is a term of this grammar which is in β-normal form.
We use an infix notation for + and ×.

HOP contexts (or simply contexts) are defined as HOPs but with the proviso
that they must contain exactly one occurrence of a special constant •A (the

11

JnK = n;

J+K(a, b) = a+ b;

J×K(a, b) = a× b;
(J(λxA.MB)A→BK(a1, . . . , an))(a) = JMBK(a1, . . . , an, a);

J(MA→BPA)BK(a1, . . . , an) = (J(MA→BK(a1, . . . , an))(JPAK(a1, . . . , an)).

Figure 1: Set-theoretic Interpretation of HOPs.

hole), for a type A. They are indicated with metavariables like C, D. . . If C is a
HOP context with hole •A, and M is a HOP of type A, then C{M} is the HOP
obtained from C by replacing the occurrence of •A by M and reducing to the β
normal form.

We consider the usual set-theoretic interpretation of types and terms, de-
noted as JAK and JMK, respectively: ifM has typeA and FV (M) = {xA1

1 , . . . , xAn
n },

then JMK is a function from JA1K× . . .× JAnK to JAK; the definition is given in
Figure 1. We denote by ≡ the equivalence relation which identifies terms denot-
ing the same function, e.g. we have: λx.(2×((3+x)+y)) ≡ λx.(6+(2×x+2×y)).
We will omit bracketing when possible thanks to associativity of + and × mod-
ulo ≡, e.g. write λx.(2× (3 + x+ y) ≡ λx.(2× ((3 + x) + y)).

Noticeably, even if HOPs can be built using higher-order functions, the first
order fragment only contains polynomials:

Lemma 9. If M is a HOP of type Nn → N and such that FV (M) = {y1 :
N, . . . , yk : N}, then the function JMK is bounded by a polynomial function.

Proof. We prove by induction on M that JMK is a polynomial function:
• if M = x or M ∈ {+,×} or M = m: the result is trivial;
• if M = λxA.PB : then we have A = N and the type B is of the form

Nn−1 → N, so by i.h. on P the property is true for P , hence for M ;
• otherwise M is an application. As M is in β-normal form, there exists k ≥ 0

such that:
• M is of the form M = P M1 . . .Mk;
• and P = xA,+,× or m.

Now, if P{+,×}, then for any 1 ≤ i ≤ k we have that Mi is of type N, so by
induction hypothesis on Mi it satisfies the property, therefore M represents
a polynomial function. If P = xA, then as xA is free in M , by assumption
we know that A = N, thus k = 0 and the property is valid. Similarly if
P = m.

This concludes the proof. �

A HOP substitution θ is a map from variables to HOPs, with finite domain. We
will simply speak of substitution if there is no ambiguity. For any HOP M and
HOP substitution θ, Mθ is the HOP defined in the expected way.

12

4.2. Semantic Interpretation

Now, we consider a subcategory FSPOS of the category SPOS of strict partial
orders as objects and strictly increasing total functions as morphisms. Objects
of FSPOS are freely generated as follows:
• N is the domain of strictly positive integers, equipped with the natural strict

order ≺N ,
• 1 is the trivial order with one point;
• if σ, τ are objects, then σ × τ is obtained by the product ordering;
• σ → τ is the set of strictly increasing total functions from σ to τ , equipped

with the following strict order: f ≺σ→τ g if for any a of σ we have f(a) ≺τ
g(a). We denote as h ◦ g the composition the g and h, defined as usual by
(h ◦ g)(a) = h(g(a)).

We denote by �σ the reflexive closure of ≺σ. About the product construction
note that we have: (a, b) ≺σ×τ (c, d) iff a ≺σ c and b �τ d, or a �σ c and b ≺τ d.
Actually we will also need to compare the semantics of terms which do not have
the same free variables. For that we stipulate that if f ∈ σ1 × . . . × σn → τ ,
g ∈ σ1 × . . . × σm → τ and n ≤ m, then: f ≺ g if ∀a1 ∈ σ1, . . . ,∀am ∈
σm, f(a1, . . . , an) ≺τ g(a1, . . . , am).

The category FSPOS is a subcategory of SET with all the necessary structure
to interpret types and terms. JAK≺ denotes the semantics of A as an object of
FSPOS: we choose to set JNK≺ = N , while JA1 × . . . × An → AK≺ is JA1K≺ ×
. . .× JAnK≺ → JAK≺. Observe that JAK≺ is a subset of JAK.

Now we want to show that the set-theoretic interpretation JMK of HOPs
that we have given before induces an interpretation in FSPOS, that we shall
denote as JMK≺. For that we prove the following property:

Proposition 10. Let M be a HOP of type A and xA1
1 , . . . , xAn

n be its free vari-
ables. Then for any a ∈ JA1K≺× . . .× JAnK≺ we have that JMK(a) ∈ JAK≺. We
thus indicate as JMK≺ the restriction of JMK to JA1K≺ × . . .× JAnK≺.

Proof. We will prove by induction on MA the following statements, where
xA1
1 , . . . , xAn

n are the free variables of MA:
1. if e ∈ JA1K≺ × . . .× JAnK≺ then JMK(e) ∈ JAK≺;
2. if e, f ∈ JA1K≺ × . . .× JAnK≺ and e ≺ f then JMK(e) ≺ JMK(f).
When 1. and 2. are satisfied we denote as JMK≺ the induced interpretation of
M in JA1K≺ × . . .× JAnK≺ → JAK≺. Let us proceed with the proof:
• M = xA: trivial;
• M = cA ∈ CP : this holds because as we have interpreted N as N? the terms

+ and × denote strictly increasing functions (note that it would not have
been the case for × if we had interpreted N as N);

• M = λxB .PC : by definition we know that x is free in P . As xA1
1 , . . . , xAn

n

denote the free variables of M let us write An+1 = B and x
An+1

n+1 = xB .

So xA1
1 , . . . , x

An+1

n+1 are the free variables of P . By i.h. we know that P
satisfies 1. and 2., and JP K≺ ∈ JA1 × . . .×An+1 → CK≺. For (e1, . . . , en) in
JA1× . . .×AnK≺ we then consider the map f from JAn+1K≺ to JCK≺ defined
by f(en+1) = JP K≺(e1, . . . , en+1). As JP K≺ ∈ JA1 × · · · × An+1 → CK≺

13

we have that f ∈ JAn+1 → CK≺, so M satisfies 1. Suppose now that g ∈
JAn+1 → CK≺ is defined in a similar way from (h1, . . . , hn) ∈ JA1×. . .×AnK≺
such that (e1, . . . , en) ≺ (h1, . . . , hn). Then we have that if en+1 ∈ JAn+1K≺,
then (e1, . . . , en, en+1) ≺ (h1, . . . , hn, en+1), thus JP K≺(e1, . . . , en, en+1) ≺
JP K≺(h1, . . . , hn, en+1). This shows that f ≺ g. Therefore M satisfies 2.
• M = PB→A LB : this is the crucial case. By i.h. JP K≺ and JLK≺ have

been defined. Denote by xA1
1 , . . . , xAn

n the free variables of M . Take e =
(e1, . . . , en) ∈ JA1 × . . . × AnK≺. By abuse of notation we will simply write
JP K≺(e) instead of JP K≺(ei1 , . . . , eik) where xi1 , . . . , xik are the free variables
of P . Similarly for JLK≺(e). Now we define f by f = JP K≺(e)(JLK≺(e)). We
know that f ∈ JAK≺ and by i.h. we have that f = JP K(e)(JLK(e)) = JMK(e).
So M satisfies 1. Let us now consider condition 2. If n = 0 it is trivial, so
let us assume n ≥ 1. Take e, g two elements of JA1× . . .×AnK≺ with e ≺ g.
Let f = JP K≺(e)(JLK≺(e)) and h = JP K≺(g)(JLK≺(g)). Let us distinguish
two subcases:
• if there exists i in {1, . . . , n} such that ei ≺ gi and xi ∈ FV (P): then by

i.h. on P we have JP K≺(e) ≺B→A JP K≺(g); moreover by i.h. we have:
JLK≺(e) �B JLK≺(g) (note the non-strict ordering). From these two
inequalities, by definition of ≺B→A we can deduce: JP K≺(e)(JLK≺(e)) ≺A
JP K≺(g)(JLK≺(g)).
• Otherwise: we know that there exists i in {1, . . . , n} such that ei ≺ gi,

and xi is free in M so it must be free in L. So by i.h. on L we have
JLK≺(e) ≺B JLK≺(g); besides we know that JP K≺(e) = JP K≺(g). We
know that JP K≺(e) belongs to JB → AK≺ so it is strictly increasing, so
we deduce that: JP K≺(e)(JLK≺(e)) ≺A JP K≺(g)(JLK≺(g)).

So in both subcases we have concluded that f ≺ h, which completes the
proof of 2. and thus of the claim.

This concludes the proof. �

Lemma 11. Let M be a HOP and θ a HOP substitution with FV (M) =
{xA1

1 , . . . , xAn
n } and FV (Mθ) = {yB1

1 , . . . , yBm
m }. Then, for every i ∈ {1, . . . ,m}

the function fi = Jθ(xi)K≺ is a strictly increasing map. Moreover, we have
JMθK≺ = JMK≺ ◦ (f1, . . . , fn).

Proof. For i ∈ {1, . . . ,m} we have fi = Jθ(xi)K≺. We know that θ(xi) is a

HOP, and FV (θ(xi)) ⊆ FV (Mθ). Let = {yBk1

k1
, . . . , y

Bki

ki
} be the free variables

of θ(xi). Then fi belongs to JBk1K≺× . . .×JBkiK≺ → JAiK≺. We can then prove
the second statement by induction on M . As an illustration let us just examine
here the base cases:
• The case where M = cA is trivial because n = 0 and Mθ = M .
• In the case where M is a variable we have n = 1 and M = xA1

1 . Then
JMθK≺ = Jθ(x1)K≺ = f1 = idA1 ◦ f1.

