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Generalising Diagonal Strict Concavity

Property for Uniqueness of Nash Equilibrium

Eitan Altman, Manjesh Kumar Hanawal, and Rajesh Sundaresan

Abstract

In this paper, we extend the notion of diagonally strictly concave functions and use it to

provide a sufficient condition for uniqueness of Nash equilibrium in some concave games. We

then provide an alternative proof of the existence and uniqueness of Nash equilibrium for a network

resource allocation game arising from the so-called Kelly mechanism by verifying the new sufficient

condition. We then establish that the equilibrium resulting from the differential pricing in the Kelly

mechanism is related to a normalised Nash equilibrium of a game with coupled strategy space.

Index Terms

concave games, diagonal strict concavity, differential pricing, Kelly mechanism, Nash equilib-

rium, network resource allocation, normalised Nash equilibrium.

I. INTRODUCTION

Consider a game played byN players where each player has to choose a portion of a pie,

or some divisible good. Playeri chooses actionsai ∈ [0, 1]. The actions are constrained to

satisfy
N
∑

i=1

ai ≤ 1. (1)

Playeri gets utilityUi(ai) for his actionai, and acts to maximise his utility, subject to the

constraint in (1).

The above abstract game is widely applicable. The divisiblegood could stand for

(a) amount of research grant money withai being the portion of the grant money claimed

by the ith participant;
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(b) a communication resource like bandwidth withai being fraction of time playeri uses

the channel;

(c) net interferencetemperature[1] with ai standing for the fraction playeri wants as his

in order to ensure that he transmits at a desired high enough rate.

The utility function is typically concave and increasing inthe action variable. The key feature

of this simultaneous action game is that the actions are coupled by the constraint that they

should lie in the set given by (1). Writea = (ai, 1 ≤ i ≤ N) or more simplya = (ai) for

the action profile.

Ideally, a social planner who works in the interest of greater social good may wish to pick

an allocation vector

a∗ ∈ argmax

{

N
∑

i=1

Ui(ai) | a satisfies(1)

}

. (2)

However, players can be strategic and can act to maximise their individual utilities. A

Nash equilibrium (NE) for the above game is an action profile satisfying the constraint

(1) and such that no player can strictly increase his utilityby means of a unilateral deviation

within the constraint set. The set of Nash equilibria for theaction-constrained game is (quite

straightforwardly) found to be the set of all action profilesa such that (1) is satisfied with

equality.

When the system is decentralised, the social planner may notknow the players’ utilities

or the worth of a portion of the resource for each player. In this case, Kelly [2] proposed

a decentralised mechanism in which each player submits a ‘bid’ or willingness-to-pay. Let

bi ≥ 0 denote this bid submitted by playeri. The social planner then decides the unit price

µ and assigns to each player a portion of the resource that is inproportion to his bid and

inversely proportional to the unit price:ai = bi/µ. The social planner then collects a payment

that equals the bid. Kelly [2] showed that when each player chooses a bid that maximises

his net utility given by

Ui

(

bi
µ

)

− bi (3)

there exists a good choice of the unit priceµ∗ that will enable playeri to chooseb∗i = µ∗a∗i ,

so that the share of playeri is a∗i , the ith component of the system optimal vector in (2). In

this mechanism, the social planner does notprice differentiatethe players, and the players

are assumed to be price takers, i.e., players do not anticipate the effect of their bids on the

unit priceµ.
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In a series of works, Hajek and Gopalakrishnan [3], Johari etal. ([4], [5], [6]) consid-

ered an alternative model where the players are price anticipating rather than price taking,

and compete to maximise their utility. The social planner then implements a mechanism

(henceforthKelly mechanism) that apportions the pie in the fraction of the bids, i.e., with

b = (bi, 1 ≤ i ≤ N), the ‘proportional’ allocation is as follows:

ai(b) =
bi

∑N

j=1
bj
.

