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Model-free immune therapy: A control approach to acute inflammation∗

Ouassim Bara1, Michel Fliess2,5, Cédric Join3,5,6, Judy Day4, Seddik M. Djouadi1

Abstract— Control of an inflammatory immune response is
still an ongoing research. Here, a strategy consisting of manip-
ulating a pro and anti-inflammatory mediator is considered.
Already existing and promising model-based techniques suffer
unfortunately from a most difficult calibration. This is due
to the different types of inflammations and to the strong
parameter variation between patients. This communication
explores another route via the new model-free control and its
corresponding “intelligent” controllers. A “virtual” patient, i.e.,
a mathematical model, is only employed for digital simulations.
A most interesting feature of our control strategy is the fact
that the two outputs which must be driven are sensorless.
This difficulty is overcome by assigning suitable reference
trajectories to two other outputs with sensors. Several most
encouraging computer simulations, corresponding to different
drug treatment strategies, are displayed and discussed.

Index Terms— Immune system; inflammatory response;
model-free control, intelligent proportional controller.

I. INTRODUCTION

The importance, complexity and ubiquity of the notions
of infection and inflammation are well explained by the
following quotation [40]: The ‘inflammatory process’ in-
cludes a tissue-based startle reaction to trauma; go/no-
go decisions based on integration of molecular clues for
tissue penetration by microbes; the beckoning, instruction
and dispatch of cells; the killing of microbes and host cells
they infect; liquefaction of surrounding tissue to prevent
microbial metastasis; and the healing of tissues damaged
by trauma or by the host’s response. If at any step an order
to proceed is issued but progress to the next step is blocked,
the inflammatory process may detour into a holding pattern,
such as infiltration of a tissue with aggregates of lymphocytes
and leukocytes (granulomas) that are sometimes embedded in
proliferating synovial fibroblasts (pannus), or distortion of a
tissue with collagen bundles (fibrosis). Persistent inflamma-
tion can oxidize DNA badly enough to promote neoplastic
transformation. According to [12], the overall mortality is
approximately 30%, rising to 40% in the elderly and is 50%
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or greater in patients with the more severe syndrome. The
corresponding literature is of course huge. See, e.g,

• [48] on the cause,
• [10], [14], [28], [47], [56], [57] for the connections with

cancer,
• [11], [17], [27], [41] for the interactions with the human

immunodeficiency virus (HIV).
• [13], [36] for the possible relationship with depression.

Although applying automatic control to immune therapy
has attracted some interest, as depicted in [42], it is much
less developed than in other domains, like, e.g., for insulin-
dependent diabetes (see, e.g., [9], [19], and the references
therein). Let us nevertheless mention promising papers using
respectively optimal control ([6], [8], [30], [52], [53], [54])
and predictive control ([15], [26], [60]). Those approaches
are model-based. Among those papers, the most recent ones
([6], [8], [15], [60]) use the same set of phenomenological
ordinary differential equations from [45] (see also [44] and
[16]):

• The corresponding model is based on the non-specific
protective mechanism, namely, the innate immune re-
sponse, in contrast to the adaptive immune system. The
latter provides a more advanced and strategic response
producing B and T cells together with specific antibod-
ies.1

• Anti-inflammatory mediators are included. They play
an important rôle to mitigate a severe inflammation
and, therefore, avoid tissue damage and high pathogen
proliferation.

• Its biological relevance has been confirmed via a good
qualitative reproduction of severe systemic inflamma-
tion in a biological organism.

Other mathematical modelings have been proposed (see,
e.g., [1], [18], [25], [31], [43], [46], [51], [58]). In spite
of interesting preliminary results in [5], [7], [60], state
observation and parameter identification are not yet fully
mastered. Its calibration, which depends heavily on the
type of inflammatory response and on patient differences
(genetics, age, gender, . . . ), is therefore most intricate.

This paper suggests another route, namely the recent
model-free setting and the corresponding “intelligent” con-
trollers [20].2 It is worthwhile to recall that model-free
control has already been successfully applied in quite diverse
case-studies (see, e.g., [32], [37], [38], [55] in the field
of “life engineering”). The modeling remains nevertheless

1See, e.g., the classic textbook [39] for an explanation of the technical
medical words here, and elsewhere in this communication.

2See also [3], [24], [33].



irreplaceable at this stage for in silico testing, i.e., for
computer simulations. We will also be employing [45]. Let
us emphasize the following key point: there is no need for
the proposed control technique to use any state observer and
any parameter identification technique.