This concludes the proof. �

Applying the same substitution to two HOPs having the same type preserve the
properties of the underlying interpretation:

14

Lemma 12. If MA, PA are HOPs such that FV (M) ⊆ FV (P), θ is a HOP
substitution and if JMK≺ ≺ JP K≺, then JMθK≺ ≺ JPθK≺.

Proof. By Lemma 11 we have:

JMθK≺ = JMK≺ ◦ (f1, . . . , fm);

JPθK≺ = JP K≺ ◦ (f1, . . . , fn);

where m ≤ n. Moreover FV (Mθ) ⊆ FV (Pθ). We thus have:

JMθK≺ ∈ σ1 × . . . σk → σ;

JPθK≺ ∈ σ1 × . . . σl → σ;

where k ≤ l and σ = JAK≺. Take now a ∈ σ1 × . . . σl and let b = (a1, . . . , ak).
By what precedes we know that for 1 ≤ i ≤ m, fi(a) only depends on b, hence
we also write it as fi(b). Now we have that:

JMθK≺(b) = JMK≺(f1(b), . . . , fm(b))

≺ JP K≺(f1(a), . . . , fn(a)), because JMK≺ ≺ JP K≺,

= JPθK≺(a).

We can thus conclude that JMθK≺ ≺ JPθK≺. �

4.3. Assignments and Polynomial Interpretations

We consider X , C and F as in Section 2. To each variable xA we associate
a variable xA where A is obtained from A by replacing each occurrence of base
type by the base type N and by curryfication. An assignment [·] is a map from
C ∪ F to HOPs such that if f ∈ C ∪ F has type A, [f] is a closed HOP of type
A. Now, for t ∈ T of type A, we define an HOP [t] of type A by induction on
t:
• if t = x ∈ X , then [t] is x;
• if t ∈ C ∪ F , [t] is already defined;
• otherwise, if t = (s t1 . . . tn) then [t] ≡ (. . . ([s][t1]) . . . [tn]).

Observe that in practice, computing [t] will in general require to do some β-
reduction steps.

Lemma 13. Let t ∈ T of type A and FV (t) = {y1 : A1, . . . , yn : An}, then: [t]
is a HOP, of type A, and FV ([t]) = {y1 : A1, . . . , yn : An}.

Proof. This follows from the definition of [t], by induction on t. �

We extend the notion of assignments to contexts by setting: [•A] = •A. So if
C is a context then [C] is a HOP context, and we have:

Lemma 14. If C is a context and t a term, then [C{t}] = [C]{[t]}.

Now, if σ is a substitution, [σ] is the HOP substitution defined as follows: for
any variable x, [σ](x) = [σ(x)]. We have:

15

Lemma 15. If t is a term and σ a substitution, then [tσ] = [t][σ].

Let us now consider the semantic interpretation. If t ∈ T of type A and FV (t) =
{y1 : A1, . . . , yn : An}, we will simply denote by JtK≺ the element J[t]K≺ of
JA1× . . .×An → AK≺. We get the following lemma, establishing the closure by
context of this interpretation:

Lemma 16. Let M and P be HOPs such that JMK≺ ≺ JP K≺ and C be a
HOP context such that C{M} and C{P} are well-defined. Then we have that
JC{M}K≺ ≺ JC{P}K≺. The same statement holds for terms: if t and s are two
terms such that JtK≺ ≺ JsK≺ and C is a context such that C{t} and C{s} are
well-defined, then we have that JC{t}K≺ ≺ JC{s}K≺.

Now, we say that an assignment [·] is a higher polynomial interpretation or
simply a polynomial interpretation for a STTRS R iff for every l → r ∈ R, we
have that JrK≺ ≺ JlK≺. Note that in the particular case where the program only
contains first-order functions, this notion of polynomial interpretation coincides
with the classical one for first-order TRSs. In the following, we assume that
[·] is a polynomial interpretation for R. A key property is the following, which
tells us that the interpretation of terms strictly decreases along any reduction
step:

Lemma 17. If t→ s, then JsK≺ ≺ JtK≺.

Proof. if t → s, then by definition there exists a rule l → r of R, a context C
and a substitution σ such that t = C{lσ} and s = C{rσ}. As [·] is a polynomial
interpretation, we have that JrK≺ ≺ JlK≺. We then get:

JrσK≺ = J[rσ]K≺, by definition,

= J[r][σ]K≺, by Lemma 15,

≺ J[l][σ]K≺, by Lemma 12,

= J[lσ]K≺, by Lemma 15 again,

= JlσK≺.

Then by Lemma 16 (second statement) we get JC{rσ}K≺ ≺ JC{lσ}K≺, which
concludes the proof. �

As a consequence, the interpretation of terms (of base type) is itself a bound on
the length of reduction sequences:

Proposition 18. Let t be a closed term of base type D. Then [t] has type N
and any reduction sequence of t has length bounded by JtK≺.

Proof. It is sufficient to observe that by Lemma 17 any reduction step on t
makes JtK≺ decrease for ≺, and that as t is closed and of type N the order ≺
here is ≺N , which is the ordinary (strict) order on integers. �

16

4.4. A Complexity Criterion

Proving a STTRS to have a polynomial interpretation is not enough to
guarantee its time complexity to be polynomially bounded. To ensure that, we
need to impose some constraints on the way constructors are interpreted. We say
that the assignment [·] is additive if for any constructor c of type D1×· · ·×Dk →
D, there exists an integer nc ≥ 1 such that [c] ≡ λx1 . . . λxk.(x1 + x2 + · · · +
xk + nc). Additivity ensures that the interpretation of first-order values is
proportional to their size:

Lemma 19. Let [·] be an additive assignment. Then there exists γ ≥ 1 such
that for any value v of type D, we have JvK≺ ≤ γ · |v|.

A function f : ({0, 1}∗)m → {0, 1}∗ is said to be representable by a STTRS R
if there is a function symbol f of type (W2)n → W2 in R which computes f in
the obvious way, where we recall that W2 stands for the type of binary words.
We are now ready to prove the main result about polynomial interpretations,
namely that they enforce reduction lengths to be bounded in an appropriate
way:

Theorem 20 (Polynomial Bound). Let R be a STTRS with an additive poly-
nomial interpretation [·]. Consider a function symbol g of type (W2)n → W2.
Then, there exists a polynomial p : Nn → N such that, for any w1, . . . , wn ∈
{0, 1}?, any reduction of (g w1 . . . wn) has length bounded by p(|w1|, . . . , |wn|).
This holds more generally for g of type D1 × · · · ×Dn → D.

Proof. By Prop. 18 we know that any reduction sequence has length bounded
by: J(g w1 . . . wn)K≺ = JgK≺ (Jw1K≺, . . . , JwnK≺). By Lemma 9 there exists a
polynomial function q : Nn → N such that JgK≺ is bounded by q. Moreover by
Lemma 19 there exists γ ≥ 1 such that: JwiK≺ ≤ γ|wi|. So by defining p : Nn →
N as the polynomial function such that p(y1, . . . , yn) = q(γy1, . . . , γyn), we have
that the length of the reduction sequence is bounded by p(|w1|, . . . , |wn|). �

Corollary 21. The functions on binary words representable by STTRSs admit-
ting an additive polynomial interpretation are exactly the polytime functions.

Proof. We have two inclusions to prove: from left to right (complexity sound-
ness), and from right to left (completeness):
• Soundness. Assume F is represented by a program g with type W2 ×
· · · ×W2 → W2 admitting an additive polynomial interpretation. Then by
Theorem 20 we know that for any w1, . . . , wn ∈ {0, 1}?, any reduction of
(g w1 . . . wn) has a polynomial number of steps. By a result in [18], deriva-
tional complexity is an invariant cost model for TRSs, via graph rewriting.
This result can be easily generalized to STTRSs.
• Completeness. It has been shown in [10] (Theorem 4, Section 4.2) that if
F is polytime computable, then there exists a first-order rewriting system
with an additive polynomial interpretation which computes F . Actually
the rewriting systems considered in the cited paper are not assumed to be

17

typed, but can anyway be seen as simply-typed term rewriting systems in our
sense: it suffices to consider just one base type TERMS and give to function
symbols and constructors their natural type, e.g., a constructor c of arity
n has type TERMSn → TERMS . When restricting to first-order typed
rewriting systems, our notions of polynomial interpretation and of additive
polynomial interpretation coincide with the notions they consider. Therefore
any polytime function on binary words can be represented by a simply-typed
term rewriting system with an additive polynomial interpretation.

This concludes the proof. �

The results we have just described are quite robust: one is allowed to extend
CP with new combinators, provided their set-theoretic semantics are strictly
increasing functions for which Lemma 9 continues to hold. In particular if they
are of type Nk → N they should be polynomially bounded. However, the class
of polynomial time STTRSs which can be proved such by way of higher-order
polynomial interpretations is quite restricted, as we are going to argue.

4.5. Examples

Example 3. Consider the STTRS defined by the following rules:

((map f) nilD)→ nilE ; (1)

((map f) (consD x xs))→ (consE (f x) ((map f) xs)); (2)

with the following types:

f : D → E; map : (D → E)→ L(D)→ L(E);

nilD : L(D); consD : D × L(D)→ L(D);

nilE : L(E); consE : E × L(E)→ L(E).

