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Abstract�In the present paper, we show that it is possible
to use a periodic structure of disconnected elements (e:g: a
line of rods) to guide electromagnetic waves, in the direction
of the periodicity. To study such segmented waveguides, we use
the concept of quasimodes associated to complex frequencies.
The numerical determination of quasimodes is based on a �nite
element formulation completed with Perfectly Matched Layers
(PMLs). These PMLs lead to non Hermitian matrices whose
complex eigenvalues correspond to quasimode frequencies. Using
Floquet-Bloch theory, a numerical model is set up that allows the
spectral study of structures that are both open and periodic. With
this model, we show that it is possible to guide electromagnetic
waves on signi�cant distances with very limited losses.

I. INTRODUCTION

In this paper, we show that it is possible to ef�ciently
guide electromagnetic waves with discontinous structures, i:e:
with a periodic chain of disconnected elements usually named
segmented waveguides [1]. Traditional waveguides such as
optical �bres or metallic waveguides are usually presented as
structures with a cross section invariant along one direction,
e:g: x-axis. The theoretical and numerical studies consist in
determining propagation modes that are electromagnetic �elds
with components in the form U(y; z)e�i(!t��x) where U(y; z)
is a function on the cross section, ! 2 R is the pulsation
and � 2 R is the propagation constant. Nevertheless, it may
be useful to generalize this concept of propagation mode
to complex ! = !0 + i!00(! 2 C; � 2 R) or complex
� = �0+ i�00(! 2 R; � 2 C). In this case, the propagation of
the mode is accompanied by an exponential decrease in time
or along the propagation direction due to the fact that the
guided wave is not well con�ned in the guide that is therefore
a lossy guide. We consider here lossless materials and the
losses do occur because of the con�guration of the guide (open
waveguides) and not because the materials are dissipative. The
corresponding �modes� are named quasimodes or leaky modes.
They may seem uninteresting from a practical point of view
but in fact the imaginary part of ! may be small enough to
transport waves on signi�cant distances.

We will therefore consider segmented waveguides and look
for modes and, most probably, quasimodes with losses weak
enough.

II. QUASIMODES

In order to study the segmented waveguides, we are now
led to determine the quasimodes but they are not just a
generalization of modes to complex frequencies/propagation

constants and special techniques have to be used in order to
compute them properly.

Modes are solutions to the wave equation without sources
and these solutions have a �nite power. From a mathematical
point of view, it means that they are elements of a suitable
Hilbert space whose norm is related to the power of the
physical �eld. It can be shown that the quasimodes can not
be elements of this Hilbert space because their norm/power
is necessarily in�nite. To show this heuristically, consider
classical waveguides invariant along x with modes that are
�elds with components in the form U(y; z)e�i(!t��x). For the
quasimodes, we consider, in this section, the (! 2 R; � 2 C)
case. In the yz-plane, outside of the guide (i:e: the region
where the media are different from the surrounding medium),
we consider that the medium is isotropic homogenous and
characterized by permittivity "1 2 R. The components of a
quasimode satisfy a Helmholtz equation �U+k2

1U = 0 with
k2
1 = k2

o"1 � �2 and ko = !=c. The solutions in cylindrical
coordinates can be written as a Fourier-Bessel expansion
U(�; �) =
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for large � is U(�; ’) = �(’)eik1�=p� + O(��3=2) =
�(’)eik

0
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00
1�=p� + O(��3=2). Since ko; "1 are real,

k1 = k01+ik001 is complex with �0�00 = �k01k001 (imaginary
part of k2

1=2). We have k01 > 0 (outgoing wave condition),
�0 > 0 (propagation towards positive x), and �00 > 0 (leaky
mode decreasing along the propagation direction) that give
k001 < 0, i:e an exponential divergence in the cross section
with �!1.

III. FE AND PMLS

Nowadays, the Finite Element (FE) method is an effective
method to compute the behaviour of electromagnetic waves in
photonic devices. It provides a tool that is extremely versatile
and accurate at a reasonable computational cost. From now,
we consider the case of complex frequencies (� 2 R; ! 2
C). An important progress has been made by the introduction
of Perfectly Matched Layers (PMLs) that are used for the
re�ectionless truncation of in�nite domains [2]. Moreover, the
PMLs are the theoretical and numerical tool that we need to
compute the quasimodes, specially for the correct computation
of the imaginary parts of the frequencies associated to leakages
[3]. The role of the PMLs is to rotate the continuous spectrum
in the complex plane [4] in order to unveil the quasimodes (by
providing a non-Hermitian extension of the operator associated
to the initial problem). A practical way to design such PMLs



is to consider Transformation Optics: PMLs may be obtained
by applying a complex-valued stretch to the coordinates and
then computing the resulting equivalent materials [5].