This is then a new simultaneous action game where each playerchooses a bidbi. The net

utility of player i is

Vi(b) := Ui(ai(b))− bi = Ui

(

bi
∑N

j=1
bj

)

− bi. (4)

Under the assumption that eachUi is concave, strictly increasing, and continuously differ-

entiable overR+, and the right directional derivative at0 is finite, the resulting game is

known to have a unique NE. Further, the price anticipating nature of the players may result

in a suboptimal Nash equilibrium, i.e.,
∑

i Ui(·) at the NE can be lower than the value at

the optimum profile of (2). Indeed, Johari and Tsitsiklis [4]showed that the proportional

allocation mechanism leads to an efficiency loss of upto 25% of the social optimum value.

To close this efficiency gap, aprice differentiationscheme was proposed in [7]. Price

differentiation is introduced by replacing the negative term in (4) by bi/ri, where1/ri is

the price differentiation factor for playeri. The resulting mechanism will be called theKelly

mechanism with price differentiation. The price differentiation results in a NE which is related

to a special type of equilibrium callednormalised Nash equilibriumas we show later in the

paper.

Let us return to the Kelly mechanism defined by utilities (4).Notice that the bids (or

actions) in the decentralised mechanism are no longer coupled, but the utilities of the players

are coupled. This is reminiscent of the special class of games with coupled utilities and

decoupled actions sets dealt with in [8].

In another class of resource allocation problems calledrouting gamesplayers share a

communication network to ship their demand (or traffic) froma source to a destination.

The communication network consists of several interconnected links which are capacity

constrained, and cost on each link depends on the total traffic on that link. As higher

congestion implies higher delay or higher loss rate, the players prefer to use a link that

is less congested. The action space of each player is constrained in these games as sum of
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flows across the links must equal its total demand. In [9], theauthors studied the amount

of traffic sent by each player on each link at equilibrium assuming that the players aim to

minimise their total cost. They establish existence and uniqueness of NE in routing games

under the assumption that the cost function of each player isconvex in its flow and satisfies

certain monotonicity properties. Noting that this game canbe studied as a game where each

player aims to maximise the negative of its cost function, this is again reminiscent of the

special class of games with coupled utilities and decoupledactions sets dealt with in Rosen’s

work [8].

In [8], Rosen provided a general framework to study games where utility of each player

is concave and the action (strategy) space is convex and compact. His framework includes

competitions where not only utilities of the players are coupled, but also the action space of

the players can be coupled, hence covering a rich class of concave games. When the action

space of the players are coupled, a player is restricted to take only certain actions (a strict

subset of his action space), given action profile of his opponents. To study the equilibrium

behaviour of games in such generality, Rosen introduced theconcept of normalised Nash

equilibrium (NNE). He established the existence of NNE in these games, and further provided

a sufficient condition calleddiagonal strict concavityfor uniqueness of NNE. In Rosen’s

setting, NNE is same as the NE when the utilities of players are coupled but the strategy

spaces are independent of each other, i.e., each player can take any action independent of

his opponents. The problems studied by Hajek and Gopalakrishnan [3] and Johari et al. [4]

fall within the setting considered by Rosen in [8].

Our work was motivated by the following question. Could one apply Rosen’s result, with a

suitable modification to handle noncompactness of the action spaces, and prove the uniqueness

of the NE obtained by Hajek and Gopalakrishnan [3]? Could oneprovide a unified approach

to establish uniqueness of NE in network games, in particular, resource allocation and routing

games?

Study of uniqueness of NE is important in network games. Besides its theoretical interest,

uniqueness of NE is of obvious importance in predicting network behaviour in equilibrium.

Uniqueness of NE is also of particular importance for network management, where regulating

player behaviour in a single equilibrium (using pricing, for example) is usually much easier

than for several equilibria simultaneously. For a survey onnetwork games with unique NE

see [10].

Though unique NE in a game is favourable, in many games the NE may not be unique.
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Indeed, there are games that possess infinitely many NE points; see [11]. This difficulty is

overcome by requiring that payoff functions satisfy some properties. In [12], it is shown

that if the game admits apotential function, then the Nash equilbria are given by the local

optima of the potential function. Naturally, if the potential function has a unique optimum,

it corresponds to the unique NE of the game. Another requirement that ensures uniqueness

of NE is thedominant diagonal propertyin supermodular games [13]. Yet another test for

uniqueness of NE in a game where action space of the players isbounded and continuous is

to verify that the best response of each players is astandard function(see [14] and [15, Th.

