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Generalising Diagonal Strict Concavity

Property for Unigueness of Nash Equilibrium

Eitan Altman, Manjesh Kumar Hanawal, and Rajesh Sundaresan

Abstract

In this paper, we extend the notion of diagonally strictlyncave functions and use it to
provide a sufficient condition for uniqueness of Nash eftiilim in some concave games. We
then provide an alternative proof of the existence and werigas of Nash equilibrium for a network
resource allocation game arising from the so-called Kelchanism by verifying the new sufficient
condition. We then establish that the equilibrium resgltirom the differential pricing in the Kelly

mechanism is related to a normalised Nash equilibrium ofraggeith coupled strategy space.

Index Terms

concave games, diagonal strict concavity, differentiadipg, Kelly mechanism, Nash equilib-

rium, network resource allocation, normalised Nash elgpiilim.

. INTRODUCTION

Consider a game played by players where each player has to choose a portion of a pie,
or some divisible good. Playerchooses actions; € [0, 1]. The actions are constrained to

satisfy
N

=1

Playeri gets utility U;(a;) for his actiona;, and acts to maximise his utility, subject to the
constraint in (1).

The above abstract game is widely applicable. The divigjoled could stand for
(&) amount of research grant money withbeing the portion of the grant money claimed

by theith participant;
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(b) a communication resource like bandwidth withbeing fraction of time playef uses
the channel;
(c) net interferencéemperaturg1l] with a; standing for the fraction playerwants as his

in order to ensure that he transmits at a desired high enaatgh r

The utility function is typically concave and increasingtlive action variable. The key feature
of this simultaneous action game is that the actions areledupy the constraint that they
should lie in the set given by (1). Write = (a;,1 < ¢ < N) or more simplya = (a;) for
the action profile.

Ideally, a social planner who works in the interest of greateial good may wish to pick
an allocation vector

N

a* € arg max {Z Ui(a;) | a SatiSfieS(l)} . 2

=1
However, players can be strategic and can act to maximise itindividual utilities. A
Nash equilibrium (NE) for the above game is an action profaéiséying the constraint
(1) and such that no player can strictly increase his utilityneans of a unilateral deviation
within the constraint set. The set of Nash equilibria for #lton-constrained game is (quite
straightforwardly) found to be the set of all action profitesuch that (1) is satisfied with
equality.

When the system is decentralised, the social planner makmaw the players’ utilities
or the worth of a portion of the resource for each player. lis ttase, Kelly [2] proposed
a decentralised mechanism in which each player submitsda doiwillingness-to-pay Let
b; > 0 denote this bid submitted by playérThe social planner then decides the unit price
1 and assigns to each player a portion of the resource that psojportion to his bid and
inversely proportional to the unit price; = b;/u.. The social planner then collects a payment

that equals the bid. Kelly [2] showed that when each play@osks a bid that maximises

U, (b—) b 3)
1

there exists a good choice of the unit pricethat will enable playe¥ to choose); = u*af,

his net utility given by

so that the share of players a}, the ith component of the system optimal vector in (2). In
this mechanism, the social planner does piote differentiatethe players, and the players
are assumed to be price takers, i.e., players do not arttictpa effect of their bids on the

unit price p.
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In a series of works, Hajek and Gopalakrishnan [3], Johaale{[4], [5], [6]) consid-
ered an alternative model where the players are price pating rather than price taking,
and compete to maximise their utility. The social planneenthmplements a mechanism
(henceforthKelly mechanismthat apportions the pie in the fraction of the bids, i.e.thwi
b= (b;,1 <i< N), the ‘proportional’ allocation is as follows:

bi
Zj'vzl bj .

This is then a new simultaneous action game where each ptéymrses a bid;. The net

utility of player i is

b;
Vi(b) == Ui(a;(b)) — b = Uj; (Z;Vﬂ bj> —b;. (4)

Under the assumption that ea€h is concave, strictly increasing, and continuously differ-
entiable overR,, and the right directional derivative &t is finite, the resulting game is
known to have a unique NE. Further, the price anticipatingineaof the players may result
in a suboptimal Nash equilibrium.e., Y. U;(-) at the NE can be lower than the value at
the optimum profile of (2). Indeed, Johari and Tsitsiklis Bfjowed that the proportional
allocation mechanism leads to an efficiency loss of upto 25%e social optimum value.
To close this efficiency gap, arice differentiationscheme was proposed in [7]. Price
differentiation is introduced by replacing the negativenten (4) by b;/r;, wherel/r; is
the price differentiation factor for playér The resulting mechanism will be called tKelly
mechanism with price differentiatiohe price differentiation results in a NE which is related
to a special type of equilibrium callegbrmalised Nash equilibriuras we show later in the
paper.