From a purely control-theoretic standpoint, a major nov-
elty of this study lies in the necessity to drive sensorless
states. The poor knowledge of the system makes the deriva-
tion of an observer quite intractable. The solution lies in a
“good understanding” of the system, i.e., in the design of an
“efficient” reference trajectories tracking with respect to the
states with sensors. Such a feedforward “philosophy” is of
course inspired by flatness-based control (see [21], and [4],
[34], [49]).

Our paper is organized as follows. Sections II and III
review respectively the mathematical modeling and model-
free control. Several computer simulations are displayed and
discussed in Section IV. Suggestions for future research may
be found in Section V.

II. A VIRTUAL PATIENT

A mathematical model, i.e., a virtual patient, via four
ordinary differential equations, for an acute inflammatory
response to pathogenic infection has been proposed [45]:

dP

dt
= kpgP (1− P

P∞
)− kpmsmP

µm + kmpP
− kpnf(N)P (1)

dN

dt
=

snrR

µnr +R
− µnN + up(t) (2)

dD

dt
= kdn

f(N)6

x6dn + f(N)6
− µdD (3)

dCa
dt

= sc + kcn
f(N + kcndD)

1 + f(N + kcndD)
− µcCa + ua(t) (4)

Set

R = f(knpP + knnN + kndD), f(x) =
x

1 + (Ca

c∞
)2

Table 1 gives the reference parameter values. Note that the
state variables P (t), N(t), D(t), Ca(t) and the control
variables up(t), ua(t) take nonnegative values ∀t.

• Equation (1) represents the evolution of the bacterial
pathogen population P that causes the inflammation.

• Equation (2) governs the dynamics of the concentration
of a collection of early pro-inflammatory mediators
such as activated phagocytes and the pro-inflammatory
cytokines. They produce N .

• Equation (3) corresponds to tissue damage (D), which
helps to verify the response outcomes.

• Equation (4) describes the evolution of the concentration
of a collection of anti-inflammatory mediators Ca.

• See Tables I and II for the numerical values of the
parameters and of the initial conditions.

The above model possesses three steady states:
• one which corresponds to the healthy equilibrium,
• two which are associated respectively with a septic state

and an aseptic one.
Those properties agree with clinical observations:
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Table 1. Model parameter reference values for the system (1) - (4).

Parameter Reference Value Parameter Reference Value 

kpm 0.6/M units hr μn  0.05/hr 

kmp 0.01/P units hr knd 0.02/D units hr 

sm 0.005 M units/hr kdn 0.35 units of D/hr 

μm 0.002/hr  xdn 0.06 N* units 

kpg 
Various in range:  
(0.021-2.44)/hr 

μd 0.02/hr 

p∞ 20x10
6
/cc c∞ 0.28 CA units 

kpn 1.8/N* units hr sc 0.0125 CA units/hr 

knp 0.1/P units hr kcn 0.04 CA units/hr 

knn 0.01/N* units hr kcnd 48 N* units/D units 

snr 0.08 NR units/hr μc 0.1/hr 

μnr  0.12/hr    

We label our finite time simulation outcomes based on these three states, with
simulations that end with negligible P classified as healthy or aseptic depending
on which state (N∗, D, CA) are approaching, as discussed further in subsection 3.5.
Figures 2 (a) and (b) show typical aseptic and septic scenarios, respectively. It
is assumed that basic therapy, including the administration of antibiotics, resusci-
tation with fluids, and so forth, are implicitly modeled in system (1) - (4). This
means that the various outcomes mentioned above can occur despite administration
of basic treatment.

Input to the NMPC algorithm consists of an anti-inflammatory therapy, present
as a source term (+AIDOSE) in equation (4), and a pro-inflammatory therapy,
incorporated as a source term (+PIDOSE) in equation (2). Constraints are defined
that prevent dosing from going negative, meaning that therapy can be infused into
the system but not extracted.

In all of the simulations that we discuss, the total simulation time is 168 hours (1
week). In addition, k is an hourly step, so doses are adjusted on an hourly basis. The
goal of the NMPC control algorithm is to identify (virtual) patient-specific therapy
dosing profiles that can correct inflammatory responses that, without intervention,
would result in either aseptic or septic scenarios.

3.2. The objective function, constraints, and error prediction under mis-
match. The objective function J that we use contains terms to minimize damage
levels (D), pathogen levels (P ), and total therapy AIDOSE and PIDOSE given over
the prediction horizon h and takes the form

J = min
PIDOSE(t)
AIDOSE(t)

||ΓDD||22 + ||ΓP P ||22 + ||ΓAIAIDOSE(t)||22 + ||ΓPIPIDOSE(t)||22 (5)

Minimization is done over piecewise constant time courses of AIDOSE and PI-
DOSE, achieved by a sequence of control moves, as discussed in Section 2. The

TABLE I
REFERENCE PARAMETERS FOR THE SYSTEM (1)-(4)

• The healthy equilibrium corresponds to P = N = D =
0 and Ca at a background level.

