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Abstract

Given two coprime polynomials P and Q in Z[x, y] of degree bounded by d and bitsize
bounded by τ , we address the problem of solving the system {P,Q}. We are interested in
certified numerical approximations or, more precisely, isolating boxes of the solutions. We are
also interested in computing, as intermediate symbolic objects, rational parameterizations of
the solutions, and in particular Rational Univariate Representations (RURs), which can easily
turn many queries on the system into queries on univariate polynomials. Such representations
require the computation of a separating form for the system, that is a linear combination of the
variables that takes different values when evaluated at the distinct solutions of the system.

We present new algorithms for computing linear separating forms, RUR decompositions
and isolating boxes of the solutions. We show that these three algorithms have worst-case bit
complexity ÕB(d6 + d5τ), where Õ refers to the complexity where polylogarithmic factors are
omitted and OB refers to the bit complexity. We also present probabilistic Las Vegas variants
of our two first algorithms, which have expected bit complexity ÕB(d5 + d4τ). A key ingredient
of our proofs of complexity is an amortized analysis of the triangular decomposition algorithm
via subresultants, which is of independent interest.

1 Introduction

There are numerous alternatives for solving algebraic systems. Typically, isolating boxes of the
solutions can be computed either directly from the input system using numerical methods (such
as subdivision or homotopy) or indirectly by first computing intermediate symbolic representations
such as triangular sets, Gröbner bases, or rational parameterizations. However, only little work
analyzes the bit complexity of isolating the solutions without any restriction, in particular for
non-generic or non-radical systems. We address in this paper the problem of solving systems of
bivariate polynomials with integer coefficients and we focus on the bit complexity of these methods
in the RAM model. We focus in particular on the worst-case bit complexity in a deterministic
setting and on the expected bit complexity in a probabilistic Las Vegas setting. Recall that, in
Las Vegas algorithms, the sequence and number of operations are probabilistic but the output is
deterministic (or, in other words, the number of operations is a random variable but the output is
always correct). On the other hand, in Monte Carlo algorithms, the output is only correct with
some probability. We consider throughout the paper input polynomials of total degree at most d
with integer coefficients of bitsize at most τ .
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A classical approach for solving a system of polynomials with a finite number of solutions is to
compute a rational parameterization of its solutions. A rational parameterization is a representation
of the (complex) solutions by a set of univariate polynomials and associated rational one-to-one
mappings that send the roots of the univariate polynomials to the solutions of the system. With
such a representation, many queries on the system can be transformed into queries on univariate
polynomials, which eases the computations. For instance, isolating the solutions of the system can
be done by isolating the roots of the univariate polynomials of the rational parameterization and by
computing the image of the resulting intervals through the associated mappings. Similarly, querying
whether a polynomial P vanishes at the solutions of the system can be done by substituting in P the
variables by their images in each of the one-to-one mappings and by testing whether this resulting
univariate polynomial vanishes at the roots of the associated univariate polynomial in the rational
parameterization.

The core of the algorithms that compute such rational parameterizations (see for example
[ABRW96, BSS03, DET09, GLS01, GVEK96, Rou99] and references therein) is the computation of
a so-called linear separating form for the solutions, that is, a linear combination of the coordinates
that takes different values when evaluated at different solutions of the system. Then, a shear of the
coordinate system using such a linear form ensures that the system is in generic position, in the sense
that no two solutions are vertically aligned. Since a linear form chosen randomly in a sufficiently
large finite set is separating with probability close to one, probabilistic Monte Carlo algorithms
can avoid this computation by considering a random linear form. Computing deterministically a
separating linear form x+ay without constraint on the size of a is also trivial (using upper bounds
and separation bounds on roots of polynomials). However, in order not to impact the bit complexity
for computing the rational parameterizations and their bitsizes, the values of a have to be small,
i.e., polynomial in d and τ . Surprisingly, computing a certified linear separating form with a small,
or even to check whether an arbitrary (e.g. random) linear form is separating, is a bottleneck in
the computation of rational parameterizations, even for bivariate systems, as discussed below.

For arbitrary multivariate systems, Rouillier [Rou99] gives an algorithm for deterministically
computing a separating form, which computes the number of solutions of a system with the rank of
the Hermite quadratic form of a quotient algebra. The complexity of this computation dominates
the one that follows for computing the rational representation. Considering the special case of
systems of two bivariate polynomials of total degree bounded by d with integer coefficients of
bitsize bounded by τ , another approach, based on a triangular decomposition, has been presented
by Gonzalez-Vega and El Kahoui [GVEK96] for computing a separating linear form together with
a rational parameterization of the solutions. The best-known bit complexity of this approach,
analyzed by Diochnos et al. [DET09, Lemma 16 & Theorem 19]1, shows a bit complexity in ÕB(d10+
d9τ) for computing a separating form and a bit complexity in ÕB(d7 + d6τ) for computing the
corresponding rational parameterization. The computation of a separating linear form was still
the bottleneck in the computation of the rational parameterization. An algorithm using modular
arithmetic was then introduced by Bouzidi et al. [BLPR15] reducing the complexity to ÕB(d8+d7τ).
This algorithm was later simplified and improved by transforming the problem into the computation
of a separating form for the critical points of a curve, which improved the bit complexity to ÕB(d7+
d6τ) in the worst case and to ÕB(d5 + d4τ) in a probabilistic Las Vegas setting [BLP+14]. Bouzidi
et al. [BLPR15] also showed that, given such a separating linear form, an alternative rational
parameterization called Rational Univariate Representation (RUR) [Rou99] can be computed using

1The overall bit complexity stated in [DET09, Theorem 19] is ÕB(d12 + d10τ2) because it includes the isolation
of the solutions of the system. Note, however, that the complexity of the isolation phase, and thus of the whole
algorithm, decreases to ÕB(d10 + d9τ) using Pan [Pan02] results on the complexity of isolating the real roots of a
univariate polynomial.
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ÕB(d7 +d6τ) bit operations. For the first time, the worst-case bit complexities of computing linear
separating forms and rational parameterizations (even RURs) of bivariate systems were both in
the same class of complexity ÕB(d7 + d6τ) and, also for the first time, the expected bit complexity
for computing linear separating forms, in a Las Vegas setting, was in a smaller class of complexity,
ÕB(d5 + d4τ).

For computing a RUR in a Monte Carlo setting, the first step of computing a separating linear
form is trivial since a random form is separating with some known probability. Doing so, Mehrabi
and Schost [MS15] then compute a RUR of the radical of the input system with probability of
success at least 1 − 1/2p in a bit complexity that is the sum of ÕB(d2+ε(d2 + dτ + dp + p2)),
for ε > 0 arbitrarily small, and of the complexity of computing a random prime smaller than
M = (2pdτ)O(1). This result is remarkable since the whole complexity is ÕB(d4+ε + d3+ετ) when p
is a constant, which almost matches the worst-case upper and lower bounds Õ(d4 +d3τ) and Ω̃(d4)
on the size of the output (see Corollary 36 and [MS15, Main results]). However the drawback of
this approach is that, so far, neither the separating form nor the computed RUR can be checked for
correctness with a better bit complexity than those we present in this paper, that is ÕB(d5 + d4τ)
expected and ÕB(d6 + d5τ) in the worst case.

Very recently, Kobel and Sagraloff [KS15b] presented an algorithm of worst-case bit complexity
ÕB(d6 + d5τ) for computing isolating boxes of the solutions of bivariate systems. Their approach
is based on resultant computations, projecting the solutions on the x and y-axes, thus defining
a grid of candidate solutions. Then, approximate evaluations combined with adaptive evaluation
bounds enable to identify the solutions from the grid. This method does not need the knowledge of
a separating form, but once the solutions are isolated with enough precision, such a separating form
can be computed in ÕB(d6 + d5τ) bit operations [KS15b]. This approach for computing separating
linear forms has the best known worst-case complexity. However, it would be surprising that
computing a separating form with such complexity would require to first isolate the solutions of the
system, since separating forms are precisely instrumental for solving systems in parameterization-
based approaches. The present work indeed demonstrates that separating linear forms and rational
parameterizations (including RURs) can be directly computed with this ÕB(d6 +d5τ) state-of-the-
art worst-case bit complexity, and that the solutions of the system can be isolated from the RUR
in the same worst-case complexity.