Let us return to the Kelly mechanism defined by utilities (Mptice that the bids (or
actions) in the decentralised mechanism are no longer eduplt the utilities of the players
are coupled. This is reminiscent of the special class of gami¢éh coupled utilities and
decoupled actions sets dealt with in [8].

In another class of resource allocation problems cattatting gamesplayers share a
communication network to ship their demand (or traffic) fr@arsource to a destination.
The communication network consists of several intercotatedinks which are capacity
constrained, and cost on each link depends on the totalctraffi that link. As higher
congestion implies higher delay or higher loss rate, thegquk prefer to use a link that

is less congested. The action space of each player is coestran these games as sum of

September 30, 2015 DRAFT



flows across the links must equal its total demand. In [9], db#hors studied the amount
of traffic sent by each player on each link at equilibrium asislg that the players aim to
minimise their total cost. They establish existence andjugmess of NE in routing games
under the assumption that the cost function of each playeonsex in its flow and satisfies
certain monotonicity properties. Noting that this game barstudied as a game where each
player aims to maximise the negative of its cost functioms th again reminiscent of the
special class of games with coupled utilities and decouatgithns sets dealt with in Rosen’s
work [8].

In [8], Rosen provided a general framework to study gamesrevhglity of each player
is concave and the action (strategy) space is convex andamimigis framework includes
competitions where not only utilities of the players aremed, but also the action space of
the players can be coupled, hence covering a rich class awergames. When the action
space of the players are coupled, a player is restrictedki daly certain actions (a strict
subset of his action space), given action profile of his oppts To study the equilibrium
behaviour of games in such generality, Rosen introducecctimeept of normalised Nash
equilibrium (NNE). He established the existence of NNE iesith games, and further provided
a sufficient condition calledliagonal strict concavityfor uniqueness of NNE. In Rosen’s
setting, NNE is same as the NE when the utilities of playeesaupled but the strategy
spaces are independent of each other, i.e., each playeiakarahy action independent of
his opponents. The problems studied by Hajek and Gopakalais [3] and Johari et al. [4]
fall within the setting considered by Rosen in [8].

Our work was motivated by the following question. Could opelg Rosen’s result, with a
suitable modification to handle noncompactness of themmepaces, and prove the uniqueness
of the NE obtained by Hajek and Gopalakrishnan [3]? Couldmoeide a unified approach
to establish uniqueness of NE in network games, in partictéaource allocation and routing
games?

Study of uniqueness of NE is important in network games. d&esits theoretical interest,
uniqueness of NE is of obvious importance in predicting oekabehaviour in equilibrium.
Uniqueness of NE is also of particular importance for nekwvoanagement, where regulating
player behaviour in a single equilibrium (using pricingy Bxample) is usually much easier
than for several equilibria simultaneously. For a surveynetwork games with unique NE
see [10].

Though unique NE in a game is favourable, in many games the B{£ mot be unique.
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Indeed, there are games that possess infinitely many NEspa@eé [11]. This difficulty is
overcome by requiring that payoff functions satisfy somepgrties. In [12], it is shown
that if the game admits potential function then the Nash equilbria are given by the local
optima of the potential function. Naturally, if the poteaitfunction has a unique optimum,
it corresponds to the unique NE of the game. Another requargrthat ensures uniqueness
of NE is thedominant diagonal propertyn supermodular games [13]. Yet another test for
uniqueness of NE in a game where action space of the playemuisded and continuous is
to verify that the best response of each players ssaadard functior(see [14] and [15, Th.
2]). In this paper, we provide another sufficient condition the existence of unique NE in
concave games.

Our contributions are as follows:

« We provide a generalisation dfagonal strict concavitfDSC) property, and show that

when it is satisfied, uniqueness of NE is guaranteed in cengames.