• A septic equilibrium is related to the situation where all
mediators, N , Ca, and D together with the pathogen P
are rather high.

• The patient is in an aseptic equilibrium when the values
of N , Ca, D are important, while the pathogen has been
eliminated, i.e., P = 0.

See in Figure 1 the results of two virtual patients with
different initial conditions. The presence of pathogen in the
body stimulates inherently the activation of phagocytes (pro-
inflammatory mediator). The resulting damage is affected
by the degree of inflammation which tries to eliminate the
actual pathogen as quickly as possible. Note that the actual
anti-inflammatory mediator (cortisol and interleukin-10) can
mitigate the inflammation and its harmful effect. The resting
value Ca is 0.125 for the reference virtual patient. The
patient is healthy when D = 0 and P = 0. He/she is
considered to be dead when D ≥ 17. When starting, e.g.,
from [0.3 0.0 0.0 0.0125], and allowing the pathogen
to rise from a level of P = 0.3 to P = 0.6, at some
point the immune system is not strong enough to cope with
the pathogen attack which will inevitably attract the virtual
patient to a septic or aseptic state (see Figure 1). Some
intervention to stabilize the patient to its healthy equilibrium,
i.e., to homeostasis, becomes mandatory.

Parameter Parameter Ranges

P0 0.0 – 1.0
CA0 0.0938 – 0.1563
kpg 0.3 – 0.6
kcn 0.03 – 0.05
knd 0.015 – 0.025
knp 0.075 – 0.125
kcnd 36.0 – 60.0
knn 0.0075 – 0.0125

TABLE II
VARIABILITY OF THE MODEL PARAMETERS
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Fig. 1. Natural (open loop) response for patients 1 (septic) and patient 2
(aseptic)

III. MODEL-FREE CONTROL3

A. The ultra-local model

Replace the unknown global description by the ultra-local
model:

ẏ = F + αu (5)

where
• the control and output variables are u and y,
• the derivation order of y is 1 like in most concrete

situations,
• α ∈ R is chosen by the practitioner such that αu and ẏ

are of the same magnitude.
The following explanations on F might be useful:

• F is estimated via the measure of u and y,
• F subsumes not only the unknown system structure but

also any perturbation.
Remark 3.1: In Equation (5) ẏ is seldom replaced by ÿ

(see, e.g., [20], [35], and the references therein). Higher order
derivatives were never utilized until today.

B. Intelligent controllers

The loop is closed by an intelligent proportional con-
troller, or iP,

u = −F − ẏ
∗ +KP e

α
(6)

where
• y? is the reference trajectory,
• e = y − y? is the tracking error,
• KP is the usual tuning gain.

Combining Equations (5) and (6) yields:

ė+KP e = 0

3See [20] for more details.

where F does not appear anymore. The tuning of KP ,
in order to insure local stability, becomes therefore quite
straightforward. This is a major benefit when compared to the
tuning of “classic” PIDs (see, e.g., [2], [4], and the references
therein), which

• necessitate a “fine” tuning in order to deal with the
poorly known parts of the plant,

• exhibit a poor robustness with respect to “strong” per-
turbations and/or system alterations.

C. Estimation of F

The calculations below stem from new estimation tech-
niques (see [22], [23], and [50]).

1) First approach: The term F in Equation (5) may be
assumed to be “well” approximated by a piecewise constant
function Fest. Rewrite then Equation (5) in the operational
domain (see, e.g., [59]):

sY =
Φ

s
+ αU + y(0)

where Φ is a constant. We get rid of the initial condition
y(0) by multiplying both sides on the left by d

ds :

Y + s
dY

ds
= − Φ

s2
+ α

dU

ds

Noise attenuation is achieved by multiplying both sides on
the left by s−2. It yields in the time domain the realtime
estimate, thanks to the equivalence between d

ds and the
multiplication by −t,

Fest(t) = −
6

τ3

∫ t

t−τ
[(τ − 2σ)y(σ) + ασ(τ − σ)u(σ)] dσ (7)

2) Second approach: Close the loop with the iP (6):

Fest(t) =
1

τ

[∫ t

t−τ
(ẏ? − αu−KP e) dσ

]
(8)

Remark 3.2: Note the following facts:
• integrals (7) and (8) are low pass filters,
• τ > 0 might be quite small,
• the integrals may of course be replaced in practice by

classic digital filters.
Remark 3.3: A hardware implementation of the above

computations is easy [29].

IV. COMPUTER SIMULATIONS

A. Control design

The state component N (resp. Ca) in Equation (2) (resp.
(4)) is

• easily measured, whereas it is difficult today to do it
with P and D in Equations (1) and (4).