2]). In this paper, we provide another sufficient condition for the existence of unique NE in

concave games.

Our contributions are as follows:

• We provide a generalisation ofdiagonal strict concavity(DSC) property, and show that

when it is satisfied, uniqueness of NE is guaranteed in concave games.

• We provide an example network resource allocation game where the proposed sufficient

condition holds, but the DSC property is difficult to verify.

• We show that the NE in the Kelly mechanism with differential pricing is related to the

NNE of another game with coupled action space.

• We provide a unified approach to establishing uniqueness of NE in resource allocation

games using the Rosen’s framework of concave games.

The paper is organised as follows. In Section II, we briefly introduceN−person concave

games studied by Rosen [8] and discuss the DSC property. In Section III, we motivate the

need to extend the definition the DSC property to establish uniqueness of NE by providing

examples where DSC property is difficult to verify. In Section IV, we generalise the Rosen’s

work by providing a new sufficient condition (based on DSC) toestablish uniqueness of

NE, and show its application to the study of resource allocation problems. In Section VI, we

make the connection between the Nash equilibrium in the Kelly mechanism having differential

pricing with the normalised Nash equilibrium of another game with related but uncoupled

utility functions and a coupled action set. We end the paper with a concise summary and a

brief discussion of future work in Section VII.

II. ROSEN’ S UNIQUENESSTHEOREM

In this section, we describe Rosen’s result on the sufficiency of diagonal strict concavity

for uniqueness of NE in a game with vector strategies. We firstdiscuss the game where only
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the utilities are coupled and then discuss the case where thestrategy spaces of the players

are also coupled. We first set up some notation and state the assumptions.

Consider the followingN-person concave game. We describe the constraint set in the next

paragraph and the utility functions in the following paragraph.

Let Ai = {bi ∈ R
mi , hik(bi) ≥ 0, k = 1, 2, · · · , Ki} denote bounded action set of player

i, whereRmi denotes the Euclidian plane of dimensionmi, and fork = 1, 2, · · · , Ki, hik :

R
mi → R is a concave and continuously differentiable function onR

mi . Write, as before,

b := (bi) for the action profile, whereb ∈ A = S :=
∏N

i=1
Ai ⊂ R

m with m =
∑N

i=1
mi.

In this case, the action spaceA is the rectangleS, and we say action set of players are

orthogonal. The game is said to bedecoupled in the action set. We denote thejth component

of the actionbi as bij . More generally, we will also consider acoupled constraint setA =

{b ∈ R
m, hj(x) ≥ 0 for j = 1, . . . , K} whereK is a natural number andhj, j = 1, . . . , K are

concave and continuously differentiable functions onR
m. Whether the action set is orthogonal

or coupled, we will assume that there exists ab ∈ A that is strictly interior to every nonlinear

constraint. This is a sufficient condition for the Kuhn-Tucker constraint qualification.

Consider a family ofN coupled utility functions, where theith utility function isVi : A →

R. Vi(b) is assumed to be continuous inb and concave and continuously differentiable inbi

for a givenb−i = (b1, b2, · · · , bi−1, bi+1, · · · , bN). Write V := (Vi) for the family of utility

functions.

For any scalar functionα(b) we denote the gradient with respect tobi as∇iα(b). Define

a mappingσ : Rm × R
N
+ → R, whereR+ denotes the set of positive real numbers, as the

weighted sum of functionsV as follows:

σ(b, r) =

N
∑

i=1

riVi(b), ri ≥ 0 ∀ i. (5)

The pseudogradientof σ(b, r) for any given nonnegativer is defined as

g(b, r) =















r1∇1V1(b)

r2∇2V2(b)
...

rN∇NVN(b)















. (6)

Let G(b, r) denote the Jacobian with respect tob of g(b, r). Note thatG(b, r) is a matrix of

dimensionm ×m. We use the notationM t to denote transpose of matrixM . For a vector
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r, we sayr ≥ 0, respectivelyr > 0, if each component is nonnegative, respectively strictly

positive.