« We provide an example network resource allocation gameevter proposed sufficient

condition holds, but the DSC property is difficult to verify.

« We show that the NE in the Kelly mechanism with differentiacmg is related to the

NNE of another game with coupled action space.

« We provide a unified approach to establishing uniquenesskofri\resource allocation

games using the Rosen’s framework of concave games.

The paper is organised as follows. In Section Il, we brieflyaduce N —person concave
games studied by Rosen [8] and discuss the DSC property.diio8dll, we motivate the
need to extend the definition the DSC property to establisquemess of NE by providing
examples where DSC property is difficult to verify. In Senti®y/, we generalise the Rosen’s
work by providing a new sufficient condition (based on DSC)esiablish uniqueness of
NE, and show its application to the study of resource alloogbroblems. In Section VI, we
make the connection between the Nash equilibrium in theyKe#chanism having differential
pricing with the normalised Nash equilibrium of another gamith related but uncoupled
utility functions and a coupled action set. We end the pap#r & concise summary and a

brief discussion of future work in Section VII.

I[I. ROSEN'S UNIQUENESSTHEOREM

In this section, we describe Rosen’s result on the suffigiefadiagonal strict concavity

for uniqueness of NE in a game with vector strategies. Wedisstuss the game where only
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the utilities are coupled and then discuss the case whersttaggy spaces of the players
are also coupled. We first set up some notation and state suenasions.

Consider the followingV-person concave game. We describe the constraint set ireitie n
paragraph and the utility functions in the following paragjn.

Let A, = {b; € R™ hy(b;) > 0,k =1,2,---, K;} denote bounded action set of player
7, whereR™: denotes the Euclidian plane of dimension, and fork = 1,2, -+, K;, hj :
R™ — R is a concave and continuously differentiable functionRit¥. Write, as before,
b := (b;) for the action profile, wheré ¢ A = S := [[L, A, € R™ with m = 3N m,.
In this case, the action spacek is the rectangleS, and we say action set of players are
orthogonal The game is said to badecoupled in the action séfVe denote thgth component
of the actionb; asb;;. More generally, we will also consider @upled constraint setl =
{b e R™ hj(x) >0for j=1,..., K} whereK is a natural number and,, j = 1,..., K are
concave and continuously differentiable functionsfdh Whether the action set is orthogonal
or coupled, we will assume that there exists@ A that is strictly interior to every nonlinear
constraint. This is a sufficient condition for the Kuhn-Taclconstraint qualification.

Consider a family ofV coupled utility functions, where thih utility function isV; : A —
R. V;(b) is assumed to be continuousirand concave and continuously differentiablebjn
for a givenb_; = (by,be, -+, bi_1,bis1,---,by). Write V := (V) for the family of utility
functions.

For any scalar functiom(b) we denote the gradient with respecti{oas V,;«(b). Define
a mappingo : R™ x RY — R, whereRR, denotes the set of positive real numbers, as the

weighted sum of function$” as follows:

o(b,r) = Zrin‘(b), r, >0 Vi (5)

The pseudogradienof o(b, r) for any given nonnegative is defined as

7’1V1V1(b)

7’2V2V2(b)

g(b,r) = (6)

| TNVNVN((?) i
Let G(b,r) denote the Jacobian with respectitof g(b, ). Note thatG (b, r) is a matrix of

dimensionm x m. We use the notatiod/* to denote transpose of matrix/. For a vector
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r, we sayr > 0, respectivelyr > 0, if each component is nonnegative, respectively strictly

positive.

Definition 1 (Rosen [8](p. 524))The functiono (-, r) is calleddiagonally strictly concave

(DSC) for a givenr > 0 if for every distinct pairt’, b' € A we have
(b' = 8°)" (g(b",7) — g(1°, 7)) < 0. (7)

When the players are interestedrmnimisingtheir respective convegostfunctions, the
correspondingr (-, ) is diagonally strictly convexf (7) holds with the opposite inequality.
A sufficient condition for the familyi” to be diagonally strictly concave (convex) for a

givenr > 0 is that the symmetric matrix
[G(b,7) + G (b,7)] (8)

is negative (positive) definite over the domain[8, Th. 6].