Here D,E,L(D), L(E) are base types. For simplicity we use just one cons and
one nil notation for both types D and E. The interpretation below was given in
[35] for proving termination, but here we show that it also gives a polynomial
time bound. To simplify the reading of HOPs we use infix notations for +, and
omit some brackets (because anyway we have associativity and commutativity
for the denotations). Now, we choose the following assignment of HOPs:

[nil] = 2 : N;

[cons] = λn.λm.(n+m+ 1) : N→ N→ N;

[map] = λφ.λn.n× (φ n) : (N→ N)→ N→ N.

We then get the following interpretations of terms:

[(map f nil)] = 2× (f 2);

[(map f cons(x, xs))] = (x+ xs+ 1)× (f (x+ xs+ 1));

[(cons (f x) (map f xs))] = 1 + (f x) + xs× (f xs).

18

Let us check that the condition JrK≺ ≺ JlK≺ holds for the rules above. By strict
increasing, as 1 ≺ y we have that f x ≺ f(x + y). Therefore we have in
particular:

f xs ≺ f (x+ xs+ 1);

f x ≺ f (x+ xs+ 1).

We deduce from that:

1 + (f x) + xs× (f xs) ≺ (x+ xs+ 1)× (f (x+ xs+ 1));

so JrK≺ ≺ JlK≺ holds for (2). Similarly, we can check it for (1).

Observe that choosing [nil] = 2 was slightly unnatural, but it is necessary
here to have a valid interpretation. We thus have an additive polynomial inter-
pretation for map, therefore Corollary 21 applies and we can conclude that for
any f also satisfying the criterion, (map f) computes a polynomial time function.
Now, one might want to apply the same method to an iterator iter, of type
(D → D)×D → NAT → D, which when fed with arguments f , d, n iterates f
exactly n times starting from d. However there is no additive polynomial inter-
pretation for this program. Actually, this holds for very good reasons: iter can
produce an exponential-size function when fed with a fast-growing polynomial
time function, e.g. double : NAT → NAT .

One way to overcome this issue could be to show that iter does admit
a valid polynomial interpretation, provided its domain is restricted to some
particular functions, admitting a not-so-fast-growing polynomial interpretation,
of the form λn.(n+c), for some constant c. This could be enforced by considering
a refined type systems for HOPs. But the trouble is that there are very few
programs which admit a polynomial interpretation of this form! Intuitively, the
problem is that polynomial interpretations need to bound simultaneously the
execution time and the size of the intermediate values. In the sequel we will see
how to overcome this issue.

5. Beyond Interpretations: Quasi-Interpretations

The previous section has illustrated our approach. However we have seen
that the intensional expressivity of higher-order polynomial interpretations is
too limited. In the first-order setting this problem has been overcome by de-
composing into two distinct conditions the role played by polynomial interpre-
tations [32, 11]: (i) a termination condition, (ii) a condition enforcing a bound
on the size of values occurring during the computation. In [11], this has been
implemented by using: for (i) some specific path orderings, and for (ii) a notion
of quasi-interpretation. We now examine how this methodology can be extended
to the higher-order setting.

The first step will take the form of a termination criterion defined by a linear
type system for STTRSs together with a path-like order, to be described in

19

fA ∈ NF
Γ | ∆ ` f : A

cA ∈ C
Γ | ∆ ` c : A Γ | x : A,∆ ` x : A x : D,Γ | ∆ ` x : D

fA1,...,An→B ∈ RF ,with arity n
Γ | ∅ ` si : Ai

Γ | ∆ ` ((f s1 . . . sn)) : B

Γ | ∆ ` t : A1 × . . .×An → B
Γ | ∆i ` si : Ai

Γ | ∆,∆1, . . . ,∆n ` (t s1 . . . sn) : B

Figure 2: A Linear Type System for STTRS terms.

Section 5.1 below. The second step consists in shifting from the semantic world
of strictly increasing functions to one of increasing functions. This corresponds
to a picture like the following, and is the subject of Section 5.3 and Section 5.5.

STTRSs
[·] // HOMPs

J·K // FPOS

5.1. The Termination Criterion

The termination criterion has two ingredients: a typing ingredient and a syn-
tactic ingredient, expressed using an order @ on the function symbols. Formally,
introducing the typing ingredient requires splitting the class F into two disjoint
classes RF and NF . The intended meaning is that functions in NF cannot
be defined in a recursive way, while functions in RF can. We further assume
given a strict order @ on F which is well-founded. If t is a term, t @ f means
that for any g occurring in t we have g @ f. The rules of a linear type system
for STTRS terms are in Figure 2. In a judgement Γ | ∆ ` t : A, the sub-context
∆ is meant to contain linear variables while Γ is meant to contain non-linear
variables. Note that in the bottom-right rule of Figure 2, the contexts ∆ and
∆i for 1 ≤ i ≤ n are assumed to have pairwise disjoint sets of variables.

A STTRS satisfies the termination criterion if every rule ((f p1 . . . pk))→ s
satisfies:
1. either f ∈ RF , there are a term r and a sequence of patterns q1, . . . , qk such

that s = r{x/((f q1 . . . qk))} (in other words, ((f q1 . . . qk)) is a recursive call
of f in s), we have Γ | x : B,∆ ` r : B, r @ f, every qi is subterm of pi and
there exists j s.t. qj 6= pj ;

2. or we have Γ | ∆ ` s : B and s @ f.
Observe that because of the typability constraint in 1., this termination criterion
implies that there is at most one recursive call in the right-hand-side s of a rule.
Is the termination criterion too restrictive? Let us comment first on the syntactic
ingredient:
• First consider the embedding of simply-typed λ-calculus given by the restric-

tion of the embedding of PCF of Section 3. The function symbols used are
absM,x for all typed term M and variable x. We define the order @ by:

absL,y @ absM,x if λy.L is a subterm of M.

20

Recall that t @ f if g @ f for any function g in t. The STTRS encoding of
M then satisfies, for any rule ((f p1 . . . pk))→ s, the condition

s @ f (3)

As the order @ defined is well-founded, this implies the termination of this
STTRS program.
• Now consider System T. We have seen that System T with weak reduction

can also be embedded into a STTRS. Forget about functions pred, succ,
ifz for simplification, and consider the new operator rec. We extend @ by
setting: recM,L @ recP,Q if (rec M L) is a subterm of either P or Q, and
similarly for symbols in the form absR,x. Then in the STTRS encoding of a
system T term M , each rule ((f p1 . . . pk)) → s satisfies (3) or the following
Condition 4: there are a term r and patterns q1, . . . , qk such that for any i,
qi is subterm of pi, there exists j s.t. qj 6= pj and

s = r{x/((f q1 . . . qk))}, and r @ f (4)

In other words, 〈T〉 satisfies the order-theoretic part of the termination, while
of course it does not satisfy the typing-theoretic part of it.

So the syntactic ingredient is fairly expressive, since it will allow to validate
system T programs.

Let us now examine the full termination criterion on an example.

Example 4. Consider the program foldr given by:

((foldr f b) nil)→ b; (5)

((foldr f b) (cons x xs))→ (f x ((foldr f b) xs)); (6)

where functions, variables and constructors have the following types:

foldr : (D × E → E)× E → L(D)→ E;

f : D × E → E;

nil : L(D);

cons : D × L(D)→ L(D).

Examine rule (5). The function foldr does not appear on the r.h.s. and we have
b @ (foldr f b). So, by Case 2, this rule satisfies the condition. As to rule (6),
it has a recursive call. Let us prove that it satisfies the condition by Case 1.
Following the notations of the definition we have here s = r{y/((foldr f b) xs)}
with r = (f x y). We have Γ | y : E,∆ ` r : E, as shown by the (simple) type
derivation of Figure 3 (where we use the abbreviation F = D × E → E), with
Γ = {x : D} and ∆ = {f : D×E → E}. We also have r @ foldr. Finally f , b
are respectively subterms of f , b, and xs is a strict subterm of (cons x xs). So
Case 1 is indeed satisfied.

21

x : D | f : F ` f : F x : D | ∅ ` x : D x : D | y : E ` y : E

x : D | y : E, f : F ` (f x y) : E

Figure 3: Type Derivation (Example 4)

More generally we believe that the termination criterion is general enough to
embed a non-trivial fragment of Hofmann’s system SLR [23], which is a restric-
tion of system T based on safe recursion and using linear types, and which
characterizes the class of polytime functions.

Now let us prove that this criterion indeed implies termination. We will
proceed by a reducibility proof, this way making the argument independent
on the type-theoretical condition, but only on the order-theoretical condition.
Given a term t, its definitional depth is the maximum, over any function symbol
f appearing in t, of the length of the longest descending @-chain starting from
f. The definitional depth of t is denoted as ∂(t).

Theorem 22 (Termination). If a STTRS satisfies the termination criterion,
then any of its closed terms is strongly normalizing.

Proof. This is a standard reducibility argument. First of all, one needs to define
the notion of reducibility for closed terms, by induction on their types:
• A term t of base type is reducible iff it is strongly normalizing.
• A term t of type A1×· · ·×An → A is reducible iff it is strongly normalizing

and for every reducible terms s1, . . . , sn of types A1, . . . , An, respectively,
the term (t s1 . . . sn) is itself reducible.

Before going on, let us just state four lemmas:
1. A term t is strongly normalizing iff it is weakly normalizing. This follows

from the way reduction is defined: it satisfies a diamond-like property, from
which one can easily derive that weak-normalization implies strong normal-
ization.

2. Suppose that t of type A1×· · ·×An → A and s1, . . . , sn of types A1, . . . , An
(respectively) are all reducible. Then, the term (t s1 . . . sn) is itself re-
ducible. This is an easy consequence of the definition of reducibility for
t.

3. If t →∗ s, then t is reducible iff s is reducible. Let us proceed by induction
on the structure of the type of t:
• If t and s have base type, then we need to prove that t is strongly normal-

izing iff s is strongly normalizing. Of course, if t is strongly normalizing,
also s is strongly normalizing. The converse also holds because of Point 1
above.