Definition 1 (Rosen [8](p. 524)):The functionσ(·, r) is calleddiagonally strictly concave

(DSC) for a givenr ≥ 0 if for every distinct pairb0, b1 ∈ A we have

(

b1 − b0
)t (

g(b1, r)− g(b0, r)
)

< 0. (7)

When the players are interested inminimisingtheir respective convexcost functions, the

correspondingσ(·, r) is diagonally strictly convexif (7) holds with the opposite inequality.

A sufficient condition for the familyV to be diagonally strictly concave (convex) for a

given r ≥ 0 is that the symmetric matrix

[G(b, r) +Gt(b, r)] (8)

is negative (positive) definite over the domainA [8, Th. 6].

A. Equilibrium in Games with Decoupled Action Set

In this subsection we consider games with decoupled or orthogonal action sets, i.e.,A = S.

In a concaveN-person game with decoupled action set, a pointb0 ∈ A is said to be a Nash

equilibrium (NE) if for everyi = 1, 2, · · · , N , we have

Vi(b
0) = max

bi∈Ai

Vi(bi, b
0

−i).

Rosen established the following result.

Theorem 1 (Rosen [8], Th.2):Assume that the constraint set is orthogonal, and thatσ(·, r)

is DSC for somer > 0. If an equilibrium point exists, then it is unique.

Rosen’s uniqueness theorem [8, Th. 2] was stated for compactdomains, for which he also

established existence of a Nash equilibrium (Rosen [8, Th. 1]). But the proof works for any

unbounded domain, provided an equilibrium point exists. Rosen’s concept of equilibrium with

coupled constraints is also known as variational equilibrium (see [16] and references therein).

Rosen studies this concept under the assumption that all players have common constraints.

(A more general framework for games with constraints that are not necessarily common is

known as the generalised Nash equilibrium - GNE, see [17], [16], and references therein).
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B. Equilibrium in Games with Coupled Constraint Set

Now consider the coupled constraint setA = {b ∈ R
m, hj(b) ≥ 0, j = 1, 2, · · · , K}. To

study equilibrium in such concave games where both utilities and actions are coupled, Rosen

introduced the concept ofnormalised Nash equilibrium(NNE). The NNE is a special kind

of NE where the Lagrange multipliers1 across players are interrelated. Formally, it is defined

as follows.

Definition 2: Let b be a NE and let(u0
i ) ≥ 0 be the associated Lagrange multipliers given

by the Kuhn-Tucker conditions at the NE. If the(u0
i ) satisfyu0

i = λ/ri for some(ri) > 0

andλ ≥ 0, thenb is called a normalised Nash equilibrium (NNE) forr.

Rosen established existence of NNE for every specifiedr = (ri) > 0 in concave games

with compact constraint sets. He also established a uniqueness result for the NNE, which we

now state.

Theorem 2 (Rosen [8], Th.4):Let r > 0 and letσ(·, r) be diagonally strictly concave. If

a NNE for r exists, then it is unique.

We will return to use of NNE later in subsection VI where we study NE in the Kelly

mechanism with differential pricing. We first discuss the need for extending the DSC property.

We close this section with the reiteration that the DSC property is a sufficient condition to

establish uniqueness of NE in a concaveN-person game. Many problems in network games,

such as Kelly’s resource allocation problem [2], Tullock’srent seeking problem [18], and

routing games [9] are concave games. However, the DSC property is either difficult to verify

[19] or can be established only in some special cases [9, Sec.III.B]. We will see an example

in the next section of a situation where the DSC property is yet to be verified, and yet, the NE

is known to be unique. In Section V, we will show how the extension of the DSC property

in Section IV applies to the example of Section III.

III. A N EXAMPLE WHERE DSC IS UNVERIFIED

In this section, we provide an example of a concave game for which the DSC property is

not yet verified. We also demonstrate that Rosen’s sufficientcondition for the DSC property

fails. This will then set the stage for an extension of the DSCproperty.