A. Equilibrium in Games with Decoupled Action Set

In this subsection we consider games with decoupled or gathal action sets, i.e4 = S.
In a concaveN-person game with decoupled action set, a ptiint A is said to be a Nash

equilibrium (NE) if for everyi =1,2,--- N, we have

Vi(6°) = max Vi(b;, b°).

biEAi

Rosen established the following result.

Theorem 1 (Rosen [8], Th.2)Assume that the constraint set is orthogonal, anddhat)

is DSC for some > 0. If an equilibrium point exists, then it is unique.

Rosen’s uniqueness theorem [8, Th. 2] was stated for contlgacains, for which he also
established existence of a Nash equilibrium (Rosen [8, T)h But the proof works for any
unbounded domain, provided an equilibrium point existsséRs concept of equilibrium with
coupled constraints is also known as variational equiir{see [16] and references therein).
Rosen studies this concept under the assumption that gknsldnave common constraints.
(A more general framework for games with constraints that rast necessarily common is

known as the generalised Nash equilibrium - GNE, see [1H], [And references therein).
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B. Equilibrium in Games with Coupled Constraint Set

Now consider the coupled constraint sét= {6 € R™ h;(b) > 0,57 = 1,2,---,K}. To
study equilibrium in such concave games where both usligied actions are coupled, Rosen
introduced the concept aformalised Nash equilibriunfNNE). The NNE is a special kind
of NE where the Lagrange multipliéracross players are interrelated. Formally, it is defined

as follows.

Definition 2: Let b be a NE and lefu?) > 0 be the associated Lagrange multipliers given
by the Kuhn-Tucker conditions at the NE. If tffe?) satisfyu? = \/r; for some(r;) > 0

and A > 0, thenb is called a normalised Nash equilibrium (NNE) far

Rosen established existence of NNE for every specified (r;) > 0 in concave games
with compact constraint sets. He also established a unegsaresult for the NNE, which we

now state.

Theorem 2 (Rosen [8], Th.4)et r > 0 and leto(-,r) be diagonally strictly concave. If

a NNE for r exists, then it is unique.

We will return to use of NNE later in subsection VI where wedstlNE in the Kelly
mechanism with differential pricing. We first discuss thedéor extending the DSC property.

We close this section with the reiteration that the DSC priype a sufficient condition to
establish uniqueness of NE in a concaveperson game. Many problems in network games,
such as Kelly’s resource allocation problem [2], Tullocké&nt seeking problem [18], and
routing games [9] are concave games. However, the DSC pyoigezither difficult to verify
[19] or can be established only in some special cases [9,IB&]. We will see an example
in the next section of a situation where the DSC property idgybe verified, and yet, the NE
is known to be unique. In Section V, we will show how the extensf the DSC property

in Section IV applies to the example of Section III.

[Il. AN EXAMPLE WHERE DSC IS UNVERIFIED

In this section, we provide an example of a concave game fachwihe DSC property is
not yet verified. We also demonstrate that Rosen’s suffigientlition for the DSC property

fails. This will then set the stage for an extension of the OB8Gperty.

1The Lagrange multipliers are those associated the equitibpoint and satisfy the Kuhn-Tucker conditions.
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Consider the resource allocation problem defined by utfily We first observe that;
R, for all i. By setting K; = 1,h;1(b;) = b;,i = 1,---, N, this problem fall within the
framework of concave games. Also note that the linear tenmthe utility function do not

affect the DSC property. So, we may focus on the modified faiil= (V;) where

bA
Vi(b) :==U; - 9
<Z§V1 bj)
without the linear term. Observe that
4 . 1— b b,
b, 22505 > b;

Consider the setting of two players; = 2. For anr > 0, with V" as in (9),0(-,r) is DSC

if for any pair (b1, b3) € R3 and (4], 53) € R%, we have

;7’@- (5} (; b}) — B (; bg)) <(1 —gj?(bg{(BS) _a —g;%’@%) <0, (11)

where3? = v2/(b9 + 1) and 3} = b} /(b1 + b}) for i = 1,2,

We have not been able to prove that there igran0 such that (11) holds for distinét

and??, even for the simple case whéf;)s are identity maps, i.e.,

: <Zb»ib'> > )

Further, we have not been able to prove the negation of theeasimtement holds, which
would establish that (-, ) is not DSC for anyr > 0.