Note furthermore that, for computing isolating boxes of the solutions, no complexity better
than ÕB(d6 + d5τ) is known even if a RUR is given and even in a probabilistic setting. Indeed,
all known algorithms require to isolate the roots of a univariate polynomial of degree at most d2

and bitsize Õ(d2 + dτ), for which no complexity better than ÕB(d6 + d5τ) is known, even in a
probabilistic setting, and this has not been improved for years [Pan02]. Hence, following the above
discussion, in a Monte Carlo setting, computing isolating boxes of the solutions is the bottleneck
of the whole process of solving bivariate systems, and this is also the case in a Las Vegas setting
with the results we present in this paper.

Main results. Let P and Q be two coprime polynomials in Z[x, y] of degree bounded by d and
bitsize bounded by τ . We present three algorithms, one for each of the main steps of solving a
bivariate system {P,Q} via RURs, that is, computing (i) a separating linear form x + ay with
a ∈ {0, . . . , 2d4}, (ii) a RUR decomposition of the system, and (iii) isolating boxes of the solutions.
Each of these algorithms has worst-case bit complexity ÕB(d6 +d5τ) and we also present Las Vegas
variants of expected bit complexity ÕB(d5 + d4τ) of our two first algorithms (see Theorems 26, 27,
43, 44, 59). We do not present a Las Vegas variant of our last algorithm for computing isolating
boxes but it should be noticed that the complexity of that subdivision-based algorithm actually
depends on the distances between the solutions and thus its worst-case complexity is not always
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reached.
These complexities are not proved to be optimal but it should be stressed that, even in the

simpler setting where the ideal is known to be radical, the complexities for problem (i) match
the best known worst-case and expected bit complexities for checking whether a linear form is
separating (see the conclusion for details). This also holds for problem (ii) since computing a
RUR decomposition requires computing a separating form. Similarly, for problem (iii), observe
that our bound also matches the best known complexity for the isolation of the roots of a given
polynomial of degree and bitsize comparable to those of the resultant of the input polynomials
[MSW15, Theorem 5].

Our algorithm for computing a separating linear form is based on the one presented in [BLP+14],
while improving its worst-case bit complexity by a factor d. Furthermore, its Las Vegas variant
is simpler than the one presented in [BLP+14] and it has the same expected bit complexity. As
mentioned above the worst-case complexity of this new algorithm also matches the recent one
by Kobel and Sagraloff [KS15b]. Our algorithm for computing a RUR decomposition of {P,Q}
improves by a factor d the state-of-the-art worst-case bit complexity [BLPR15]. Furthermore, our
Las Vegas variant is, up to our knowledge, the first Las Vegas algorithm whose expected complexity
is asymptotically better than the worst-case complexity and, as a result, our Las Vegas algorithm
improves the state-of-the-art expected bit complexity by a factor d2. For the isolation problem
from the RURs, we improve the state-of-the-art complexity by a factor d2 [BLPR15, Proposition
35], while matching the resultant-based complexity presented by Kobel and Sagraloff [KS15b].

Last but not least, we present an amortized analysis of the classical triangular decomposition
via subresultants of bivariate systems [GVEK96], proving that the decomposition can be computed
in ÕB(d6 + d5τ) bit operations in the worst case (Proposition 16), which improves by a factor d
the state-of-the-art analysis [DET09, Proof of Theorem 19]. This result, while instrumental for the
worst-case complexity analyses of our algorithms, is also of independent interest.

We first present a detailed overview of our contributions in Section 2. Notation and prelim-
inaries are then introduced in Section 3. We present in Section 4 our amortized analysis of the
triangular decomposition and a related luckiness certificate which is a key feature of the following
multi-modular algorithms. Sections 5, 6 and 7 present respectively our algorithms for computing
separating forms, RUR decompositions and isolating boxes of the solutions.

2 Overview

We present in this section a detailed overview of our contributions and strategies. Recall that P
and Q denote two coprime polynomials in Z[x, y] of total degree at most d and maximum bitsize τ .

2.1 Triangular decomposition and luckiness certificate

We first recall in Section 4.1 the classical subresultant-based algorithm for computing the triangular
decomposition of a zero-dimensional bivariate system {P,Q}. This decomposition appears, for
instance, for solving bivariate systems [LMMRS11] or for the computation of the topology of curves
[GVEK96]. This triangular decomposition algorithm will be used in our algorithm for computing
a RUR decomposition of {P,Q}.

We then present in Section 4.2 a straightforward variation on this algorithm, which only com-
putes the degree of this triangular decomposition (see Definition 11). This variation decreases the
expected bit complexity of the algorithm and it is critical for our Las Vegas algorithm for computing
a separating linear form.

4



We then present in Section 4.3 another variation on the triangular decomposition algorithm,
which computes a luckiness certificate for this triangular decomposition. A luckiness certificate of
{P,Q} is an integer such that if a prime µ does not divide it, then µ is lucky for the triangular
decomposition of {P,Q} that is, the degree of the decomposition is preserved by the reduction
modulo µ and the decomposition commutes with the reduction modulo µ (see Definition 13). Our
deterministic algorithms for the separating form and the RUR computations will both use this
luckiness certificate.

In Section 4.4, we prove that the worst-case bit complexities of these three algorithms are
in ÕB(d6 + d5τ) and that the expected bit complexity of the one for computing the degree of
the triangular decomposition is in ÕB(d5 + d4τ) (Proposition 16). The worst-case complexity is
obtained by considering amortized bounds on the degrees and bitsizes of factors of the resultant and
it improves by a factor d the state-of-the-art complexity for computing the triangular decomposition
[DET09, Proof of Theorem 19]. Besides of being of independent interest, these improvements are
critical for the complexity analysis of the following algorithms.

2.2 Separating linear form

In Section 5, we present a new algorithm for computing separating linear forms for a bivariate
system {P,Q}. We actually present two algorithms, a deterministic one of worst-case bit complexity
ÕB(d6 + d5τ) and a probabilistic Las Vegas variant of expected bit complexity ÕB(d5 + d4τ)
(Theorems 26 and 27).

Our approach is based on the algorithms presented in [BLPR15] and [BLP+14] while improving
the worst-case bit complexity by one order of magnitude. We briefly recall the essence of these
algorithms. The first step of the algorithm presented in [BLPR15] is to compute the number
of distinct solutions and a so-called lucky prime for the system. Such a lucky prime is, roughly
speaking, a prime such that the system has the same number of distinct solutions as its image
modulo µ (see Definition 18). In a second step, all polynomials and computations are considered
modulo µ. The algorithm then considers iteratively a candidate separating form x + ay with an
integer a incrementing from 0. The algorithm computes the number of distinct solutions after
projection along the direction of the line x+ay = 0 and stops when a value a is found such that the
number of distinct projected solutions equals that of the system. The worst-case bit complexity of
this algorithm is in ÕB(d8 + d7τ).

The main additional ideas introduced in [BLP+14] are that it is sufficient to compute a sepa-
rating form for the system {H, ∂H∂y } of critical points of a curve H associated to the input system
{P,Q} (see Section 5.2) and that the number of critical points can easily be computed as the differ-
ence between the degrees of the triangular decompositions of the systems {H, (∂H∂y )2} and {H, ∂H∂y }
(see Definition 11). This improves the worst-case bit complexity of the algorithm to ÕB(d7 + d6τ).

In Section 5.3, we show how these algorithms can be again improved by one order of magnitude
in the worst case. The main ideas of these improvements are as follows. First, in Section 5.3.1, we
show how our improvement on the complexity analysis of triangular decompositions presented in
Section 4.4 improves the complexity of the computation of the number of solutions of {H, ∂H∂y }.