1The Lagrange multipliers are those associated the equilibrium point and satisfy the Kuhn-Tucker conditions.
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Consider the resource allocation problem defined by utility(4). We first observe thatbi ∈

R+ for all i. By settingKi = 1, hi1(bi) = bi, i = 1, · · · , N , this problem fall within the

framework of concave games. Also note that the linear terms in the utility function do not

affect the DSC property. So, we may focus on the modified family V = (Vi) where

Vi(b) := Ui

(

bi
∑N

j=1
bj

)

(9)

without the linear term. Observe that

∂Vi(b)

∂bi
= U ′

i

(

bi
∑

j bj

)(

1− bi/
∑

j bj
∑

j bj

)

. (10)

Consider the setting of two players;N = 2. For anr > 0, with V as in (9),σ(·, r) is DSC

if for any pair (b11, b
1
2) ∈ R

2
+ and (b01, b

0
2) ∈ R

2
+, we have

∑

i

ri

(

β1

i

(

∑

j

b1j

)

− β0

i

(

∑

j

b0j

))(

(1− β1
i )U

′

i(β
1
i )

∑

j b
1
j

−
(1− β0

i )U
′

i(β
0
i )

∑

j b
0
j

)

< 0, (11)

whereβ0
i = b0i /(b

0
1 + b02) andβ1

i = b1i /(b
1
1 + b12) for i = 1, 2.

We have not been able to prove that there is anr > 0 such that (11) holds for distinctb1

and b0, even for the simple case when(Ui)s are identity maps, i.e.,

Ui

(

bi
∑

j bj

)

=
bi

∑

j bj
. (12)

Further, we have not been able to prove the negation of the above statement holds, which

would establish thatσ(·, r) is not DSC for anyr > 0.

The above are interesting open questions because, on the onehand, we know that there

exists a unique (normalised) NE (forri ≡ 1), and yet the Jacobian-based sufficient condition

for DSC fails, as we show next.

Proposition 1: Let N = 2 and consider the familyV = (Vi) with (Ui) as in (12). Then,

for any r > 0, [G(b, r) +Gt(b, r)] for the family V is not negative definite.

Proof: It suffices to considerr 6= 0. Fix such anr and, without loss of generality, assume

r2 > 0. The second order derivatives ofV1 andV2 are

∂2V1(b1, b2)

∂b21
=

−2b2
(b1 + b2)3

∂2V2(b1, b2)

∂b22
=

−2b1
(b1 + b2)3

∂2V1(b1, b2)

∂b1∂b2
=

b1 − b2
(b1 + b2)3

= −
∂V2(b1, b2)

∂b2∂b1
,
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and the symmetric matrix in (8) is given by

[G(b, r) +Gt(b, r)] =
1

(b1 + b2)3





−2r1b2 (b1 − b2)(r1 − r2)

(b1 − b2)(r1 − r2) −2r2b1



 .

Now consider a bidb1 > 0 andb2 = 0. We then have

[G(b, r) +Gt(b, r)] =
r2

(b1)2





0 (a− 1)

(a− 1) −2



 ,

wherea = r1/r2 ≥ 0. The eigenvalues of this matrix are−1 +
√

1 + (a− 1)2 and−1 −
√

1 + (a− 1)2. Clearly the first of these is nonnegative for alla ≥ 0, and soG[(b, r) +

Gt(b, r)] is not negative definite onR2
+.

We next provide a generalisation of DSC property in the following section and show that

uniqueness of NE is guaranteed if the new property holds. We verify the validity of the new

sufficient condition in the resource allocation problems of(4).

IV. GENERALISED DIAGONAL STRICT CONCAVITY

In this section we generalise the notion of diagonally strictly concave functions. Its use-

fulness arises from its application to the resource allocation problem with utilities as in (4).

We assume that the action space of each player has the same dimension, i.e.,m1 = m2 =

· · · = mN := m, and that each player’s actions are nonnegative. The generalisation of the

DSC property is as follows.