• Let t and s have type A1×· · ·×An → A, and suppose that r1, . . . , rn are
reducible terms of type A1, . . . , An, respectively. By induction hypothe-
sis, (t r1 . . . rn) is reducible iff (s r1 . . . rn) is reducible. Moreover, for
reasons similar to the ones in the previous case, t is strongly normalizing
iff s is strongly normalizing.

22

4. Every reducible term is strongly normalizing. This is trivial from the defi-
nition.

It is now possible to prove that any closed term t of a STTRS satisfying the
termination criterion is reducible, by induction on ∂(t). Indeed, one can prove
that any function symbol f of such a STTRS is reducible, by induction on ∂(f),
and then argue by Point 2 above (since all constructor symbols are easily seen to
be reducible). If f is a function symbol, then f is of course strongly normalizing,
and if one applies it to reducible terms, one obtains a term which reduces to an
application (f v1, . . . , vn), itself either a value (and in this case one can apply
the argument iteratively) or a redex which rewrites in one step (if f ∈ NF)
or in many steps (if f ∈ RF) to a term which contains constructors, function
symbols lower than f, or values from v1, . . . , vn, all of them reducible by Point 3.
By Point 2, the obtained term is reducible, and thus by Point 3, (f v1, . . . , vn)
is itself reducible. This concludes the proof. �

5.2. On Base-Type Values and Time Complexity

In this section, we show that all that matters for the time complexity of
STTRSs satisfying the termination criterion is the size of base-type values that
can possibly appear along the reduction of terms. In other words, we are going
to prove that if the latter is bounded, then the complexity of the starting term
is known, modulo a fixed polynomial. Showing this lemma, which will be crucial
in the following, requires introducing some auxiliary definitions and results.

First of all: when, formally, a natural number can be considered as a bound
on the size of base-type values appearing along reduction of t? Given a term t
and a natural number n ∈ N, n is said to be a bound of base-type values for t
if whenever t →∗ s, all base-type values v occurring in s are such that |v| ≤ n.
The following immediately follows from the aforementioned definition:

Lemma 23. If n ∈ N is a bound of base-type values for t and t →∗ s, then n
is also a bound of base-type values for s.

Suppose a function symbol f takes n arguments of base types. Then f is
said to have base values bounded by a function q : Nn → N if (f t1 . . . tn)
has q(|t1|, . . . , |tn|) as a bound of its base-type values whenever t1, . . . , tn are
base-type values of the appropriate type.

It is convenient to put all terms occurring in the r.h.s. of rules defining
a given function symbol in a set. Formally, given a function symbol f, R(f)
denotes the set of terms appearing in the right-hand side of rules for f, not
taking into account recursive calls. More formally, r belongs to R(f) iff there
is a rule ((f p1 . . . pk))→ s such that s = r{x/((f q1 . . . qk))} (where x might not
occur in r).

The central concept in this section is probably the weight of a term, which is
defined as a quantity which is an upper bound both to the number of reduction
steps and to the size of intermediate terms to its normal form. For technical
reasons, it is convenient to define the weight as a polynomial rather than as a
number. Formally, define space-time weight of a term t as a polynomial T St(X)

23

T Sv(X) = 1, if v is a first order value,

T S((f t1...tn))(X) = 1 +


∑

tj ∈ FO
j ≤ arity(f)

T Stj (X)

 +


∑

tj ∈ HO
j ≤ arity(f)

arity(f) ·X · T Stj (X)


+

 ∑
j≥arity(f)+1

T Stj (X)

 +

 ∑
s∈R(f)

arity(f) ·X · T Ss(X)

 , if f ∈ RF ;

T S((f t1...tn))(X) = 1 +

 ∑
1≤j≤n

T Stj (X)

 +

 ∑
s∈R(f)

T Ss(X)

 , if f ∈ NF ;

T S((c t1...tn))(X) = 1 +

 ∑
1≤j≤n

T Stj (X)

 ;

T S((x t1...tn))(X) = 1 +

 ∑
1≤j≤n

T Stj (X)

 .

Figure 4: The Definition of T S(·)(X)

on the indeterminate X, by induction on (∂(t), |t|), following the lexicographic
order, as in Figure 4. We denote here by FO (resp. HO) the set of base type
(resp. functional type) terms.

The rewrite relation ⇒ is defined as →, except that whenever a recursive
function symbol is unfolded, it is unfolded completely in just one rewriting step.

The last auxiliary definition we need is a modified notion of size, which
attributes size 1 to all base-type values. Formally, the collapsed size ||t|| of a
term t is defined by induction on the structure of t:

||v|| = 1, if v is a base-type value;

||(t0 t1 . . . tn)|| =
n∑
i=0

||ti||;

||α|| = 1, if α ∈ X ∪ C ∪ F .

Example 5. For the sake of clarifying the just-introduced concepts, let us give
a simple example, namely the STTRS whose only rules are:

(modadd x 0 f)→ (f x);

(modadd x (s y) f)→ (s (modadd x y f)).

Consider the term t = (modadd 3 2 s), where n stands, as usual, for the value
of type NAT containing exactly n instances of s. The collapsed size ||t|| of t is

24

just 4, while t⇒ 6. But 6 is also a bound on base-type values for t. Moreover:

T St(X) = 1 + T S3(X) + T S2(X) + arity(modadd) ·X · T Ss(X)

+ arity(modadd) ·X · T S(s x)(X) + arity(modadd) ·X · T S(f x)(X)

= 1 + 1 + 1 + 3 ·X · 1 + 6 ·X + 6 ·X = 3 + 15 ·X.

We are now ready to explain why the main result of this section holds. First of
all, T St(X) is an upper bound on the collapsed size of t:

Lemma 24. For every n ≥ 1 and for every t, T St(n) ≥ ||t||.

Proof. A simple induction on t. �

In the following we assume that t is well-typed in the linear type system (Figure
2) and we would like to prove that T St(X) decreases along any ⇒ step if X is
big enough (i.e., if it is a bound on base-type values for t). Preliminary to that
is the following:

Lemma 25 (Substitution Lemma). T St{x/v}(X) ≤ T St(X) + T Sv(X).

Proof. This can be proved by induction on t, and intuitively holds because
either v has base type, x can occur in t possibly many times but T Sv(X) = 1,
or v is an higher-order value, and in that case x occurs at most once in t, at
a place where its space-time weight is counted only additively while computing
T St(X). �

We are finally able to prove the main result of this Section:

Lemma 26. If n is a bound of base-type values for t, and t⇒ s, then T St(n) >
T Ss(n).

Proof. Suppose that t ⇒ s and let ((f r1 . . . rm)) be the redex fired in t to
produce s. Then we can say that there are a strictly increasing map p : N→ N
and a term q such that

T St(n) = p(T S((f r1...rm))(n));

T Ss(n) = p(T Sq(n)).

Indeed, p is almost always in the form p(X) = X + k for some k, the only
exception being when ((f r1 . . . rm)) appears as an higher-order argument of a
function g ∈ RF , in which case p(X) = n× l×X + k for some k and l. Let us
now distinguish two cases:
• If f ∈ RF , then q is obtained by at most m · n rewriting steps from

((f r1 . . . rm)) and does not contain any instance of f anymore. Actually,
q consists of at most n ·m copies of terms in R(f) (one applied to the next
one), where at most one higher-order variable for each copy is substituted by

25

any rj ∈ HO, and base-type variables are substituted by base-type values.
By an easy combinatorial argument, one realizes that, indeed,

T Sq(n) ≤

 ∑
rj ∈ HO

j ≤ arity(f)

m · n · T Srj (n)

 +

 ∑
s∈R(f)

m · n · T Ss(n)

 ,

which, by definition, is strictly smaller than T S((f r1...rm))(n).
• if f ∈ NF , then q is such that ((f r1 . . . rm))⇒ q. As a consequence

T S((f r1...rm))(n) = 1 +

 ∑
1≤j≤m

T Srj (n)

 +

 ∑
w∈R(f)

T Sw(n)


while q, containing possibly at most one instance of each higher-order value
in r1, . . . , rm, is such that:

T Sq(n) ≤

 ∑
1≤j≤m

T Srj (n)

 +

 ∑
w∈R(f)

T Sw(n)

 .

This concludes the proof. �

It is now easy to reach our goal:

Proposition 27. Moreover, suppose that f has base values bounded by a func-
tion q : Nn → N. Then, there is a polynomial p : N → N such that if t1, . . . , tn
are base-type values and (f t1 . . . tn)→m s, then m, |s| ≤ p(q(|t1|, . . . , |tn|)).

Proof. Let us first prove the following statement: if (f t1 . . . tn) ⇒m s, then
there is p polynomial such that m, ||s|| ≤ p(q(|t1|, . . . , |tn|)) Actually, the poly-
nomial we are looking for is precisely

p(X) =

 ∑
s∈R(f)

n ·X · T Ss(X)

 + n.

Indeed, observe that, by definition, as t1 . . . tn are base-type values, we have
T S(f t1...tn)(X) = q(X) and that, by lemmas 26 and 24, this is both a quantity
that decreases at any reduction step and which bounds from above the collapsed
size of any reduct of (f t1 . . . tn). Now, observe that:
• If m is a bound of first order values for t, then |t| ≤ m · ||t||;
• If m is a bound of first order values for t, then the number of “real” reduction

steps corresponding to each ⇒-reduction step from t is bounded by m · k,
where k is the maximum arity of function symbols in the underlying STTRS;

• As we already mentioned, call-by-value is a constrained reduction relation,
and as a consequence the possible number of reduction steps from a term
does not depend on the specific reduction order. Similarly for the size of
reducts.