In Section 5.3.2, we present a new algorithm for computing a lucky prime for the system
{H, ∂H∂y } using the luckiness certificates for triangular decompositions presented in Section 4.3.

More precisely, we compute a lucky prime for {H, ∂H∂y } by computing a prime µ that, essentially,

does not divide the product of the luckiness certificates of the two systems {H, ∂H∂y } and {H, (∂H∂y )2}.
By definition of the luckiness certificates, the degrees of the triangular decompositions of these two
systems are the same over Z and Fµ = Z/µZ. The difference of these degrees, which is the number
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of solutions of {H, ∂H∂y }, is thus also the same over Z and Fµ, which essentially yields that µ is lucky

for {H, ∂H∂y }.
The last ingredient of our algorithm is to show, in Section 5.3.3, how, given the number of

solutions and a lucky prime for the system {H, ∂H∂y }, the bit complexity of the algorithm presented

in [BLPR15] for computing a separating linear form for {H, ∂H∂y } can be improved from ÕB(d8+d7τ)

to ÕB(d6 +d5τ) by using multipoint evaluation and changing the organization of the computations.
In Section 5.4, we wrap up these results, which prove that we can compute a separating linear

form for the input system {P,Q} in ÕB(d6 + d5τ) bit operations in the worst case (Theorem 26).
Finally, we show in Section 5.5 that our deterministic algorithm can be modified in a straight-

forward manner into a probabilistic Las Vegas algorithm of expected bit complexity ÕB(d5 + d4τ)
(Theorem 27). This is done by choosing randomly a linear form x+ ay and a prime µ for the sys-
tem {H, ∂H∂y }, until the number of distinct solutions of {H, ∂H∂y } is equal to the number of distinct
solutions of that system modulo µ and after projection along the direction of the line x+ ay = 0.

This new algorithm is similar to one presented in [BLP+14] and it has the same expected bit
complexity, while its worst-case counterpart is improved by a factor d. Furthermore, this new
algorithm is simpler because, in particular, (i) we choose random values for a and µ independently
instead of first computing a lucky prime and only then a separating form and (ii) we avoid the
explicit computation of the constant in the asymptotic upper bound on the number of unlucky
primes. Point (i) makes the presentation of the algorithm substantially simpler and (ii) avoids the
unpleasant computation of an explicit bound and, as a consequence, also avoids computing random
primes in unnecessary large sets.

2.3 Multimodular RUR decomposition

We present in Section 6 a new algorithm for computing a rational parameterization of the solutions
of a bivariate system {P,Q}. As in Section 5, we actually present two algorithms, a deterministic
one of worst-case bit complexity ÕB(d6 +d5τ) and a probabilistic Las Vegas variant of expected bit
complexity ÕB(d5 + d4τ) (Theorems 43 and 44). We consider here that a separating form x + ay
has been computed for {P,Q} as shown in Section 5.

Recall that the two algorithms with best known bit complexity for computing rational parame-
terizations of the solutions are those by Gonzalez-Vega and El Kahoui [GVEK96] and by Bouzidi et
al. [BLPR15], both of complexity ÕB(d7 + d6τ). The former algorithm first shears the input poly-
nomials according to the separating form (to ensure that no two solutions are vertically aligned)
and then computes a parameterization of the solutions of every system of the triangular decompo-
sition of the sheared system; the multiplicities of the solutions of {P,Q} are thus not preserved.
The latter algorithm computes a single RUR of {P,Q}, which preserves the multiplicities of the
solutions (see Proposition 33). In this latter approach, the input bivariate polynomials are formally
sheared using an additional variable that parameterizes a generic linear form, and the resultant of
these (trivariate) polynomials is computed. The polynomials of the RUR are then expressed (and
computed) as combinations of this resultant and its partial derivatives, specialized at the value a
associated with the given linear separating form.

Here, we combine in essence these two approaches and compute a RUR for every system of
the triangular decomposition of the sheared input system. However, in order to obtain the claimed
complexities, we do not compute a RUR of every triangular system using the approach of [BLPR15].
Instead, Algorithm 6 works as follows. First, we compute the triangular decomposition of the
sheared input system as in [GVEK96]. We then show that the radical ideals of the triangular
systems can easily be obtained (Lemma 37). Using the simple structure of these radical ideals, we
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derive formulas for their RURs (Lemma 38). For complexity issues, we do not use these formulas to
directly compute RURs over Q but we use instead a multi-modular approach. For that purpose, we
use known bounds on the size of the RUR coefficients and the luckiness certificate of the triangular
decomposition introduced in Section 4.3 to select the primes.

Finally, we show in Section 6.3 how our deterministic algorithm can be transformed into a
probabilistic Las Vegas one of expected bit complexity ÕB(d5 + d4τ). In order to obtain this
complexity, we cannot compute the triangular decomposition as described above. Instead, we show
in Section 6.3.1 that we can only compute the coefficients of these triangular systems that are
needed for obtaining their radicals, within the targeted bit complexity. We also choose randomly
the primes in the multi-modular computation described above. This can be done in a Las Vegas
setting because we show that we can choose good primes with sufficiently high probability and that
we can check whether the primes are good within the targeted complexity.

2.4 Computing isolating boxes from a RUR decomposition

Section 7 introduces Algorithm 7 computing isolating boxes for the complex solutions from a
RUR. By definition, the RUR of an ideal I defines a mapping between the roots of a univariate
polynomial and the solutions of I. A RUR is hence naturally designed to compute isolating boxes
using univariate isolation and interval evaluation.

An algorithm with bit complexity ÕB(d8+d7τ) was presented in [BLPR15, §5.1 and Proposition
35] for the isolation of the real solutions of a system {P,Q} of two bivariate polynomials of degree
bounded by d and bitsize bounded by τ . Section 7.2 presents a modified algorithm that isolates all
complex solutions. Using several amortized bounds for the roots of polynomials (Section 7.1), we
show that Algorithm 7 applied to a RUR decomposition of a system {P,Q}, isolates all complex
solutions in ÕB(d6 + d5τ) (Theorem 59).

3 Notation and preliminaries

We introduce notation and recall some classical material about subresultants, gcds, lucky primes
for gcd computations, and multiplicities. Experienced readers can skip this classical material at
first and later return to it for reference.

The bitsize of an integer p is the number of bits needed to represent it, that is blog pc +
1 (log refers to the logarithm in base 2). The bitsize of a rational is the maximum bitsize of
its numerator and its denominator. The bitsize of a polynomial with integer coefficients is the
maximum bitsize of its coefficients. As mentioned earlier, OB refers to the bit complexity and Õ
and ÕB refer to complexities where polylogarithmic factors are omitted, i.e., f(n) ∈ Õ(g(n)) if
f(n) ∈ O(g(n) logk(n)) for some k ∈ N.

In this paper, we consider algorithms both in the worst case and the probabilistic Las Vegas
setting. Recall that in Las Vegas algorithms the sequence and number of operations are probabilistic
but the output is deterministic. The expected complexities of these algorithms refer to average
number of bit operations that are performed for distributions of random variables considered in
the process of the algorithms; these expected complexities hold without any assumption on the
distribution of the input.

In the following, µ is a prime number and we denote by Fµ the quotient Z/µZ. We denote by
φµ: Z → Fµ the reduction modulo µ, and extend this definition to the reduction of polynomials
with integer coefficients. We denote by D a unique factorization domain, typically Z[x, y], Z[x],
Fµ[x], Z or Fµ. We also denote by F a field, typically Q, C, or Fµ.
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For any polynomial P in D[x], let Lcx(P ) denote its leading coefficient with respect to the
variable x and degx(P ) its degree with respect to x. The degree of a polynomial refers to its total
degree, unless specified otherwise. For simplicity, we often refer to a curve of equation H(x, y) = 0
as to curve H and we also refer to a system {P = 0, Q = 0} as to system {P,Q}. For any curve
defined by H(x, y) in D[x, y], we call the critical points of H with respect to x or more shortly
the critical points of H, the points that are solutions of the system {H, ∂H∂y }. In this paper, the
solutions of a system of polynomials are always considered in the algebraic closure of the fraction
field of D.