The above are interesting open questions because, on thkaowe we know that there
exists a unique (normalised) NE (foy = 1), and yet the Jacobian-based sufficient condition

for DSC fails, as we show next.

Proposition 1: Let N = 2 and consider the family” = (V;) with (U;) as in (12). Then,
for anyr > 0, [G(b,7) + G'(b, )] for the family V' is not negative definite.

Proof: It suffices to consider # 0. Fix such an- and, without loss of generality, assume

ro > 0. The second order derivatives Bf and V; are

PVi(bi,by)  —2b

o (b

PVo(bi,by)  —2b
b3 (b + by)?

PVilbi,be) — bi—by  OVa(bi,bo)
Oby Oby (by + by)3 Oba0b;
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10

and the symmetric matrix in (8) is given by

. B 1 —271by (b1 — bo)(r1 — 13)
[G(b,7) + G'(b,7)] = B 028 | (b — o) — 1) ol

Now consider a bid;, > 0 andb, = 0. We then have

To 0 (a—1)
G)? | (a—1) -2 |

[G(b,7) + G b,7)] =

wherea = r,/ry > 0. The eigenvalues of this matrix arel + /1 + (a — 1)2 and -1 —
V/1+ (a—1)2. Clearly the first of these is nonnegative for all> 0, and soG([(b,7) +
G'(b,r)] is not negative definite oR? . ]
We next provide a generalisation of DSC property in the feifgy section and show that
uniqueness of NE is guaranteed if the new property holds. S¥@the validity of the new

sufficient condition in the resource allocation problemg4)f

IV. GENERALISED DIAGONAL STRICT CONCAVITY

In this section we generalise the notion of diagonally 8triconcave functions. Its use-
fulness arises from its application to the resource allongproblem with utilities as in (4).
We assume that the action space of each player has the samesitm, i.e.jn; = my =
- = my := m, and that each player's actions are nonnegative. The deatian of the

DSC property is as follows.

Definition 3: Let 7; : RTY — R, be a nonnegative function for = 1,2,---,m. The
function o(-,r) is generalised diagonally strictly conca{&DSC) for a given- > 0 if for

every pairt”, b € RV such that
(09,/T;(0),1 < i < N,1<j<m) # (b/T;(0"),1 <i <N, 1< j<m),

we have

bl Bo. . ,
DT (Tjggl) T 520)) (T(b)?bv (b") - TJ—(bO)%(bO)) <0. (13)

2

For the case ofn = 1 when each player’s action is a nonnegative scalar, wrifinfpr

T, the above condition simplifies to

S (g ~ ) (70 g 00 - TG0 ) <o

7
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11

If all 7; were identically 1, we get back Rosen’s definition of diadlynstrictly concave
functions given in (7). The generalisation here allows thecfions7; to be more general
than the “identically 1” function. The generalisation isefid because we can leverage it to
extract the following theorem.

The setting of the generalisation is one where the actios &t decoupleds’; = m for
eachi, andh;(b;) = by, for all k = 1,2, - - - K;. Note that this setting covers the game with
utilities (4).

Theorem 3:Assume that the family (-, ) is GDSC for some- > 0. Assume further that
if 73(b) = 0 for somej, thenb is not a NE for the game with utility functiond;). If a NE

exists for this game then it is unique up to scaling of theomctiomponents byT;).

Proof: The proof is a simple extension of Rosen’s proof of [8, Th.L&t t°, ' € RTY

be two equilibrium points. Then for eagh=1,..., N, we have
béEargmbaX{Vi(bi,bl | b; eRT}, 1=0,1.