26

This concludes the proof. �

To convince yourself that linearity is needed to get a result like Proposi-
tion 27, examine the following STTRS, whose terms cannot be typed in our
linear type system.

Example 6. Consider the program expid given by:

((comp f g) z)→ (f (g z);

(autocomp f)→ (comp f f);

(id x)→ x;

(expid 0)→ id;

(expid (s x))→ (autocomp (expid x)).

Both id and (expid t) (for every value t of type NAT) can be given type NAT →
NAT . Actually, they all compute the same function, namely the identity. But
try to see what happens if expid is applied to natural numbers of growing sizes:
there is an exponential blowup going on which does not find any counterpart in
base-type values.

Now, to be able to use Proposition 27 we need a way to bound the values of a
program, and this is precisely what quasi-interpretations are introduced for.

5.3. Higher-Order Max-Polynomials (HOMPs)

We want to refine the type system for higher-order polynomials, in order
to be able to use types to restrict the domain of functionals. The grammar of
types is now the following one:

S ::= N | S (S; A ::= S | A→ A.

Types of the first (resp. second) grammar are called linear types (resp. types)
and denoted as R,S . . . (resp. A,B,C . . .). The linear function type (is a
subtype of →, i.e., one defines a relation � between types by stipulating that
S (R � S → R and by closing the rule above in the usual way, namely by
imposing that A→ B � C → E whenever C � A and B � E.

We now consider the following new set of constructors:

DP = {+ : N(N(N,max : N(N(N,× : N→ N→ N}∪{n : N | n ∈ N?},

and we define the following grammar of Church-typed terms

M,P := xA | cA | (MA→BPA)B | (λxA.MB)A→B |
(MS(RPS)R | (λxS .MR)S(R

where cA ∈ DP . We also require that:

27

• in (λxA.MB)A→B , the variable xA occurs at least once in MB ;
• in (λxS .MR)S(R, the variable xS occurs exactly once in MR and in lin-

ear position (i.e., it cannot occur on the right-hand side of an application

PA→BL
A

).
One can check that this class of Church-typed terms is preserved by β-reduction.
A higher-order max-polynomial (HOMP) is a term as defined above and which
is in β-normal form.

Just to prevent confusion let us insist on the fact that the linear typing
discipline used here for lambda-terms (HOMPs) is completely separate from
the one used in Section 5.1 for STTRS as part of the termination criterion. In
particular observe that in the type system of Section 5.1 (Figure 2) variables of
base types can be used non-linearly, while it is not the case here.

5.4. Semantic Interpretation

We define the following objects and constructions on objects:
• N is the domain of strictly positive integers, equipped with the natural

partial order, denoted here ≤N ;
• 1 is the trivial order with one point;
• if σ, τ are objects, then σ × τ is obtained by the product ordering,
• σ ⇒ τ is the set of increasing total functions from σ to τ , equipped with the

extensional order: f ≤σ⇒τ g if for any a in σ we have f(a) ≤τ g(a).
This way, one obtains a subcategory FPOS of the category POS with partial
orders as objects and increasing total functions as morphisms. As before with
≺ we define ≤ so as to compare the semantics of terms which do not have the
same free variables.

Sizes. In order to interpret the (construction of the HOMP types in this
category we now introduce a notion of size. A size is a (finite) multiset of
elements of N. The empty multiset will be denoted as ∅. Given a multiset S,
we denote by maxS its maximal element and by

∑
S the sum of its elements.

By convention max ∅ =
∑
∅ = 0.

Now, given an object σ of the category FPOS, we say that an element e ∈ σ
admits a size in the following cases:
• If σ is N , then e is an integer n, and S is a size of e iff we have: maxS ≤
n ≤

∑
S.

• If σ = σ1×· · ·×σn, then S is a size of e = (e1, . . . , en) iff there exists for any
i ∈ {1, . . . , n} a multiset Si which is a size of ei, and such that S = ∪ni=1Si.

• If σ = τ ⇒ ρ, then S is a size of e iff for any f of τ which has a size T , S ∪T
is a size of e(f). Now, τ _ ρ is defined as the subset of all those functions
in σ which admit a size.

We denote by JAK≤ the semantics of A as an object of FPOS, where N is mapped
to N , → is mapped to ⇒ and (to _. As for HOPs, any HOMP M can be
naturally interpreted as an increasing function between the appropriate partial
orders, which we denote by JMK≤. We will speak of the size of an HOMP M ,
by which we mean a size of its interpretation JMK≤. Note that not all terms

28

admit a size. For instance × : N→ N→ N does not admit a size. If M reduces
to P , then they have the same sizes, if any.

Example 7. We illustrate the sizes of several terms:
• The term n of type N admits the following sizes: [n], [1, . . . , 1]︸ ︷︷ ︸

k times

with k ≥ n,

and more generally [n1, . . . , nk] such that ∀i ∈ {1, k}, ni ≤ n and
∑k
i=1 ni ≥

n.
• The terms λx.(x + 3), λx.max(x, 3) of type N (N both have size [3], or

any S which is a size of 3.
• The terms max and + of type N(N(N admit as sizes ∅ and [0].
• The term M = λf.(f 2 3) of type (N(N(N)(N has size [2, 3]. On

the other hand note that e.g. [4] or [1, 1, 1] are not sizes of M because by
definition (M +) ≡ 5 does not admit as sizes [4] or [1, 1, 1].

Actually, if we consider first-order terms with types of the form N(. . .(N,
it is sufficient to consider singletons as sizes. If we only wanted to deal with these
terms we could thus use integers for sizes, instead of multisets. Non-singleton
multisets only become necessary when we move to higher-order types, as in the
last example above:

Proposition 28. Let M be a closed HOMP of type A. Then JMK≤ ∈ JAK≤.
Moreover, if A is a linear type S, then JMK≤ admits a size.

Proof. We will focus here on proving that: if M is a closed HOMP of lin-
ear type S, then M admits a size. For that we will follow a reducibility-like
method. Consider the following predicate P(M): if M is a term of type S
with free variables x1 : S1, . . . , xn : Sn which are linear in M , then there exists
a multiset T such that: for any closed Mi : Si with size Si, for 1 ≤ i ≤ n,
M{x1/M1, . . . , xn/Mn} admits size ∪ni=1Si ∪ T . We will prove P(M) for all M
in normal form, by induction on M .
• If M = x, then x is a free variable, say x1. The multiset [0] is a size for M .
• If M = n : N, then [n] is a size for M .
• If M = + or max : N(N(N, then [0] is a size for M .
• If M = λx.P , then M has type R1 (R2. By definition of HOMPs x is a

free variable of P , and we know it has type R1 which is linear. Denote by
x1 : S1, . . . , xn : Sn the free variables of M , which are linear. As P(P) holds
for P which has free variables x : R1, x1 : S1, . . . , xn : Sn, we easily deduce
that P(M) holds.

• If M = (PR2(S LR2): by i.h. we know that P(P) and P(L) hold. Let
T1 and T2 be two multisets obtained respectively by P(P) and P(L). Let
x1 : S1, . . . , xn : Sn be the free variables of M and I (resp. J) be the set of i
such that xi occurs in P (resp. L). Thus I, J form a partition of {1, . . . , n}.
Let Mi : Si be closed terms with size Si, for 1 ≤ i ≤ n. We have:
• P{x1/M1, . . . , xn/Mn} has type R2(S and by P(P) it has size ∪i∈ISi∪
T1;

• L{x1/M1, . . . , xn/Mn} has type R2 and by P(L) it has size ∪i∈JSi ∪ T2.

29

Therefore by definition of the size forR2(S we get thatM{x1/M1, . . . , xn/Mn}
has size (∪i∈ISi ∪ T1) ∪ (∪i∈JSi ∪ T2), so ∪1≤i≤nSi ∪ (T1 ∪ T2). So (T1 ∪ T2)
shows that P(M) holds. Note that we have used here the fact that the free
variables occur linearly in M , in order to deduce that I and J are disjoint.
• If M = (PA→S LA): as M is assumed to be in normal form it can be

written as M = (. . . (P P1) . . . Pk) where P is either a variable or a constant.
Moreover given the grammar of types, as A→ S is not linear, P must have
a non linear type A1 → A2. Let us now distinguish the two cases:
• If P is a variable x, then it is a free variable of M . So M has a free

variable with a non linear type, hence the property holds.
• If P is a constant, as it has a type A1 → A2 the only possibility is that
P = ×, and as M has a linear type S we must have k = 2 and S = N.
Now, if P1 or P2 has a free variable then it is not linear in M , therefore
the property holds. Assume that P1 and P2 are closed, then M is closed
of type N. Let m = JMK≤, then [m] is a size for M .

This concludes the proof. �

Proposition 29. If M is a HOMP of type Nk (N with free variables x1 :
N, . . . , xn : N which are linear in M , then it admits a size of the form [m] where
m ∈ N.

Proof. The proof is similar to that of Proposition 28. We prove by induction
on M the following property, called Q(M): if M is a term of type N(N(
. . . (N or N with free variables x1 : N, . . . , xn : N which are linear in M ,
then there exists a singleton multiset [m] such that: for any closed Mi : Si with
size [ki], for 1 ≤ i ≤ n, M{x1/M1, . . . , xn/Mn} admits size [k1, . . . , kn,m]. See
the Appendix for the full proof. �

Before going on let us examine a concrete example on how to compare the
interpretation of some HOMPs in FPOS.