Subresultant and gcd. We first recall the concept of polynomial determinant of a matrix which
is used in the definition of subresultants. Let M be an m × n matrix with m 6 n and Mi be
the square submatrix of M consisting of the first m − 1 columns and the i-th column of M , for
i = m, . . . , n. The polynomial determinant of M is the polynomial defined as det(Mm)yn−m +
det(Mm+1)yn−(m+1) + · · ·+ det(Mn).

Let P =
∑p

i=0 aiy
i and Q =

∑q
i=0 biy

i be two polynomials in D[y] and assume, without loss of
generality, that apbq 6= 0 and p > q.

The Sylvester matrix of P and Q, Syly(P,Q) is the (p + q)-square matrix whose rows are
yq−1P, . . . , P, yp−1Q, . . . , Q considered as vectors in the basis yp+q−1, . . . , y, 1.

Syly(P,Q) =

p+q columns︷ ︸︸ ︷

ap ap�1 · · · · · · a0
ap ap�1 · · · · · · a0

. . .
. . .

ap ap�1 · · · · · · a0
bq bq�1 · · · b0

bq bq�1 · · · b0
. . .

. . .

. . .
. . .

bq bq�1 . . . b0



 q rows

 p rows

For i = 0, . . . ,min(q, p− 1), let Syly,i(P,Q) be the (p+ q − 2i)× (p+ q − i) matrix obtained from
Syly(P,Q) by deleting the i last rows of the coefficients of P , the i last rows of the coefficients of
Q, and the i last columns.

Definition 1. ([EK03, §3]). For i = 0, . . . ,min(q, p − 1), the i-th polynomial subresultant of P
and Q, denoted by Sresy,i(P,Q) = sresy,i(P,Q)yi + sresy,i,i−1(P,Q)yi−1 + · · ·+ sresy,i,0(P,Q) is the
polynomial determinant of Syly,i(P,Q).

For practical consideration, when q = p, we define the q-th polynomial subresultant of P
and Q as Q.2 The polynomial Sresi(P,Q) has degree at most i in y and it can be written as
sresy,i(P,Q)yi + sresy,i,i−1(P,Q)yi−1 + · · · + sresy,i,0(P,Q), where the coefficient of its monomial
of degree i in y, sresi(P,Q), is called the i-th principal subresultant coefficient. Unless specified
otherwise, the subresultants are always considered with respect to the variable y and then, for
simplicity, we do not explicitly refer to the variable in the notation. Note that Sres0(P,Q) =
sres0(P,Q) is the resultant of P and Q with respect to y, which we also denote by Resy(P,Q).

2 It can be observed that, when p > q, the q-th subresultant is equal to bp−q−1
q Q, however it is not defined when

p = q. In this case, El Kahoui suggests to extend the definition to b−1
q Q assuming that the domain D is integral.

However, b−1
q does not necessarily belong to D, which is not practical. Note that it is important to define the q-th

subresultant to be a multiple of Q so that Lemma 2 holds when P (α, y) and Q(α, y) have same degree and are
multiple of one another.
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Again, when the resultant is considered with respect to y, we omit the reference to the variable
and denote it by Res(P,Q).

The matricial definition of subresultants implies the so-called specialization property of subre-
sultants, that is φ(Sresi(P,Q)) = Sresi(φ(P ), φ(Q)) for any morphism φ between D and another
unique factorization domain D′ such that none of the leading coefficients of P and Q vanishes
through φ. More generally, the equality holds up to a non-zero multiplicative constant in D′ when
only one of the leading coefficients vanishes [EK03, Lemmas 2.3, 3.1].

We state in Lemma 2 a classical fundamental property of subresultants which is instrumental in
the triangular decomposition algorithm. For clarity, we state this property for bivariate polynomials
P =

∑p
i=0 aiy

i and Q =
∑q

i=0 biy
i in D[x, y], with p > q.

Before stating Lemma 2, we recall that a greatest common divisor (gcd) of P and Q is a
polynomial in D[x, y] that divides P and Q such that any common divisor of P and Q also divides
the gcd in D[x, y]. The greatest common divisor is unique only up to the multiplication by an
invertible element of D. When D is equal to Z, the gcd of P and Q is unique up to its sign and we
refer to any of them as the gcd for simplicity. On the other hand, when D is a field, we refer to the
monic gcd (with respect to a given ordering of the variables) as to the gcd. Furthermore, in the
sequel, we sometimes compare gcds defined in Fµ[x, y] and the reduction modulo µ of gcds defined
in Z[x, y]; for simplicity, we often say they are equal if they are equal up to the multiplication by
a non-zero constant in Fµ. Note finally that if P and Q are coprime in Z[x, y], then they define a
zero-dimensional system.

Lemma 2. For any α such that ap(α) and bq(α) do not both vanish, the first subresultant polynomial
Sresk(P,Q)(α, y) (for k increasing) that does not identically vanish is of degree k, and it is the gcd
of P (α, y) and Q(α, y) (up to the multiplication by a non-zero constant in the fraction field of D(α)).

Proof. This property is a direct consequence of the specialization property of subresultants and of
the gap structure theorem; see for instance [EK03, Lemmas 2.3, 3.1 and Cor. 5.1].

Note that this lemma is often stated with a stronger assumption, that is, that none of the
leading coefficients ap(α) and bq(α) vanishes.

We recall complexity results, using fast algorithms, on subresultants and gcd computations.

Lemma 3 ([BPR06, Prop. 8.46] [Rei97, §8] [vzGG13, §11.2]). Let P and Q be in Z[x1, . . . , xn][y]
(n fixed) with coefficients of bitsize at most τ such that their degrees in y are bounded by dy and
their degrees in the other variables are bounded by d.
• The coefficients of Sresi(P,Q) have bitsize in Õ(dyτ).
• The degree in xj of Sresi(P,Q) is at most 2d(dy − i).
• For any i ∈ {0, . . . ,min(degy(P ),degy(Q))}, the polynomial Sresi(P,Q) can be computed in

Õ(dndn+1
y ) arithmetic operations and ÕB(dndn+2

y τ) bit operations. These complexities also
hold for the computation of the sequence of principal subresultant coefficients sresi(P,Q).3

In the univariate case, we need a refinement of the previous lemma in the case of two polyno-
mials with different degrees and bitsizes. In addition, we often consider the gcd of two univariate
polynomials P and Q and the gcd-free part of P with respect to Q, that is P

gcd(P,Q) . Note that when

Q = P ′, the latter is the squarefree part of P . Since the gcd and gcd-free part can be computed via
subresultants, we summarize all these complexity results in the following lemma. Since we do not

3The complexity of computing the sequence of principal subresultant coefficients is stated in [vzGG13, x. 11.2]
only for univariate polynomials, however, one can use the binary segmentation technique described in [Rei97, x8] to
generalize the latter to multivariate polynomials.
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know a proper reference for these results in the case of different degrees and bitsizes, we provide a
proof.

Lemma 4 ([LR01] [vzGG13, §11.2]). Let P and Q be two polynomials in Z[y] of degrees p and
q 6 p and of bitsizes τP and τQ, respectively.

• The coefficients of Sresi(P,Q) have bitsize in Õ(pτQ + qτP ).
• Any subresultant Sresi(P,Q) as well as the sequence of principal subresultant coefficients

sresi(P,Q) can be computed in Õ(p) arithmetic operations, and ÕB(p(pτQ + qτP )) bit opera-
tions.
• In Z[y], the gcd of P and Q has bitsize O(min(p + τP , q + τQ)) and it can be computed in

Õ(p) arithmetic operations, and ÕB(p(pτQ+qτP )) bit operations. The gcd-free part of P with
respect to Q has bitsize O(p+ τP ) and it can be computed in the same complexities.