Definition 3: Let Tj : RmN
+ → R+ be a nonnegative function forj = 1, 2, · · · , m. The

function σ(·, r) is generalised diagonally strictly concave(GDSC) for a givenr ≥ 0 if for

every pairb0, b1 ∈ R
mN
+ such that

(

b0ij/Tj(b
0), 1 ≤ i ≤ N, 1 ≤ j ≤ m

)

6=
(

b1ij/Tj(b
1), 1 ≤ i ≤ N, 1 ≤ j ≤ m

)

,

we have

∑

i

ri
∑

j

(

b1ij
Tj(b1)

−
b0ij

Tj(b0)

)(

Tj(b
1)
∂Vi

∂bij
(b1)− Tj(b

0)
∂Vi

∂bij
(b0)

)

< 0. (13)

For the case ofm = 1 when each player’s action is a nonnegative scalar, writingT for

T1, the above condition simplifies to

∑

i

ri

(

b1i
T (b1)

−
b0i

T (b0)

)(

T (b1)
∂Vi

∂bi
(b1)− T (b0)

∂Vi

∂bi
(b0)

)

< 0.
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If all Tj were identically 1, we get back Rosen’s definition of diagonally strictly concave

functions given in (7). The generalisation here allows the functionsTj to be more general

than the “identically 1” function. The generalisation is useful because we can leverage it to

extract the following theorem.

The setting of the generalisation is one where the action sets are decoupled,Ki = m for

eachi, andhik(bi) = bik, for all k = 1, 2, · · · , Ki. Note that this setting covers the game with

utilities (4).

Theorem 3:Assume that the familyσ(·, r) is GDSC for somer > 0. Assume further that

if Tj(b) = 0 for somej, thenb is not a NE for the game with utility functions(Vi). If a NE

exists for this game then it is unique up to scaling of the action components by(Tj).

Proof: The proof is a simple extension of Rosen’s proof of [8, Th. 2].Let b0, b1 ∈ R
mN
+

be two equilibrium points. Then for eachi = 1, . . . , N , we have

bli ∈ argmax
bi

{

Vi(bi, b
l
−i) | bi ∈ R

m
+

}

, l = 0, 1.

By the Kuhn-Tucker necessary conditions, for eachi = 1, . . . , N , and forl = 0, 1, there exist

Lagrange multipliersul
i ∈ R

m
+ so that

bli ≥ 0 (14)

ul
i ≥ 0 (15)

(ul
i)
tbli = 0 (16)

∂Vi

∂bij
(bl) + ul

ij = 0 j = 1, 2, · · · , m. (17)

By assumption,Tj(b) = 0 for somej implies thatb is not an equilibrium point, and hence

Tj(b
l) > 0 for all j and l = 0, 1. Multiply the last equation above byTj(b

l) and subtract the

equation forl = 0 from the equation forl = 1 to get

Tj(b
1)

(

∂Vi

∂bij
(b1) + u1

ij

)

− Tj(b
0)

(

∂Vi

∂bij
(b0) + u0

ij

)

= 0.

Now multiply by ri
(

b1ij/Tj(b
1)− b0ij/Tj(b

0)
)

, sum overj, and then sum overi, to get

∑

i

ri
∑

j

(

b1ij
Tj(b1)

−
b0ij

Tj(b0)

)(

Tj(b
1)
∂Vi

∂bij
(b1)− Tj(b

0)
∂Vi

∂bij
(b0)

)

+
∑

i

ri
∑

j

(

b1ij
Tj(b1)

−
b0ij

Tj(b0)

)

(

Tj(b
1)u1

ij − Tj(b
0)u0

ij

)

= 0. (18)
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The second term, usingul
ijb

l
ij = 0 for eachi, is

−
∑

j

(

Tj(b
1)

Tj(b0)
b0iju

1

ij +
Tj(b

0)

Tj(b1)
b1iju

0

ij

)

≤ 0

for eachi, and as a consequence the first term in (18) must be nonnegative to make the sum

zero. But, by the assumption of GDSC, this is possible only when b0ij/Tj(b
0) = b1ij/Tj(b

1)

for all i, j. This establishes uniqueness up to scaling of the action components by(Tj).

V. APPLICATION TO RESOURCE ALLOCATION GAMES

We now go back to the study of resource allocation problems ofHajek and Gopalakrishnan

[3] and Johari and Tsitsiklis [4]. The action variable of each player is a scalar, i.e.,m = 1.