Example 8. Consider the two following HOMPs, which will be useful later for
the foldr program (in Example 9):

M = λfN(N(N.λbN.λxN.λyN.b+ (x+ y + 1)× (f 1 1)

: (N(N(N)→ N→ N→ N→ N

P = λfN(N(N.λbN.λxN.(f x (b+ y × (f 1 1)))

: (N(N(N)→ N→ N→ N→ N

We want here to show that JP K≤ ≤ JMK≤. For that consider an element φ ∈
N _ N _ N . The crucial point is that we know that φ has a size, and thus
there exists a c ≥ 0 such that for every x, y ∈ N ,

c ≤ φ x y ≤ x+ y + c. (7)

30

Then we have:

(f x (b+ y × (f 1 1)) ≤ x+ b+ y × (f 1 1) + c

≤ x× (f 1 1) + b+ y × (f 1 1) + c

≤ b+ (x+ y + 1)× (f 1 1),

where for the two last steps we used (f 1 1) ≥ 1 and (f 1 1) ≥ c (because of (7)).
So we have JP K≤ ≤ JMK≤.

Now we will establish two lemmas will be useful to obtain later the Subterm
Property (Prop. 35):

Lemma 30. If M is a HOMP of type Nm → N (with m arguments) and such
that FV (M) = {y1 : N, . . . , yk : N}, then the function JMK is bounded by
a polynomial and satisfies the following inequality for every i between 1 and
k +m:

(JMK(x1, . . . , xk))(xk+1, . . . , xk+m) ≥ xi.

Proof. We prove the statement by induction on M . The key case is that where
M is an application. In that case it can be written as

M = ((. . . ((M0) M1) . . .) Mn)

where M0 is not an application and n ≥ 1. Moreover M0 cannot be an abstrac-
tion since M is in β-normal form, and it cannot be a variable y since M can only
have free variables of type N. So M0 = c for c = +,max or ×, and therefore
n ≤ 2. We obtain that the Mis for 1 ≤ i ≤ 2 are of type N hence also satisfy
the hypothesis, and thus by i.h. they satisfy the claim. Therefore the claim is
also valid for M . See the Appendix for the other cases of the induction. �

Lemma 31. For every type A there is a closed HOMP of type A.

Proof. By induction on A:
• If A is simply N, one can take 1 for the required HOMP;
• If A is A1 7→1 . . . An 7→n N (where 7→i is either → or(), then the required

HOMP is

λxA1
1 λxAn

n .(x1M
1
1 . . .M

m1
1) + . . .+ (xnM

1
n . . .M

m1
n),

where the HOMPs M j
i exist by induction hypothesis.

This concludes the proof. �

5.5. Higher-Order Quasi-Interpretations

Now, a HOMP assignment [·] is defined by: for any fA ∈ X (resp. fA ∈
C ∪ F), [f] is a variable f (resp. a closed HOMP M) with a type B, where B
is obtained from (the curryfication of) A by:
• replacing each occurrence of a base type D by N,
• replacing each occurrence of → in A by either → or (.

31

For instance if A = (D1 → D2) → D3 we can take for B any of the types:
(N(N) → N, (N → N) → N, etc. In the sequel we will write A for any of
these types B. Now, if t = (t0 t1 . . . tn) then [t] is defined if for any 0 ≤ i ≤ n,
[ti] is defined and if [t] ≡ (. . . ([t0][t1]) . . . [tn]) is well-typed. We have:

Lemma 32. Let t ∈ T of type A and FV (t) = {y1 : A1, . . . , yn : An}, then: if
[t] is defined then it is a HOMP, with a type A, and FV ([t]) = {y1 : A1, . . . , yn :
An} for some types Ai, 1 ≤ i ≤ n.

Additive HOMP assignments are defined just as additive HOP assignments.

Lemma 33. Let [·] be an additive HOMP assignment. Then there exists γ ≥ 1
such that for any value v of type D, where D is a data type, we have JvK≺ ≤ γ·|v|.

Now, we say that an assignment [·] is a quasi-interpretation for R if for any
rule l→ r of R, [l] and [r] are defined and have the same type, and it holds that
JlK≤ ≥ JrK≤. Observe that contrarily to the case of polynomial interpretations,
these inequalities are not strict, and moreover they are stated with respect to the
new domains, taking into account the distinction between the two connectives
→ and (.

The interpretation of a term does not, like in the strict case, necessarily
decrease along a reduction step. However, it cannot increase:

Lemma 34. If [·] is a quasi-interpretation and if t→∗ s, then JsK≤ ≤ JtK≤.

Proof. [Sketch] This can be done in a way analogous to what has been done
for polynomial interpretations with Lemma 17, using intermediary lemmas for
substitutions and contexts similar to lemmas 15 and 16, but it is actually easier
because here we are not considering a strict order. �

The previous lemma, together with the possibility of forming HOMPs of arbi-
trary type (Lemma 31) implies the following, crucial, property:

Proposition 35 (Subterm Property). Suppose that an STTRS R has an
additive quasi-interpretation [·]. Then, for every function symbol f of ar-
ity n with base arguments, there is a polynomial p : Nn → N such that if
(f t1 . . . tn) →∗ s and if s contains an occurrence of a base term r, then
|r| ≤ p(|t1|, . . . , |tn|).

Proof. Denote t = (f t1 . . . tn). Its type A can be written as A = A1, . . . , Ak →
D, where D is a base type. By Lemma 31, for any j ∈ {1, . . . , k} there is a closed
HOMP Mj of type Aj . Consider now t′ = (f x1 . . . xn) where for i ∈ {1, . . . , n},
xi is a free variable of same type as ti. Then M = [(f x1 . . . xn)]M1 . . . Mk

is a HOMP of type N with free variables xi of type N, for i ∈ {1, . . . , n}. By
Lemma 30 we deduce from that that there exists a polynomial q such that, for
i ∈ {1, . . . , n},

yi ≤ JMK≤(y1, . . . , yn) ≤ q(y1, . . . , yn).

32

Moreover we have:

J([t] M1 . . . Mk)K≤ = J([t′] M1 . . . Mk)K≤(Jt1K≤, . . . , JtnK≤)

= JMK≤(Jt1K≤, . . . , JtnK≤)

≤ q(Jt1K≤, . . . , JtnK≤)

≤ q(α|t1|, . . . , α|tn|)

for some α, because [·] is an additive quasi-interpretation, thanks to Lemma 33.
So finally there is a polynomial p such that:

J([t] M1 . . . Mk)K≤ ≤ p(|t1|, . . . , |tn|).

Now, as t→∗ s, by Lemma 34 we have JtK≤ ≥ JsK≤. Therefore J[t] M1 . . . MkK≤ ≥
J[s] M1 . . . MkK≤. So we get: J[s] M1 . . . MkK≤ ≤ p(|t1|, . . . , |tn|). Besides, by
assumption we know that s can be written as s = s′{y/r}. By Lemma 30 we
have J[s′] M1 . . . MkK≤(y) ≥ y, because ([s′] M1 . . . Mk) has type N and only
one free variable y which is also of type N. Therefore we get J[s] M1 . . . MkK≤ =
J[s′] M1 . . . MkK≤(JrK≤) ≥ JrK≤. So finally by combining the two inequalities
we obtained we get JrK≤ ≤ J[s] M1 . . . MkK≤ ≤ p(|t1|, . . . , |tn|). �

And here is the main result of this Section:

Theorem 36 (Polytime Soundness). If an STTRS R has an additive quasi-
interpretation, R satisfies the termination criterion and f has arity n with base
type arguments, then there is a polynomial p : Nn → N such that whenever
(f t1 . . . tn) →m s, it holds that m, |s| ≤ p(|t1|, . . . , |tn|). So if f has a type
D1 × · · · ×Dn → D then instances of f can be computed in polynomial time.

Proof. This is obtained by combining Proposition 35 and Proposition 27. �

Notice how Theorem 36 is proved by first observing that terms of STTRSs
having a quasi-interpretation are bounded by natural numbers which are not
too big with respect to the input, thus relying on the termination criterion to
translate these bounds to complexity bounds.

Higher-order quasi interpretations, like their strict siblings, can be extended
by enlarging DP so as to include more combinators, provided they are increasing
and bounded by polynomials.

5.6. Examples

Example 9. Consider again the program foldr already mentioned in Exam-
ple 4:

((foldr f b) nil)→ b; (8)

((foldr f b) (cons x xs))→ (f x ((foldr f b) xs)); (9)

33

where functions, variables and constructors have the following types:

foldr : (D1 ×D2 → D2)×D2 → L(D1)→ D2;

f : D1 ×D2 → D2;

nil : L(D1);

cons : D1 × L(D1)→ L(D1).

We examine the two conditions of our complexity criterion, namely the termi-
nation criterion and the existence of quasi-interpretations:
• Termination criterion: it has been checked in Example 4.
• As for quasi-interpretations, we choose as assignment:

[nil] = 1 : N; [cons] = λn.λm.n+m+ 1 : N→ N→ N;

[foldr] = λφ.λp.λn.p+ n× (φ 1 1) : (N(N(N)→ N→ N→ N.

Observe the (in the type of the first argument of [foldr] which is the way
to restrict the domain of arguments. We then obtain the following interpre-
tations of terms:

[((foldr f b) nil)] = b+ 1× (f 1 1);

[((foldr f b) (cons x xs))] = b+ (x+ xs+ 1)× (f 1 1);

[(f x ((foldr f b) xs))] = f x (b+ xs× (f 1 1)).

The condition JrK≤ ≤ JlK≤ holds for (8), because we have that p ≤ p+φ(1, 1)
holds for any p. As to rule (9), we have proven in Example 8 that JrK≤ ≤ JlK≤
holds. Therefore this assignment is an additive quasi-interpretation.