Proof. Using the well-known half-gcd approach, the algorithm in [LR01] computes any polynomial
in the Sylvester-Habicht and cofactors sequence in a softly-linear number of arithmetic operations,
and it exploits Hadamard’s inequality on the Sylvester matrix to bound the size of the coefficients.
The Sylvester-Habicht sequence is a signed variant of the subresultant sequence thus the same
complexity bounds apply for both. The same approach is also used in [vzGG13, §11] to compute
the sequence of principal subresultant coefficients.

When the two input polynomials have different degrees and bitsizes, Hadamard’s inequality
reads as Õ(pτQ + qτP ) instead of simply Õ(dτ) when both polynomials have degree bounded by d
and bitsize bounded by τ . Using the Chinese Remainder Algorithm, the algorithms in [LR01] and
in [vzGG13, §11] hence compute any subresultant polynomial as well as the sequence of principal
subresultant coefficients in ÕB(p(pτQ + qτP )) bit operations instead of simply Õ(d2τ). One subre-
sultant and a cofactor are, up to integer factors, the gcd and gcd-free part of P and Q ([BPR06,
Prop. 10.14]). These polynomials in Z[y] are thus computed in ÕB(p(pτQ + qτP )) and have bitsize

in Õ(pτQ + qτP ). On the other hand, Mignotte’s lemma (see e.g. [BPR06, Corollary 10.12]) gives
the stated better bounds for the bitsize of the gcd and the gcd-free part. Thus, dividing the com-
puted polynomials by the gcd of their coefficients, which can be done with ÕB(p(pτQ + qτP )) bit
operations, yields the primitive parts of the gcd and gcd-free part in Z[y] (when input polynomials
are not primitive, the gcd is obtained by multiplying this primitive gcd by the gcd of the contents
of the input polynomials).

We also state the following complexity on the computation of the gcd and gcd-free parts of
bivariate polynomials, whose proof is a minor refinement of one in [MSW15].

Lemma 5. Given P and Q in Z[x, y] of maximum degree d and maximum bitsize τ , their gcd and
the gcd-free parts can be computed in ÕB(d5 + d4τ) bit operations in the worst case.

Proof. [MSW15, Lemma 13] proves that G, the gcd of P and Q, can be computed in ÕB(d6 + d5τ)
bit complexity. More precisely, they prove a complexity in ÕB(d5 +d4τ) plus that of computing the
whole subresultant sequence of two bivariate polynomials of total degree O(d) and bitsize O(d+ τ)
(that is of P and Q sheared so that their leading coefficients in y are in Z). However, only the first
non-zero subresultant is needed and the bit complexity of this computation is in ÕB(d5 + d4τ) by
Lemma 3.

We now consider P and G, the gcd of P and Q, as polynomials in y with coefficients in Z[x].
The gcd-free part of P with respect to Q is the quotient of the Euclidean division between P and
G. This division can be run in Z[x][y]. Indeed, since the leading coefficient of G divides that of P ,
it also divides the leading coefficient of each intermediate remainder ri = P − qiG where qi refers
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to the i-th truncation (with respect to y) of the quotient of P by G. Moreover, since G divides P
and by Mignotte’s lemma (see e.g. [BPR06, Corollary 10.12]), the polynomials qi have coefficients
of degree in O(d) in x and bitsize in O(d + τ), and so as for the intermediate remainders ri. The
Euclidean division can thus be done using O(d2) additions and multiplications and O(d) exact
divisions between polynomials in Z[x] of degree in O(d) and bitsize in O(d+ τ), which yields a bit
complexity in ÕB(d4 + d3τ).

Note that, alternatively, the gcd-free parts of P and Q could be obtained almost directly as i-th
subresultant cofactors of P and Q (see [BPR06, Proposition 10.14 & Corollary 8.32 & §1.2]).

Lucky primes for gcd computations. We use in this paper three notions of lucky primes. We
recall here the definition of lucky primes for gcds and we later introduce the definition of lucky
primes for algebraic systems (Definition 18) and for triangular decompositions (Definition 13). Let
A and B be polynomials in Z[x].

Definition 6 ([Yap00, §4.4]). A prime number µ is lucky for the gcd of A and B if
• φµ(Lc(A) · Lc(B)) 6= 0, and
• gcd(A,B) has the same degree as gcd(Aµ, Bµ).

Lemma 7 ([Yap00, Lemmas 4.11 and 4.12]). A prime number is lucky for the gcd of A and B if
and only if it divides the leading coefficient of neither A, nor B, nor Sresd(A,B) where d is the
degree of gcd(A,B). When µ is lucky for the gcd of A and B, then φµ(gcd(A,B)) = gcd(Aµ, Bµ)
(up to a non-null factor in Fµ).

Multiplicities. We define the two notions of multiplicities that we use for the solutions of a
system and show an inequality that they satisfy, which is used for the amortized complexity analysis
of the triangular decomposition (Proposition 15).

Definition 8. Let I be an ideal of D[x, y] and denote by F the algebraic closure of D. To each
zero (α, β) of I corresponds a local ring (F[x, y]/I)(α,β) obtained by localizing the ring F[x, y]/I at
the maximal ideal 〈x− α, y − β〉. When this local ring is finite dimensional as F-vector space, this
dimension is called the multiplicity of (α, β) as a zero of I and is noted mult((α, β), I)[CLO05,
§4.2].

Lemma 9. Let (α, β) be a solution of the system {P,Q}. The multiplicity of (α, β) in the system
{P,Q} is larger than or equal to the multiplicity of β in the univariate polynomial gcd(P (α, y),
Q(α, y)).

Proof. Let (α, β) be a solution of the system {P,Q}. We have the inclusion of ideals

〈P (x, y), Q(x, y)〉 ⊆ 〈P (x, y), Q(x, y), x− α, gcd(P (α, y), Q(α, y))〉
⊆ 〈P (α, y), Q(α, y), x− α, gcd(P (α, y), Q(α, y))〉
⊆ 〈x− α, gcd(P (α, y), Q(α, y))〉.

Indeed, the first and last inclusions are trivial and the second one follows from the fact that

P (x, y) ∈ 〈P (α, y), x−α〉 since P (x, y) can be written as P (α, y)+
∑

i>1
∂iP (α,y)
∂xi

(x−α)i. This ideal
inclusion implies that the multiplicity of (α, β) in 〈P,Q〉 is larger than or equal to its multiplicity in
〈x− α, gcd(P (α, y), Q(α, y))〉, which is equal to the multiplicity of β in gcd(P (α, y), Q(α, y)) since
x− α is squarefree.
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4 Triangular decomposition and luckiness certificate

This section presents an improved complexity analysis of the classical triangular decomposition via
subresultants and two variants of this algorithm that we will need in the following sections. The
improvement comes from new amortized bounds on the degree and bitsize of factors of the resultant,
which we prove in Proposition 15. Besides of being of independent interest, this improvement is
critical for the complexity analysis of our two variants of this algorithm.

In Section 4.1, we recall Algorithm 1, the classical algorithm for computing the triangular de-
composition of a zero-dimensional bivariate system {P,Q}. In Section 4.2, we present Algorithm 1’,
a variant that only computes the “degree’’ of the triangular decomposition. This algorithm is iden-
tical to the one we presented in [BLP+14, Algorithm 3], however, we improve here its complexity
analysis by a factor d in the worst case. In Section 4.3, we present Algorithm 2, another variant
that computes a luckiness certificate (see Definition 13) for the triangular decomposition. Finally,
in Section 4.4, we present an amortized complexity analysis of these algorithms.

4.1 Triangular decomposition via subresultants

The idea is based on Lemma 2 which states that, after specialization at x = α, the first (with
respect to increasing i) non-zero subresultant Sresi(P,Q)(α, y) is of degree i and is equal to the
gcd of P (α, y) and Q(α, y). This induces a decomposition into triangular subsystems {Ai(x),
Sresi(P,Q)(x, y)} where a solution α of Ai(x) = 0 is such that the system {P (α, y), Q(α, y)} admits
exactly i roots (counted with multiplicity), which are exactly those of Sresi(P,Q)(α, y). Further-
more, these triangular subsystems are regular chains, i.e., the leading coefficient of the bivariate
polynomial (seen in y) is coprime with the univariate polynomial. We recall in Algorithm 1 how
this decomposition is computed. Note that this algorithm performs Õ(d4) arithmetic operations.
Indeed, the computation of the subresultant sequence has complexity Õ(d4) and there are at most
d gcd computations each of complexity Õ(d2) (see e.g. [BLPR15, Lemma 15] for details). The next
lemma summarizes the main properties of this triangular decomposition.