By the Kuhn-Tucker necessary conditions, for eaehl,..., N, and forl = 0, 1, there exist

inli l m
Lagrange multipliers,; € R’} so that

b > 0 (14)

ub > 0 (15)

W)l = 0 (16)
%%@5+ug::0 j=1,2,-m (17)

By assumption{’;(b) = 0 for some; implies thatb is not an equilibrium point, and hence
T;(b") > 0 for all j and! = 0, 1. Multiply the last equation above H¥;(b') and subtract the

equation forl = 0 from the equation fof = 1 to get

oV, aV;
(il 1 (0 0 _
150 (0 + o) = 100 (G0 +y) =0
Now multiply by r; (bj,;/T;(b") — b2 /T;(b")), sum overj, and then sum ovei, to get
bi; by oV oV
] 1J B ] Tl i1y g0 0
S 3 (g5~ o) (B0 00 -0 0)

bO

+ Zrlz < - (50)> (Ty(0")ul; — T;(0")uly) = 0. (18)
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12
The second term, using;b}; = 0 for eachi, is
;Y0 1, Ti°)
— BO L J Bl ) <o
2 (Fi s it <

for eachi, and as a consequence the first term in (18) must be nonnegatimake the sum
zero. But, by the assumption of GDSC, this is possible onlgm), /T;(0°) = b;;/T;(b")

for all 4, 5. This establishes uniqueness up to scaling of the actiorpooents by(7;). |

V. APPLICATION TO RESOURCE ALLOCATION GAMES

We now go back to the study of resource allocation problentdapék and Gopalakrishnan
[3] and Johari and Tsitsiklis [4]. The action variable of legidayer is a scalar, i.em = 1.

We consider a generalisation of the utility functighof (4). For a fixedr = (r;) with r; > 0

b; b;
Vi(b) = U; <E§V1 bj> S (19)

Recall thatl/r; is the price differentiation factor for playerin the Kelly mechanism with

for everyi, define

price differentiation. We verify that the GDSC property tioFfor the associated(-, ) under

a suitable choice of'.

Theorem 4:Let » > 0 and consider th¢V;) of (19). LetT'(b) = >_.b;. Theno(-,r) is
GDSC.

Proof: Observe thabtV;/ob; is

av; b L=bi/2 ;b\ 1
and so, withs = b/T'(b), we get
oV, ,
RIS 0) = nUL (B) (1 = 6) = T(0),

We now verify the GDSC property of(-, ). Take anyt’,b' € RY and formg! = o' /T(¥')
for [ =0, 1. The left-hand side of (13) is then
> onlB =BT (B8] (1= 81) = Up (8) (1= 57) = (T(0") =T(") Y (5] = 5)).

K3 7

The second term is zero sin¢g!) sums to 1 for both = 0,1. The first term is strictly
negative for distinct®, b'. To see this observe th&t — z)U/(z) = W/(z), whereW;(z) :=
(1 — 2)U;(z) + [ Ui(z)dz. SinceW; is obviously increasing, concave, and a continuously

differentiable function, the familyt/’ = (W;) yield oy, (-, ), which is (5) with¥; in place
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13

of V;, that is DSC forr. This proves the claim that the first term is negative, anaipod

the theorem is complete. [ |

Let us now leverage this result to get a proof of uniquene$$ofor the Kelly mechanism

with price differentiation.

Corollary 1: Let » > 0. The game defined by decoupled action sRtS and utility
functionsV; given by (19) has a unique NE. In particular, with= 1 for all 7, the game

with utility functions V; given by (4) has a unique NE.

Proof: We prove the result in the following sequence of simple steps

Step 1 (Compact action spaces): The action space of each player can be restricted to a
compact rectangular set. Fix playerThe net utility of player is U;(a;) — b;/r;. SinceU; is
strictly increasing, we hav#;(a;) < U;(1) for any allocation to playef. If player: places
a bid strictly larger tham"* := r;U;(1), his aggregate utility is strictly negative, regardless
of the allocation. Hence therefore he has no incentive toepk bid larger tham"**, and
his action set is effectively reduced to the bounded andedasterval[0, b***].

Step 2 (Existence of equilibrium): By Step 1, the action space of each player is a compact
and convex subset @, . The action sets are decoupled. Existence of a NE followsdseR’s
[8, Th. 1].

Step 3 (T'(b) > 0): A b with T'(b) = 0 cannot be an equilibrium. Indee@i(b) = > . b, =0
implies thatb, = 0 for all ;. But then player 1 can increase his bid to a small vélue
(0, v"**], get the entire good, and pay a negligible amount(gf-;, and strictly improve
his net utility.