Summing up, we can apply Theorem 36 and conclude that if the termination
criterion is satisfied by all functions, if tD1×D2→D2 , bD2 are terms and [t] is a
HOMP with type N(N(N, then (foldr t b) is a polynomial time program
of type L(D1)→ D2. Let us give a concrete example of usage of foldr. Consider
the following rules defining append:

append nil ys→ ys (10)

append (cons x xs) ys→ cons x (append xs ys) (11)

with the type append : L(D) × L(D) → L(D). It is easy to check that these
rules satisfy the termination criterion. As to the assignments we take: [nil] and
[cons] as above, and set

[append] = λn.λm.(n+m+ 1) : N→ N→ N;

Now, the term λn.λm.(n + m + 1) can also be given the type N (N (N.
We reconsider the typing of foldr by renaming both D1 and D2 as L(D), and
define listappend of type L(L(D))→ L(D) by:

listappend x→ ((foldr append nil) x); (12)

Then listappend admits as quasi-interpretation the normal form of the HOMP
([foldr][append] [nil]), which is well-defined. Thus the whole program satisfies
the complexity criterion and listappend is polynomial time.

34

Example 10. The second example will be close to Example 3 in Section 4.5,
that we used to illustrate higher-order interpretations. The point of this new
example will be to show that HOQIs are slightly more natural, and to prepare
for Example 11. We consider a program filter which given a predicate f on
D and a list of elements in D, will return the sublist of elements satisfying
predicate f . We define for that:

((filter f) nil)→ nil; (13)

((filter f) (cons x xs))→ cond (f x) x (filter f xs); (14)

(cond true x y)→ cons x y (15)

(cond false x y)→ y (16)

where functions, variables and constructors have the following types:

filter : (D → BOOL)→ L(D)→ L(D);

f : D → BOOL;

true : BOOL;

false : BOOL;

cond : BOOL×D × L(D)→ L(D);

• As for the termination criterion, we set cond @ filter. The only rule with a
recursive call is (14). Observe that the r.h.s. is of the form r{y/(filter f xs)},
with r = cond (f x) x y. The term r is typable in the linear type system,
we have r @ filter and in the recursive call xs is a strict subterm of
(cons x xs). So this rule satisfies the condition. So the termination crite-
rion is satisfied.
• We choose as assignment:

[nil] = 1 : N;

[cons] = λn.λm.n+m+ 1 : N→ N→ N;

[true] = [false] = 1 : N;

[filter] = λφ.λn.n× (φ n) : (N→ N)→ N→ N;

[cond] = λk.λm.λn.(k +m+ n+ 1) : N→ N→ N→ N.

Note that contrary to what happened in Section 4.5, we do not choose here
[nil] = 2, but [nil] = 1, which is slightly more natural. One can then check that
all rules satisfy the condition JrK≤ ≤ JlK≤.

Example 11. Now we want to consider a program 2filter which given a pred-
icate g on D×D and two lists l1, l2 in L(D), will return a list consisting of all
pairs (x1, x2) of elements of l1, l2 which satisfy the predicate g. Note that this
program can have a quadratic size output. We define:

((2filter g) nil ys)→ nil; (17)

((2filter g) (cons x xs) ys)→ append (filter (g x) ys) ((2filter g) xs ys);
(18)

35

where functions, variables and constructors have the following types:

2filter : (D → D → BOOL)→ L(D)× L(D)→ L(D ×D);

g : D → D → BOOL;

append : L(D)× L(D)→ L(D);

Now:
• Take for the order: filter @ 2filter and append @ 2filter. Concerning

the rule (18) note that the term (append (filter (g x) ys) z) is typable in
the linear type system. Moreover the condition on recursive calls is satisfied.
It is easy to check that the rule (11) also satisfies the conditions. So the
termination criterion is satisfied.
• We choose the following assignments (and define [nil], [cons], [filter] as

above):

[append] = λn.λm.(n+m+ 1) : N→ N→ N;

[2filter] = λψ.λn.λm.n×m× (ψ n m) : (N→ N→ N)→ N→ N→ N.

Now let us examine the interpretation of the terms of the l.h.s. and r.h.s. of
(18), where we use as notation ψ = f , n = x, ns = xs, m = ys:

[(2filter g) (cons x xs) ys] =

= (n+ ns+ 1)× y × (ψ (n+ ns+ 1) m);

[append (filter (g x) ys) ((2filter g) xs ys)]

= [append]([filter] (ψ n) m)([2filter] ψ ns m)

= 1 +m× (ψ n m) + ns×m× (ψ ns m)

We can then observe that we have:

(n+ns+1)×y× (ψ (n+ns+1) m) ≥ 1+m× (ψ n m)+ns×m× (ψ ns m),

by using the increasing property of ψ and the fact that all elements are in N ,
hence superior or equal to 1. So rule (18) satisfies the condition JrK≤ ≤ JlK≤.
The same can be verified for the other three rules.

This example is interesting for comparison with related work. Indeed a program
such as 2filter cannot be typed in the language LFPL of [25] because it has a
quadratic size result.

6. Embeddings

In this section, we compare two heterogeneous ICC systems to our higher-
order quasi-interpretation approach. First, we show how Bellantoni and Cook’s
function algebra [8] can be embedded in STTRS programs satisfying our cri-
terion. Then we consider non-size-increasing polynomial time functions and
explain why we conjecture they could also be reproved polynomial time sound
using the present criterion.

36

6.1. Bellantoni and Cook’s Function Algebra

We assume some familiarity with the algebra BC of safe recursive definitions
(see [8] for some details). The only datatype one needs here is W2, with as-
sociated constructors empty : W2 and c0, c1 : W2 → W2. To every n-ary BC
function f one can associate a STTRS Rf on a function symbol f computing f ;
the definition goes as expected by induction on the proof that f is indeed a BC
function. As an example, if f is defined by composition from g1, . . . , gk+p and
h, then the rules of Rf will be the ones of Rg1 , . . . , Rgk+p

, Rh, plus the following
one:

(f ~x; ~y)→ (h (g1 ~x;), . . . , (gk ~x;); (gk+1 ~x; ~y), . . . , (gk+p ~x; ~y)).

where ~x stands for x1 . . . xn, and ~y for y1, . . . , ym. The fact any such Rf satisfies
the termination criterion is quite easy to verify: the syntactic ingredient is a
consequence of the inductive construction behindRf , while the typing ingredient
is trivially verified (there is not any higher-order variable around). About the
existence of additive quasi-interpretations for every such Rf : they can all be
defined as a function in the form max{x1, . . . , xn}+p(y1 + . . .+ym) where x are
the parameters corresponding to safe arguments, while y correspond to normal
arguments. This, by the way, very much follows the original soundness proof
in [8] (and also the embedding of BC into TRSs from [12]).

6.2. Non-Size-Increasing Polytime Functions

LFPL is a calculus for non-size-increasing functions introduced by Hofmann [25].
Again, in the following we assume familiarity with it. Terms of a significant frag-
ment of LFPL can be turned into STTRSs following a scheme similar to the one
we used for the simply-typed λ-calculus. The key ingredients of the encoding
are as follows:
• The type � is mapped into the data-type D� which only has one 0-ary con-

structor ? : D�. The term ?, however does not occur in the encoding of
LFPL terms. There is also a type NAT with the usual constructors s and 0
• LFPL’s successor, which has type � (N (N, is not mapped into s but

rather to a function symbol of type D� → NAT → NAT .
• Applications and λ-abstractions are translated in the natural way, as in T.
• Iteration is itself translated in a natural way: given two LFPL closed terms
M : �(A(A and L : �(A which are translated to STTRSs and terms
t and s of corresponding types, the iteration of M and L becomes a function
symbol ft,s : NAT → A with the following rules:

(ft,s 0)→ (s ?);

(ft,s (s x))→ ((t ?) (ft,s x)).

The termination criterion is easily seen to be satisfied. Assembling an assing-
ment for the function symbols in such a way as to get a quasi-intepretation is
harder. Such an assignment should only make use of the linear function space
(and not →. Moreover, the size of the term interpreting any LFPL term M

37

should be the empty multiset. Unfortunately, HOMPs lack a construct which
iterates a function A(A (of empty size) and turns it into something of type
N(A (which is essential), and whose semantics would be perfectly consistent
with the interpretation of HOMPs from Section 5.4. We conjecture that this
way LFPL can be (re)proved polytime sound. Please observe that the first-order
fragment of LFPL is not problematic in this respect, because, essentially, there
is only one HOMP from N to N of empty size (see also [1]).

7. Discussion

The authors believe that the interest of the present work does not lie much
in bringing yet another ready-to-use ICC system but rather in offering a new
framework in which to design ICC systems and prove their complexity prop-
erties. Indeed, considered as an ICC system our setting presents two limita-
tions:
1. given a program one needs to find an assignment and to check that it is a

valid quasi-interpretation, which in general will be difficult to automatize;
2. the termination criterion currently does not allow to reuse higher-order ar-

guments in full generality.
To overcome 2. we think it would be possible to design more liberal termination
criteria, while attacking 1. could possibly consist in defining type systems such
that if a program is well-typed, then it admits a quasi-interpretation, and for
which one could devise type-inference algorithms. On the other hand, recently
introduced techniques for inferring higher-order polynomial interpretations [21]
could shed some light on this issue, which is however outside the scope of this
paper.

8. Relations to Other ICC Systems

Let us first compare our approach to other frameworks for proving complex-
ity soundness results. At first-order, we have already emphasized the fact that
our setting is an extension of the quasi-interpretation approach [11] (see also
[1] for the relation with non-size-increasing, at first-order). We could examine
whether various flavours of termination criteria and interpretations (e.g. sup-
interpretations) could suggest ideas in our higher-order setting. At higher-order,
various approaches based on realizability have been used [17, 14]. While these
approaches were developed for logics or System T-like languages, our setting is
adapted to a language with recursion and pattern-matching. We think it might
also be easier to use in practice.