Lemma 10 ([GVEK96, LMMRS11]). Algorithm 1 computes a triangular decomposition {(Ai(x),
Bi(x, y))}i∈I such that
• the set of distinct solutions of {P,Q} is the disjoint union of the sets of distinct solutions of

the {Ai(x), Bi(x, y)}, i ∈ I,
•
∏
i∈I Ai is squarefree,

• for any root α of Ai, Bi(α, y) is of degree i and equals gcd(P (α, y), Q(α, y)) (up to a constant
factor),
• Ai is coprime with Lcy(Bi) = sresi(P,Q).

4.2 Degree of a triangular decomposition

Definition 11. The degree of a triangular decomposition {(Ai(x), Bi(x, y))}i∈I of is the sum of
the degrees of these systems, that is∑

i∈I
degx(Ai(x)) degy(Bi(x, y))

where degx refers to the degree of the polynomial with respect to x and similarly for y. For simplicity,
we refer to the degree of the triangular decomposition of {P,Q} as to the degree of the triangular
decomposition computed by Algorithm 1 on {P,Q}.

12



Algorithm 1 Triangular decomposition [GVEK96, LMMRS11]

Input: P,Q in D[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime.
Output: Triangular decomposition {(Ai(x), Bi(x, y))}i∈I such that the set of solutions of {P,Q}

is the disjoint union of the sets of solutions of {(Ai(x), Bi(x, y))}i∈I .
1: If needed, exchange P and Q so that degy(Q) 6 degy(P ).
2: Compute the subresultant sequence of P and Q with respect to y: Bi = Sresi(P,Q).
3: G0 = squarefree part(Res(P,Q)) and T = ∅
4: for i = 1 to degy(Q) do
5: Gi = gcd(Gi−1, sresi(P,Q))
6: Ai = Gi−1/Gi
7: if degx(Ai) > 0, add (Ai, Bi) to T
8: return T = {(Ai(x), Bi(x, y))}i∈I

Algorithm 1’ Degree of the triangular decomposition

Input: P,Q in D[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime.
Output: The degree of the triangular decomposition of {P,Q}.

1: If needed, exchange P and Q so that degy(Q) 6 degy(P ).
2: Compute (sresi(P,Q))i=0,...,degy(Q) the sequence of principal subresultant coefficients of P and
Q with respect to y.

3: G0 = squarefree part(Res(P,Q))
4: for i = 1 to degy(Q) do
5: Gi = gcd(Gi−1, sresi(P,Q))
6: return

∑
i∈I(degx(Gi−1)− degx(Gi)) i

Algorithm 1’, a straightforward variant of Algorithm 1, computes the degree of triangular
decomposition of {P,Q}. The difference with Algorithm 1 is that we do not compute (in Line 2)
the whole subresultant sequence but only the sequence of their principal coefficients. In other
words, we do not compute the bivariate polynomials Bi(x, y) of the triangular decomposition but
only their leading terms (seen as polynomials in y). Furthermore, we do not compute the univariate
polynomials Ai(x) of the decomposition but only their degrees. This simplification does not modify
the worst-case bit complexity of the algorithm but it decreases its expected bit complexity (see
Proposition 16 and its proof). This simplification is thus not needed in the deterministic version
of our algorithm for computing a separating linear form but it is needed in our randomized version
(see Section 5.5).

Lemma 12 (Correctness of Algorithm 1’). Algorithm 1’ computes the degree of the triangular
decomposition of {P,Q}.

Proof. Let {(Ai(x), Bi(x, y))}i∈I denote the triangular decomposition of {P,Q}. By Lemma 10,
Bi(x, y) is of degree i in y. On the other hand, Ai(x) is defined in Algorithm 1 Line 6 as Gi−1/Gi
thus its degree is degx(Gi−1)−degx(Gi). It follows that the degree of the triangular decomposition
is
∑

i∈I(degx(Gi−1)− degx(Gi)) i.

4.3 Lucky primes for a triangular decomposition

In this section, we define the lucky primes for the triangular decomposition of Algorithm 1 and
introduce Algorithm 2 that computes a luckiness certificate i.e. an integer that is divisible by all
the unlucky primes.
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Algorithm 2 Luckiness certificate

Input: P,Q in Z[x, y] coprime such that Lcy(P ) and Lcy(Q) are coprime.
Output: A luckiness certificate of {P,Q}, that is, an integer Π such that if µ does not divide Π,

then µ is lucky for the triangular decomposition of {P,Q} according to Definition 13.
1: If needed, exchange P and Q so that degy(Q) 6 degy(P ).
2: Compute (sresi(P,Q))i=0,...,degy(Q) the sequence of principal subresultant coefficients of P and
Q with respect to y.

3: G0 = squarefree part(Res(P,Q))

4: SG0 = sresx,k(Res(P,Q), ∂ Res(P,Q)
∂x ) the first non-null principal subresultant coefficient (for k

increasing).
5: for i = 1 to degy(Q) do
6: SGi = sresx,k(Gi−1, sresi(P,Q)) the first non-null principal subresultant coefficient (for k

increasing).
7: Gi = gcd(Gi−1, sresi(P,Q))

8: Π = Lcx(Lcy(P )) · Lcx(Lcy(Q)) · Resx(Lcy(P ),Lcy(Q)) · degx(Res(P,Q)) ·
∏degy(Q)

i=0 SGi ·
Lcx(sresi(P,Q))

9: return Π

Definition 13. A prime µ is lucky for the triangular decomposition of Algorithm 1 ap-
plied to P and Q if the decomposition commutes with the morphism φµ and its degree is invari-
ant through φµ. More precisely, with {(Ai, Bi)}i∈I = Algorithm 1(P,Q) and {(Aµi , Bµ

i )}i∈I� =
Algorithm 1(φµ(P), φµ(Q)), µ is lucky if I = Iµ, φµ(Ai) = Aµi , φµ(Bi) = Bµ

i for every i ∈ I and
the two triangular decompositions have the same degree. Note also that (P,Q) and (φµ(P ), φµ(Q))
are required to satisfy the hypotheses of Algorithm 1.

Lemma 14 (Correctness of Algorithm 2). The integer Π output by Algorithm 2 is a luckiness
certificate of {P,Q}, that is, if µ does not divide Π, then it is lucky for the triangular decomposition
of {P,Q}.

Proof. For convenience, we simply denote by φ the morphism φµ that performs a reduction modulo
µ. Let P and Q be two coprime polynomials in Z[x, y] such that Lcy(P ) and Lcy(Q) are coprime.
Let Gi, Ai, Bi be the polynomials computed in Algorithm 1 on the input P and Q, and Gµi , Aµi ,
Bµ
i be the polynomials computed in Algorithm 1 on the input φ(P ) and φ(Q).

We first prove that φ(P ) and φ(Q) satisfy the conditions of Algorithm 1, that is that they are
coprime and that their leading coefficients are coprime. Observe first that φ(Lcy(P )) = Lcy(φ(P ))
since µ does not divide Lcx(Lcy(P )), and similarly for Q. Furthermore, since µ does not di-
vide the leading coefficients of Lcy(P ) and Lcy(Q), their resultant and φ commute. Hence,
φ(Resx(Lcy(P ),Lcy(Q))) = Resx(Lcy(φ(P )),Lcy(φ(Q)))) and, since the left-hand-side term is non-
zero by assumption, so is the right-hand side, which means that that the leading coefficients of
φ(P ) and φ(Q) are coprime. Furthermore, since µ does not divide sres0(P,Q) = Res(P,Q), we also
have that Res(φ(P ), φ(Q)) 6≡ 0. We have proved that φ(P ) and φ(Q) have a non-zero resultant and
that their leading coefficients are coprime, which implies that φ(P ) and φ(Q) are coprime. Hence,
they satisfy the conditions of Algorithm 1.