IV. PERIODIC WAVEGUIDES

The last feature required to study the segmented waveguides
is to take into account their periodic structures. In the case of
translational invariance, only the cross section has to be taken
into account and this reduces the geometric dimension of the
problem, e:g: 3D to 2D. Here we are interested in more general
case where the waveguide is periodic along the propagation
direction. There is no more dimension reduction but the
numerical problem can be set up on a single cell of the periodic
problem via Floquet-Bloch quasiperiodic boundary conditions
(FBC) [6]. The quasiperiodicity condition is determined by
the size of the cell together with the value of the propagation
constant � (real and a priori given, the problem is to �nd the
various associated !). A numerical model is set up, using FE,
PMLs, and FBC, that allows the spectral study of structures
that are both open and periodic. This model is the tool we
are using to investigate the quasimodes of the segmented
waveguides.

V. RESULTS: FINITE ELEMENT MODELING OF
PERIODICALLY SEGMENTED WAVEGUIDES.

In this section, we consider particular waveguides made of
parallel dielectric rods in the visible range.

A. Chain of in�nitely long cylinders.
In this �rst part, we consider the 2D case (see Fig. 1).

Our study begins with the determination of the quasimodes by
considering a spectral problem in a single cell of the open and
periodic waveguide shown in Fig. 1a. We use the FE method
implemented in GetDP freeware [7] together with PMLs and
FBC. Figure 2 represents the dispersion diagram obtained

Fig. 1. Schematic of the two problems studied in this paper. (a) Spectral
problem: Quasi-modes of an in�nite chain of periodically arranged dielectric
cylinders of radius r, relative permittivity �c, and periodicity d. (b) Direct
problem: Transmission of a �nite chain (4 �periods� are represented here)
enlighten by a monopole antenna.

with � spanning the �rst Brillouin zone in both polarization
cases. Figure 2c shows the corresponding transmission of the
�nite guide (see Fig. 1b using 80 rods). Figure 3a shows the

complex eigenfrequencies for a given value of the propagation
constant. Figure 3b to 3f shows RefEzg for some of the
corresponding eigenmodes. Points close to the real axis (e.g.
(b) and (d)) are leaky modes (intrinsic to the waveguide, i.e.
independent of the PML parameters [3]). The other points (c),
(e) and (f) correspond to the discretization of the continuous
spectrum. These points depend strongly on the parameters of
the PMLs and have been discarded in Fig. 2. Points (c) and (e)
represent modes with moderate losses. They can be interpreted
as quasi-plane waves having signi�cant values in the non PML
region. Finally, point (f) exhibits very important losses and
corresponds to a �eld lying mainly within the PMLs. Figure 4
shows the behavior of the �eld for various wavelengths in the
case shown in Fig. 1b (�nite chain with EM source and 80
rods, E//-polarization case). The case � = 620 nm corresponds
to a leaky mode with signi�cant losses. The case � = 700 nm
corresponds to a mode in the �rst gap shown in Figs 2b and
2c. The case � = 800 nm corresponds to a leaky mode with
very small losses. The structure can be considered as a good
waveguide in this case.

B. Chain of cylinders of �nite length.

We perform the same type of calculations in the case of
cylinders of �nite length l = 6r (along z). In this more realistic
case, we are dealing with a 3D problem leading to large scale
computation involving vector �elds (relying on the use of edge
elements). Figure 5 shows the dispersion diagram (directly
for all possible polarizations). It can be observed that the 2D
dispersion diagrams shown in Figs 2a and 2b are very similar
to the 3D one, suggesting that the �nite length has a limited
impact on the real part of the eigenfrequencies. Figure 6 shows

Fig. 5. Dispersion diagram for the quasimodes (! in rad/s) of an in�nite chain
of dielectric cylinders of �nite size l = 6r, with d = 300 nm, r = 125 nm
and �c = 2:25 (3D vector model with edge elements).

the real part of the electric �eld in the xy plane for a �nite
chain of �nite length cylinders with a dipole source at 750 nm.
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Fig. 2. Dispersion diagram for the quasimodes (! in rad/s) of an in�nite chain of dielectric in�nitely long cylinders with d = 300 nm, r = 125 nm and
�c = 2:25 for H//-polarization (Hz 6= 0) case (a) and E//-polarization (Ez 6= 0) case (b). The greyscale and the size of the dots (the larger, the less losses)
re�ects the real part/imaginary part ratio of the quasimodes. Normalized transmission (see Fig. 1: Ratio of Poynting �uxes across � with/without waveguide)
spectrum of a 80-cylinders long chain corresponding to polarization case (b).

Fig. 3. (a) Distribution of the complex frequencies for the propagation constant � = 0:8�=d for the 2D case shown in Fig. 2b. Isovalue maps (b) to (f)
represent Ref Ezg for some of the corresponding eigenmodes shown in (a).

VI. CONCLUSION

We have shown, using the concept of propagating quasi-
mode (leaky modes) that very simple periodic structures
made of identical elements can be ef�cient waveguides. Such
structures would be more convenient to build than traditional
photonic crystal waveguides. Work in progress include the
experimental veri�cation and the study of other settings.
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