Let us now discuss the relations with known ICC systems. Several variants
of System T based on restriction of recursion and linearity conditions [24, 9, 15]
have been proposed which characterize polynomial time. With respect to Hof-
mann’s LFPL [25], the advantages we bring are a slightly more general handling
of higher-order arguments, but also the possibility to capture size-increasing
polytime algorithms. As an example, we are able to assign a quasi-interpretation

38

to (STTRSs computing) functions in Bellantoni and Cook’s algebra BC [8] (see
Section 6).

Some other works are based on type systems built out of variants of linear
logic [7, 22, 5]. They are less expressive for first-order functions but offer more
liberal disciplines for handling higher-order arguments. In future work we will
examine if they could suggest a more flexible termination condition, maybe itself
based on quasi-interpretations, following [16].

9. Conclusions

We have advocated the usefulness of simply-typed term rewriting systems to
smoothly extend notions from first-order rewriting systems to the higher-order
setting. Our main contribution is a new framework for studying (and distilling)
ICC systems for higher-order languages. While up to now quite distinct tech-
niques had been successful for providing expressive criteria for polynomial time
complexity at first-order and at higher-order respectively, our approach brings
together these techniques: interpretation methods on the one hand, and seman-
tic domains and type systems on the other. We have illustrated the strength of
this framework by designing an ICC system for polynomial time based on a ter-
mination criterion and on quasi-interpretations, which allows to give some suffi-
cient conditions for programs built from higher-order combinators (like foldr)
to work in bounded time. We think this setting should allow in future work
to devise new, more expressive, systems for ensuring complexity bounds for
higher-order languages.

References

[1] Roberto Amadio. Synthesis of max-plus quasi-interpretations. Fundam.
Inform., 65:29–60, 2005.

[2] Takahito Aoto and Toshiyuki Yamada. Termination of simply typed term
rewriting by translation and labelling. In RTA 2003, volume 2706 of LNCS.
Springer, 2003.

[3] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complex-
ity of functional programs: higher-order meets first-order. In ICFP 2015,
pages 152–164, 2015.

[4] Martin Avanzini and Georg Moser. A combination framework for complex-
ity. In RTA 2013, volume 21 of LIPIcs, pages 55–70, 2013.

[5] Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional
language from light linear logic. In ESOP 2010, volume 6012 of LNCS,
pages 104–124, 2010.

[6] Patrick Baillot and Ugo Dal Lago. Higher-order interpretations and pro-
gram complexity. In CSL 2012, volume 16 of LIPIcs, pages 62–76, 2012.

39

[7] Patrick Baillot and Kazushige Terui. Light types for polynomial time com-
putation in lambda calculus. Inf. Comput., 207(1):41–62, 2009.

[8] Stephen J. Bellantoni and Stephen A. Cook. A new recursion-theoretic
characterization of the poly-time functions. Computational Complexity,
2:97–110, 1992.

[9] Stephen J. Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg.
Higher type recursion, ramification and polynomial time. Ann. Pure Appl.
Logic, 104(1-3):17–30, 2000.

[10] Guillaume Bonfante, Adam Cichon, Jean-Yves Marion, and Hélène Touzet.
Algorithms with polynomial interpretation termination proof. J. Funct.
Program., 11(1):33–53, 2001.

[11] Guillaume Bonfante, J.-Y. Marion, and Jean-Yves Moyen. Quasi-
interpretations a way to control resources. Theor. Comput. Sci.,
412(25):2776–2796, 2011.

[12] Guillaume Bonfante, Jean-Yves Marion, and Jean-Yves Moyen. On lex-
icographic termination ordering with space bound certifications. In Er-
shov Memorial Conference, volume 2244 of LNCS, pages 482–493. Springer,
2001.

[13] Guillaume Bonfante, Jean-Yves Marion, and Romain Péchoux. Quasi-
interpretation synthesis by decomposition. In ICTAC 2007, volume 4711
of LNCS, pages 410–424. Springer, 2007.

[14] Alöıs Brunel and Kazushige Terui. Church => Scott = Ptime: an applica-
tion of resource sensitive realizability. In DICE 2010, volume 23 of EPTCS,
pages 31–46, 2010.

[15] Ugo Dal Lago. The geometry of linear higher-order recursion. In LICS
2005, pages 366–375, 2005.

[16] Ugo Dal Lago and Marco Gaboardi. Linear dependent types and relative
completeness. In LICS 2011, pages 133–142, 2011.

[17] Ugo Dal Lago and Martin Hofmann. Realizability models and implicit
complexity. Theor. Comput. Sci., 412(20):2029–2047, 2011.

[18] Ugo Dal Lago and Simone Martini. Derivational complexity is an invari-
ant cost model. In FOPARA 2009, volume 6324 of LNCS, pages 88–101.
Springer, 2009.

[19] Ugo Dal Lago and Simone Martini. On constructor rewrite systems and the
lambda-calculus. In ICALP 2009, volume 5556 of LNCS, pages 163–174.
Springer, 2009.

[20] Nachum Dershowitz. Orderings for term-rewriting systems. Theor. Com-
put. Sci., 17(3):279–301, 1982.

40

[21] Carsten Fuhs and Cynthia Kop. Polynomial interpretations for higher-
order rewriting. In RTA 2012, volume 15 of LIPIcs, pages 176–192. Schloss
Dagstuhl, 2012.

[22] Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment
system for lambda -calculus. In CSL 2007, volume 4646 of LNCS, pages
253–267. Springer, 2007.

[23] Martin Hofmann. A mixed modal/linear lambda calculus with applications
to Bellantoni-Cook safe recursion. In CSL 1997, volume 1414 of LNCS,
pages 275–294, 1997.

[24] Martin Hofmann. Safe recursion with higher types and BCK-algebra. Ann.
Pure Appl. Logic, 104(1-3):113–166, 2000.

[25] Martin Hofmann. Linear types and non-size-increasing polynomial time
computation. Inf. Comput., 183(1):57–85, 2003.

[26] Jean-Pierre Jouannaud and Mitsuhiro Okada. A computation model for
executable higher-order algebraic specification languages. In LICS 1991,
pages 350–361, 1991.

[27] Jean-Pierre Jouannaud and Albert Rubio. The higher-order recursive path
ordering. In LICS 1999, pages 402–411, 1999.

[28] Jan Willem Klop, Vincent van Oostrom, and Femke van Raamsdonk. Com-
binatory reduction systems: Introduction and survey. Theor. Comput. Sci.,
121(1&2):279–308, 1993.

[29] D. Lankford. On proving term rewriting systems are noetherian. Technical
Report MTP-3, Louisiana Tech. University, 1979.

[30] D. Leivant. Predicative recurrence and computational complexity I: word
recurrence and poly-time. In Feasible Mathematics II, pages 320–343.
Birkhauser, 1994.

[31] Daniel Leivant and Jean-Yves Marion. Lambda calculus characterizations
of poly-time. Fundam. Inform., 19(1/2), 1993.

[32] Jean-Yves Marion and Jean-Yves Moyen. Efficient First Order Functional
Program Interpreter with Time Bound Certifications. In LPAR 2000, vol-
ume 1955 of LNAI, pages 25–42. Springer, 2000.

[33] Georg Moser and Andreas Schnabl. The derivational complexity induced
by the dependency pair method. Logical Methods in Computer Science,
7(3), 2011.

[34] Jaco van de Pol. Termination of Higher-order Rewrite Systems. PhD thesis,
Utrecht University, 1996.

41

[35] Toshiyuki Yamada. Confluence and termination of simply typed term
rewriting systems. In RTA 2001, volume 2051 of LNCS, pages 338–352.
Springer, 2001.

42

Appendix

Proof. [of Prop. 29] We will prove by induction on M the following property
Q(M): if M is a term of type N (N (. . . (N or N with free vari-
ables x1 : N, . . . , xn : N which are linear in M , then there exists a singleton
multiset [m] such that: for any closed Mi : Si with size [ki], for 1 ≤ i ≤ n,
M{x1/M1, . . . , xn/Mn} admits size [k1, . . . , kn,m].
• If M is a variable or M = + or max, Q(M) holds with the size [0].
• If M = λx.P , then by i.h. Q(P) holds with a size [p]. It is easy to check

that Q(M) also holds with the size [p].
• If M = (PA→S LA): this case is handled as in the proof of Prop. 28.
• If M = (PR2(S LR2): then as M is assumed to be in normal form it can be

written as M = (. . . (J J1) . . . Jk) where J is either a variable or a constant.
As M only has free variables of type N we deduce that J is a constant, and
it can thus be either + or max and we have k = 1 or 2. Take P = max and
k = 2 (the other cases are similar). We know by i.h. that Q(J1) and Q(J2)
hold, so let [n1] and [n2] be two multisets for these properties. We take
n = max(n1, n2). One can then check that [n] establishes property Q(M).

�

Proof. [of Lemma 30] We prove the statement by induction on M :
• If M = x then the statement holds.
• If M = n,+,max or ×, then the statement is obviously also true (note that

for × we are using the fact that the base domain is N∗ and not N).
• If M is an application, it can be written as M = (. . . (M0) M1) . . .) Mn)

where M0 is not an application and n ≥ 1. Moreover M0 cannot be an
abstraction since M is in β-normal form, and it cannot be a variable y since
M can only have free variables of type N. So M0 = c for c ∈ {+,max,×},
and therefore n ≤ 2. We obtain that the Mis for 1 ≤ i ≤ 2 are of type N
hence also satisfy the hypothesis, and thus by i.h. they satisfy the claim.
Therefore the claim is also valid for M .
• Finally the only possibility left is M = λx.P . By definition of HOMPs we

know then that x is a free variable of P of type N, and as P satisfies the
hypothesis, by i.h. we know that P satisfies the claim. Therefore the claim
is valid for M .

This concludes the proof. �

43