We now prove that φ(Ai) = Aµi , φ(Bi) = Bµ
i and degx(Ai) = degx(Aµi ) for all i > 0. Since µ

divides neither the leading coefficients of P nor Q, the specialization property of the subresultant
polynomials writes as φ(Bi) = φ(Sresi(P,Q)) = Sresi(φ(P ), φ(Q)) = Bµ

i . We now show by induc-
tion on i > 0 that φ(Gi) = Gµi and degx(Gi) = degx(Gµi ), which implies that φ(Ai) = Aµi and
degx(Ai) = degx(Aµi ) for i > 0 since Ai = Gi−1/Gi.
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Case i = 0. µ is lucky for the gcd of sres0(P,Q) and ∂ sres0(P,Q)
∂x by Lemma 7. Indeed, first, µ does

not divide the leading coefficient Lcx(sres0(P,Q)) of sres0(P,Q). It follows that µ does not divide

the leading coefficient of ∂ sres0(P,Q)
∂x since µ does not divide degx(Res(P,Q)) = degx(sres0(P,Q)).

Finally, µ does not divide SG0. It follows, still by Lemma 7, that φ and gcd commute on sres0(P,Q)

and ∂ sres0(P,Q)
∂x . Hence, φ(G0) = Gµ0 by the specialization property of the subresultants since the

leading coefficients of P , Q do not vanish modulo µ.
We now prove that degx(G0) = degx(Gµ0 ), which is now equivalent to proving that

degx(G0) = degx(φ(G0)). Since the image through φ of any polynomial does not increase
its degree, degx(φ(G0)) 6 degx(G0). Furthermore, degx(φ(G0)) > degx(G0), because G0 =

Res(P,Q)

gcd(Res(P,Q),
@ Res(P;Q)

@x
)

and Res(P,Q) and its image through φ have the same degree (since µ does

not divide the leading coefficient of Res(P,Q)).
Case i > 0. We assume that φ(Gi−1) = Gµi−1 and degx(Gi−1) = degx(Gµi−1). By Lemma 7, µ is
lucky for the gcd of Gi−1 and sresi(P,Q). Indeed, µ divides none of the leading coefficients of Gi−1

and sresi(P,Q) (since Gi−1 is a factor of sresi−1(P,Q)), and µ does not divide SGi either. This im-
plies, still by Lemma 7, that φ(Gi) = φ(gcd(Gi−1, sresi(P,Q))) = gcd(φ(Gi−1), φ(sresi(P,Q))). This
is also equal to gcd(Gµi−1, sresi(φ(P ), φ(Q))) = Gµi by the induction hypothesis and the property of
specialization of the subresultants. Hence, φ(Gi) = Gµi . Furthermore, since µ is lucky for the gcd
of Gi−1 and sresi(P,Q), this gcd, which is Gi by definition, and gcd(φ(Gi−1), φ(sresi(P,Q))) = Gµi
have the same degree by Definition 6. This concludes the proof of the induction.

We have proved that φ(Ai) = Aµi , φ(Bi) = Bµ
i and degx(Ai) = degx(Aµi ) for all i > 0. The

latter property directly implies that I = Iµ. Now, for i ∈ I = Iµ, the degrees in y of Bi and Bµ
i

are equal to i by Lemma 10 (and Definition 1). This implies that the degrees of the decompositions
{(Ai, Bi)}i∈I and {(Aµi , Bµ

i )}i∈I� are the same, which concludes the proof.

4.4 Amortized complexity analysis

For the analysis of Algorithms 1, 1’ and 2, we first prove amortized bounds on the degree and
bitsize of the factors Gi of the resultant in the triangular decomposition.

Proposition 15. For i = 0, . . . ,degy(Q)−1, let di and τi be the degree and bitsize of the polynomial
Gi in the triangular decomposition of P and Q computed in Algorithm 1. We have:

• di 6 d2

i+1 and τi = Õ(d
2+dτ
i+1 ),

•
∑degy(Q)−1

i=0 di 6 d2 and
∑degy(Q)−1

i=0 τi = Õ(d2 + dτ).

Proof. Let {(Ai(x), Bi(x, y))}i∈I be the sequence of triangular systems output by Algorithm 1 on
P and Q. By the properties of the triangular decomposition (Lemma 10), for any root α of Ai,

degy(Bi(α, y)) = i and Bi(α, y) = gcd(P (α, y), Q(α, y))

up to the multiplication by a constant factor. Thus, for any root α of Ai,∑
β s.t. Bi(α,β)=0

mult(β, gcd(P (α, y), Q(α, y))) = i

and, by Lemma 9, ∑
β s.t. Bi(α,β)=0

mult((α, β), {P,Q}) > i.
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This latter sum is the multiplicity of α in the resultant Res(P,Q) because the set of solutions of
{P,Q} is the disjoint union of the sets of solutions of the {(Ai(x), Bi(x, y))}i∈I (Lemma 10). Hence
the multiplicity in Res(P,Q) of any root α of Ai is at least i and since Ai is squarefree (Lemma 10),

Aii divides Res(P,Q). In addition, the Ai are pairwise coprime thus
∏degy(Q)

i=1 Aii divides Res(P,Q).

On the other hand, Gi =
∏
j>iAj by construction, thus

∏degy(Q)−1

i=0 Gi =
∏degy(Q)

i=1 Aii divides
Res(P,Q).

The bound on the degrees,
∑degy(Q)−1

i=0 di 6 degx(Res(P,Q)) 6 d2, is then a consequence of
Bézout’s bound on the system {P,Q}. In addition, Aii divides Res(P,Q) implies that Gi+1

i =∏
j>iA

i+1
j also divides Res(P,Q), which yields di 6 d2

i+1 .
For proving the bounds on the bitsize of Gi, we introduce Mahler’s measure. For

a univariate polynomial f with integer coefficients, its Mahler measure is M(f) =
|Lc(f)|

∏
zi s.t. f(zi)=0 max(1, |zi|), where every complex root appears with its multiplicity. Mahler’s

measure is multiplicative: M(fg) = M(f)M(g) and, since it is at least 1 for any polynomial with in-
teger coefficients, f divides g implies that M(g) > M(f). We also prove two inequalities connecting
the bitsize τ and degree d of f and its Mahler measure M(f).

(i) τ 6 1+d+logM(f). Indeed, [BPR06, Prop. 10.8] states that ||f ||1 6 2dM(f), thus ||f ||∞ 6
2dM(f) and log ||f ||∞ 6 d+ logM(f), which yields the result since τ = blog ||f ||∞c+ 1.

(ii) logM(f) = O(τ + log d). Indeed, [BPR06, Prop. 10.9] states that M(f) 6 ||f ||2, thus
M(f) 6

√
d+ 1||f ||∞ and logM(f) 6 log

√
d+ 1 + log ||f ||∞.

The fact that Gi+1
i divides Res(P,Q) implies that M(Gi)

i+1 6 M(Res(P,Q)) and thus that

logM(Gi) 6 logM(Res(P,Q))
i+1 . Inequality (i) together with di 6 d2

i+1 then yields

τi 6 1 +
d2

i+ 1
+

logM(Res(P,Q))

i+ 1
.

Inequality (ii) then yields τi = Õ(d
2+dτ
i+1 ) since the bitsize of Res(P,Q) is in Õ(dτ). The bound on

the sum of the bitsizes is then straightforward using the fact that
∑degy(Q)−1

i=0
1
i+1 = O(log d).

Proposition 16. If P,Q in Z[x, y] have degree at most d and bitsize at most τ , Algorithms 1, 1’
and 2 perform ÕB(d6 + d5τ) bit operations in the worst case. Algorithm 1’ performs ÕB(d5 + d4τ)
bit operations on average. The integer Π output by Algorithm 2 has bitsize Õ(d4 + d3τ).