• mostly influenced by the control variable up (resp. ua).
Introduce therefore the two Equations of type (5):

Ṅ = F1 + αpup(t) (9)

Ċa = F2 + αaua(t) (10)
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Fig. 2. Reference trajectories N and Ca for both patients together with their closed loop response

Let us emphasize that, like in [32], those two ultra-local
systems may be “decoupled”: they are considered as mono-
variable systems.4 The two corresponding iPs (6) read

up = −F1 − Ṅ∗ +KP1ep
αp

(11)

ua = −F2 − Ċ∗
a +KP2ea
αa

(12)

where the tracking errors are defined by

ep = N −N∗ and ea = Ca − C∗
a

F1, F2 are estimated according to Section III-C. See Figure
3 for the corresponding block diagram.

B. Reference trajectories and results

Two virtual patients are considered, the first (resp. second)
one with a septic (resp. aseptic) outcome. The fact that
a virtual patient may, or may not, return to an healthy
state depends on the parameters and initial conditions. Their
numerical characteristics are given below:

1) Patient 1 (septic).-
• Initial conditions P (0) = 0.47360, N(0) =

0.0660, D(0) = 0.0477, Ca(0) = 0.1635.
• Model coefficients kpg = 0.47846, kcn = 0.0409,
knd = 0.0242, knp = 0.1211, kcnd = 49.1243,
knn = 0.012.

2) Patient 2 (aseptic).-
• Initial conditions P (0) = 1.0017, N(0) = 0.0711,
D(0) = 0.0732, Ca(0) = 0.1314.

• Model coefficients kpg = 0.4746, kcn = 0.0386,
knd = 0.0223, knp = 0.1116, kcnd = 46.3367,
knn = 0.0112.

4It should be nevertheless clear from a purely mathematical standpoint
that F1 (resp. F2) is not necessarily independent of ua (resp. up).

The reference trajectories of N and Ca are adjusted from
Table I:

N? = Nfree.C1, C?a = (Cafree − 0.125).C2 + 0.125

where
• Nfree and Cafree correspond to the free trajectories of N

and Ca for a healthy virtual patient,
• C1 and C2 are suitable constants.

We decided in our scenario to amplify the trajectory cor-
responding to the concentration of the pro-inflammatory
mediator. Therefore

C1 = 4, C2 = 1

There are of course other possibilities for the reference
trajectories. We could select higher amplitudes in order to
heal most patients. The price to pay would be more drug
injection and, therefore, more tissue damage. The simulation
were performed

• with a sampling time of 1 minute,
• with αp = αa = 2 in Equations (9)-(10),
• with KP1 = KP2 = 0.47 in Equations (11)-(12),
• during 500 hours.5

Figure 4(a) shows clearly that we have been able to eliminate
the pathogen and reduce the damage to zero using the
generated doses displayed on the right hand side. Many sim-
ulations show a quick rise in the pro-inflammatory mediator
N . According to Figure 2(b), its maximum is reached after
about 10 to 15 hours and is followed by an exponential
decrease to zero. As shown by Figure 2(a), the analogous
behavior of the anti-inflammatory mediator Ca is much
slower. Similar facts are observed with all patients who do
not necessitate any treatment. The motivation for the choice
of the reference trajectories should now become clear.

5Let us stress that our control objective was reached in less than 250
hours.
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Fig. 4. Patients 1 and 2 with therapy

The similarities of the generated doses can be partly
explained by the same choice of the reference trajectory. In
this case, it was enough to stabilize both patients. Observe
that for each dose associated with an increase of the pro-
inflammatory mediator a lower dose of anti-inflammation
follows (see also [6], [15]). It may be explained by the
fact the immune system needs an initial boost of activated
phagocytes in order to eliminate the pathogen threat. The
resulting inflammation causes an increase of tissue damage,
observed in Figure 4(a), which decreases after to zero thanks
in part to the anti-inflammatory dose that is applied with a
longer duration. Notice that injecting a larger dose of Ua
at the wrong time and with an inappropriate amplitude may
foster the development of pathogen P at rates that can drive
the patient to a no-return point.

V. CONCLUSION

Our results should of course be further tested and devel-
oped. Future publications will emphasize

• the robustness of our setting with respect to parameter
variation and different initial conditions,

• a deeper understanding of the choice of “good” refer-
ence trajectories,

• the applicability of our approach to most types of
inflammations and virtual patients.

The past success of model-free control in so many concrete
situations should certainly be viewed as encouraging.
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[3] K.J. Åström, P.R. Kumar. Control: A perspective. Automatica, 50, 3-43,
2014.
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