We consider a generalisation of the utility functionVi of (4). For a fixedr = (ri) with ri > 0

for every i, define

Vi(b) = Ui

(

bi
∑N

j=1
bj

)

−
bi
ri
. (19)

Recall that1/ri is the price differentiation factor for playeri in the Kelly mechanism with

price differentiation. We verify that the GDSC property holds for the associatedσ(·, r) under

a suitable choice ofT .

Theorem 4:Let r > 0 and consider the(Vi) of (19). Let T (b) =
∑

i bi. Thenσ(·, r) is

GDSC.

Proof: Observe that∂Vi/∂bi is

∂Vi

∂bi
(b) = U ′

i

(

bi
∑

j bj

)(

1− bi/
∑

j bj
∑

j bj

)

−
1

ri
, (20)

and so, withβ = b/T (b), we get

riT (b)
∂Vi

∂bi
(b) = riU

′

i (βi) (1− βi)− T (b).

We now verify the GDSC property ofσ(·, r). Take anyb0, b1 ∈ R
N
+ and formβl = bl/T (bl)

for l = 0, 1. The left-hand side of (13) is then

∑

i

ri(β
1

i − β0

i )(U
′

i

(

β1

i

)

(1− β1

i )− U ′

i

(

β0

i

)

(1− β0

i ))− (T (b1)− T (b0))
∑

i

(β1

i − β0

i ).

The second term is zero since(βl
i) sums to 1 for bothl = 0, 1. The first term is strictly

negative for distinctb0, b1. To see this observe that(1− x)U ′

i(x) = W ′

i (x), whereWi(x) :=

(1 − x)Ui(x) +
∫ x

0
Ui(z)dz. SinceWi is obviously increasing, concave, and a continuously

differentiable function, the familyW = (Wi) yield σW (·, r), which is (5) withWi in place
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of Vi, that is DSC forr. This proves the claim that the first term is negative, and proof of

the theorem is complete.

Let us now leverage this result to get a proof of uniqueness ofNE for the Kelly mechanism

with price differentiation.

Corollary 1: Let r > 0. The game defined by decoupled action setsR
N
+ and utility

functionsVi given by (19) has a unique NE. In particular, withri = 1 for all i, the game

with utility functions Vi given by (4) has a unique NE.

Proof: We prove the result in the following sequence of simple steps.

Step 1 (Compact action spaces): The action space of each player can be restricted to a

compact rectangular set. Fix playeri. The net utility of playeri is Ui(ai)− bi/ri. SinceUi is

strictly increasing, we haveUi(ai) ≤ Ui(1) for any allocation to playeri. If player i places

a bid strictly larger thanbmax
i := riUi(1), his aggregate utility is strictly negative, regardless

of the allocation. Hence therefore he has no incentive to place a bid larger thanbmax
i , and

his action set is effectively reduced to the bounded and closed interval[0, bmax
i ].

Step 2 (Existence of equilibrium): By Step 1, the action space of each player is a compact

and convex subset ofR+. The action sets are decoupled. Existence of a NE follows by Rosen’s

[8, Th. 1].

Step 3 (T (b) > 0): A b with T (b) = 0 cannot be an equilibrium. Indeed,T (b) =
∑

i bi = 0

implies thatbi = 0 for all i. But then player 1 can increase his bid to a small valueb′1 ∈

(0, bmax
1 ], get the entire good, and pay a negligible amount ofb′1/r1, and strictly improve

his net utility.

Step 4 (Uniqueness up to scaling): In Step 2, we verified that a NE exists. In Step 3, we

verified that ab with T (b) = 0 cannot be an equilibrium. In Theorem 4, we verified that for

everyr > 0, σ(·, r) is GDSC. By Theorem 3 the NE is unique up to scaling byT (b).

Step 5 (Uniqueness): The NE is unique ifT (b) is unique for the equilibrium. By Step 3,

there is a player who places a positive bid. Without loss of generality, let this player be 1.