Step 4 (Uniqueness up to scaling): In Step 2, we verified that a NE exists. In Step 3, we
verified that ab with 7'(b) = 0 cannot be an equilibrium. In Theorem 4, we verified that for
everyr > 0, o(-,r) is GDSC. By Theorem 3 the NE is unique up to scalingZtfy).

Step 5 (Uniqueness): The NE is unique iff’(b) is unique for the equilibrium. By Step 3,
there is a player who places a positive bid. Without loss afegality, let this player be 1.
Thenb, > 0. With 5 = b/T(b), we must then have

~oVi(b)
Oby

It follows that 7'(b) is unique and so, by Step 4, the equilibrium is unique.

0

= U{(ﬁ)(l - 51)/T(b) - 1/7“1-

This completes the proof of the corollary. [ |
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VI. NORMALISED NASH AND DIFFERENTIAL PRICING

Consider the game defined by utility in (19). The vedtq) is price differentiation vector
in the Kelly mechanism [7]. In this section, we show that &gtium in the game with price
differentiation can be interpreted as the normalised Naghlibrium of another game with
coupled constraints, the game with which we began this pépeweights(r;).

Recall the coupled action set given by

A= {a:(ai):Zaizl}
introduced at the beginning of this paper. Consider the ga@fi@ed by the family of utility

functionsW; : A — R,
Wi(a) = Ui(a;)(1 — a;) + / z Ui(2)dz, (21)
0

whereU;(+) is concave, continuously differentiable and strictly #esing function. Note that
the above utility does not depend on the actions of the otlsteps. The interaction in the
game is only through the constraint set. In the proof of Teeod we argued thdl/;(-) is a
concave, increasing and continuously differentiable fiamcon [0, 1], and the corresponding
ow (-, r) formed with (1W;) satisfies the DSC property for amy> 0. Then, by Theorem 2,
the family W; has a unique normalised Nash equilibrium for each 0. Let (a}) denote the
normalised Nash equilibrium for a given> 0. By the Kuhn-Tucker conditions, there exists
a A > 0 such that -
i(a®

ri% —-A=0

for each: =1,..., N, or, equivalently,

(1- a?)a(gﬁ) " (22)

for eachi=1,..., V.

Now, consider the coupled utility decoupled action set gaefened by (19). By Theorem
4 and Corollary 1, this game has a unique Nash equilibriurh(tg denote the unique Nash
equilibrium and defing, = Zj z; > 0. By the optimality conditions, for each= 1,2, --- N,

there existsy; > 0 such that

Ty 1 ¥ 1
U; — e | o tn=0 (23)
<Zj‘”j> ( it (Zﬂf) Ti
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Assume(r;) are such that:} > 0 for eachi = 1,2,---  N. Then,~; = 0 for eachi =

1,2,---, N. Multiplying both sides by, we have

N x; p
5/ QT Y R U (24)
(Zﬂ"a‘) ( Zﬂj) i

If we definea; = 27/, «}, we see that both (24) and (22) are identical witk- ;.. Thus,

the normalised Nash equilibrium correspondingrtin the game defined by utilities (21)
maximises the equilibrium utilities in the Kelly mechanismth price differentiation vector

r.

VII. CONCLUDING REMARKS

In this paper we applied Rosen’s framework of concave gamesstablish uniqueness
of Nash equilibrium in resource allocation games. First, previded the example of the
Kelly mechanism where diagonal strict concavity (DSC), athis a sufficient condition for
uniqueness of Nash equilibrium in Rosen’s framework, isystverified, and yet the game
is known to have unique Nash equilibrium. We then provideduffictent condition, as a
generalisation of the DSC property, to establish the umigase of Nash equilibrium. Our
generalisation exploits the structure of utilities to bsth uniqueness of Nash equilibrium.

Further, applying Rosen’s framework to study Kelly meckaniwith differential pricing,
we showed that the resulting Nash equilibrium of the gamleasiormalised Nash equilibrium
of another game where strategy space is coupled.

Rosen developed a dynamic model to study stability in comggames. He showed that
when DSC property holds the system is globally asymptdticaaible, and starting from any
point the system converges to the unique Nash equilibritmvolild be of interest to see if

a similar stability results hold under the new GDSC property
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