Then b1 > 0. With β = b/T (b), we must then have

0 =
∂V1(b)

∂b1
= U ′

1(β)(1− β1)/T (b)− 1/r1.

It follows that T (b) is unique and so, by Step 4, the equilibrium is unique.

This completes the proof of the corollary.
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VI. NORMALISED NASH AND DIFFERENTIAL PRICING

Consider the game defined by utility in (19). The vector(ri) is price differentiation vector

in the Kelly mechanism [7]. In this section, we show that equilibrium in the game with price

differentiation can be interpreted as the normalised Nash equilibrium of another game with

coupled constraints, the game with which we began this paper, for weights(ri).

Recall the coupled action set given by

A =

{

a = (ai) :
∑

i

ai = 1

}

introduced at the beginning of this paper. Consider the gamedefined by the family of utility

functionsWi : A → R+

Wi(a) = Ui(ai)(1− ai) +

∫ ai

0

Ui(z)dz, (21)

whereUi(·) is concave, continuously differentiable and strictly increasing function. Note that

the above utility does not depend on the actions of the other players. The interaction in the

game is only through the constraint set. In the proof of Theorem 4 we argued thatWi(·) is a

concave, increasing and continuously differentiable function on [0, 1], and the corresponding

σW (·, r) formed with (Wi) satisfies the DSC property for anyr > 0. Then, by Theorem 2,

the familyWi has a unique normalised Nash equilibrium for eachr > 0. Let (a∗i ) denote the

normalised Nash equilibrium for a givenr > 0. By the Kuhn-Tucker conditions, there exists

a λ ≥ 0 such that

ri
∂Wi(a

∗)

∂ai
− λ = 0

for eachi = 1, . . . , N , or, equivalently,

(1− a∗i )
∂Ui(a

∗

i )

∂ai
−

λ

ri
= 0 (22)

for eachi = 1, . . . , N .

Now, consider the coupled utility decoupled action set gamedefined by (19). By Theorem

4 and Corollary 1, this game has a unique Nash equilibrium. Let (x∗

i ) denote the unique Nash

equilibrium and defineµ =
∑

j x
∗

j > 0. By the optimality conditions, for eachi = 1, 2, · · ·N,

there existsγi > 0 such that

U ′

i

(

x∗

i
∑

j x
∗

j

)(

1
∑

j x
∗

j

−
x∗

i

(
∑

j x
∗

j )
2

)

−
1

ri
+ γi = 0 (23)
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Assume(ri) are such thatx∗

i > 0 for each i = 1, 2, · · · , N . Then, γi = 0 for each i =

1, 2, · · · , N . Multiplying both sides byµ, we have

U ′

i

(

x∗

i
∑

j x
∗

j

)(

1−
x∗

i
∑

j x
∗

j

)

−
µ

ri
= 0 (24)

If we definea∗i = x∗

i /
∑

j x
∗

j , we see that both (24) and (22) are identical withλ = µ. Thus,

the normalised Nash equilibrium corresponding tor in the game defined by utilities (21)

maximises the equilibrium utilities in the Kelly mechanismwith price differentiation vector

r.

VII. CONCLUDING REMARKS

In this paper we applied Rosen’s framework of concave games to establish uniqueness

of Nash equilibrium in resource allocation games. First, weprovided the example of the

Kelly mechanism where diagonal strict concavity (DSC), which is a sufficient condition for

uniqueness of Nash equilibrium in Rosen’s framework, is notyet verified, and yet the game

is known to have unique Nash equilibrium. We then provided a sufficient condition, as a

generalisation of the DSC property, to establish the uniqueness of Nash equilibrium. Our

generalisation exploits the structure of utilities to establish uniqueness of Nash equilibrium.

Further, applying Rosen’s framework to study Kelly mechanism with differential pricing,

we showed that the resulting Nash equilibrium of the game is the normalised Nash equilibrium

of another game where strategy space is coupled.

Rosen developed a dynamic model to study stability in concave games. He showed that

when DSC property holds the system is globally asymptotically stable, and starting from any

point the system converges to the unique Nash equilibrium. It would be of interest to see if

a similar stability results hold under the new GDSC property.
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