Proof. By Lemma 3, the sequence of the subresultants Sresi(P,Q) can be computed in ÕB(d5τ)
bit operations and the sequence of their principal coefficients sresi(P,Q) (including the resultant)
can be computed in ÕB(d4τ) bit operations. Thus, Line 2 has complexity ÕB(d5τ) in Algorithm 1
and ÕB(d4τ) in Algorithms 1’ and 2.

By Lemma 3, each of the principal subresultant coefficients sresi (including the resultant) has
degree O(d2) and bitsize Õ(dτ). Thus, by Lemma 4, in Line 3 of all three algorithms and in Line 4
of Algorithm 2, G0 and SG0 can be computed in ÕB((d2)2(dτ)) = ÕB(d5τ) bit operations.

In their loops, the three algorithms perform (in total) the computations of at most d gcd (or
sequences of principal subresultant coefficients) between polynomials Gi−1 and sresi. Polynomial
sresi has bitsize Õ(dτ) and degree O(d2), and denoting by τi and di the bitsize and degree of
Gi, Lemma 4 yields a complexity in ÕB(d2(d2τi−1 + di−1dτ)) for the computation of Gi and SGi.
According to Proposition 15, these complexities sum up over all i to ÕB(d6 + d5τ). Finally, in
Line 6 of Algorithm 1, the division of Gi−1 by Gi can be done in a bit complexity of the order
of the square of their maximum degree times their maximum bitsize [vzGG13, Theorem 9.6 and
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subsequent discussion], that is in OB(d2
i τi) (or actually OB(d2

i +diτi) according to [vzGG13, Exercise

10.21]). By Proposition 15, di 6 d2 and τi = Õ(d
2+dτ
i+1 ), thus

∑
iOB(d2

i τi) = ÕB(d6 + d5τ). Hence

the worst-case bit complexity of all three algorithms is in ÕB(d6 + d5τ).
We now show that the expected bit complexity of Algorithm 1’ is in ÕB(d5 + d4τ). As above

the worst-case bit complexity of Line 2 is in ÕB(d4τ). The rest of the algorithm performs O(d) gcd
computations and one exact division (in Line 3) between polynomials of degree O(d2) and bitsize
Õ(dτ). Each of these operations can be done with an expected bit complexity of ÕB((d2)2 +d2 ·dτ)
(the squared degree plus the degree times the bitsize) [vzGG13, Corollary 11.14 & Exercice 9.14].
The expected bit complexity of Algorithm 1’ is thus in ÕB(d5 + d4τ).

Concerning the last claim of the proposition, recall that

Π = Lcx(Lcy(P ))·Lcx(Lcy(Q))·Resx(Lcy(P ),Lcy(Q))·degx(Res(P,Q))·
degy(Q)∏
i=0

SGi·Lcx(sresi(P,Q)).

Since P and Q have degree at most d and bitsize at most τ , the first two terms have bitsize at most
τ and, by Lemma 4, Resx(Lcy(P ),Lcy(Q)) has bitsize Õ(dτ). Furthermore, as noted above, every

sresi(P,Q) (including the resultant of P and Q) has degree has degree O(d2) and bitsize Õ(dτ). In
particular the bitsize of degx(Res(P,Q)) is in O(log d) and that of Lcx(sresi(P,Q)) is in Õ(dτ). In
addition, still by Lemma 4, SG0 has bitsize Õ(d2 · dτ). On the other hand, by Lemma 4, for i > 1,
SGi has bitsize Õ(d2τi−1 + di−1dτ) with di and τi the degree and bitsize of Gi. By Proposition 15,
these bitsizes sum up to Õ(d4 + d3τ). The bitsize of Π is bounded by the sum of all these bitsizes
and is thus in Õ(d4 + d3τ).

Remark 17. Following the proof for the expected complexity of Algorithm 1’, we directly get that
Algorithm 1, except for Line 2, performs ÕB(d5 +d4τ) bit operations on average. This will be useful
for the proof of complexity of Algorithm 6’.

5 Separating linear form

This section presents a new algorithm of worst-case bit complexity ÕB(d6 + d5τ) for computing a
separating linear form for a bivariate system of two coprime polynomials P,Q in Z[x, y] of total
degree at most d and maximum bitsize τ (Theorem 26). We also present a randomized version of
this algorithm of expected bit complexity ÕB(d5 + d4τ) (Theorem 27).

As mentioned in Section 2, this algorithm is based on those presented in [BLPR15] and [BLP+14].
In Section 5.2, we improve a result from [BLP+14] showing that computing a separating linear form
for a system {P,Q} is essentially equivalent (in terms of asymptotic bit complexity) to computing a
separating linear form for the critical points of a curve. Section 5.3 then presents our algorithm for
computing a separating linear form for the critical points of such a curve. In Section 5.4, we gather
our results for deterministically computing separating linear forms of bivariate systems. Finally, in
Section 5.5, we present the randomized version of our algorithm.

5.1 Notation and definitions

We first introduce some notation and formally define lucky primes for a system. Given the two
input polynomials P and Q, we consider the “generic” change of variables x = t − sy, and define
the “sheared” polynomials P (t− sy, y), Q(t− sy, y), and their resultant with respect to y,

R(t, s) = Res(P (t− sy, y), Q(t− sy, y)).
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We introduce the following notation for the leading coefficients of these polynomials;

LP (s) = Lcy(P (t− sy, y)), LQ(s) = Lcy(Q(t− sy, y)). (1)

Note that these polynomials do not depend on t.

Definition 18 ([BLPR15, Definition 8]). A prime number µ is said to be lucky for a zero-
dimensional system {P,Q} if {P,Q} and {φµ(P ), φµ(Q)} have the same number of distinct
solutions (in their respective algebraic closures), µ > 2d4 and φµ(LP (s)) φµ(LQ(s)) 6≡ 0.

Note that we consider µ in Ω(d4) in Definition 18 because, in Algorithm 5, we want to ensure
that there exists, for the system {φµ(P ), φµ(Q)} (resp. {P,Q}), a separating form x + ay with a
in Fµ (resp. 0 6 a < µ in Z). The constant 2 in the bound 2d4 is an overestimate, which simplifies
some proofs in [BLPR15].

Definition 19. Let H be a polynomial in Z[x, y]. A separating form for the curve defined by
H is a separating form for the system {H, ∂H∂y } of critical points of the curve.

Remark that shearing the critical points of a curve (with respect to x) is not the same as taking
the critical points of a sheared curve. In particular, given a separating form x+ ay for a curve, it
is possible that the shearing (x, y) 7→ (x′ = x+ay, y) does not shear the curve in a generic position
in the sense of Gonzalez-Vega et al. [GVEK96], that is the critical points (with respect to x′) of
the sheared curve may be vertically aligned.

5.2 From a system to a curve

We prove here Proposition 20, which states that it is essentially equivalent from an asymptotic bit
complexity point of view to compute a separating linear form for a system {P,Q} and to compute
a separating linear form for the critical points of a curve H. According to Definition 19, we refer to
the latter as a separating linear form for H. The proof essentially follows that of [BLP+14, Lemma
7] but we improve by a factor d the complexity of computing the curve H.

The critical points of a curve of equation H are the solutions of the system {H, ∂H∂y }, thus
computing a separating linear form for a curve amounts, by definition, to computing a separating
linear form for a system of two equations. Conversely, a separating linear form for the curve PQ
is also separating for the system {P,Q} since any solution of {P,Q} is also solution of PQ and of
∂PQ
∂y = P ∂Q

∂y + ∂P
∂yQ.

However, it may happen that the curve PQ admits no separating linear form even if {P,Q}
admits one. Indeed, {P,Q} can be zero-dimensional while PQ is not squarefree (and such that the
infinitely many critical points cannot be separated by a linear form). Nevertheless, if P and Q are
coprime and squarefree, then PQ is squarefree and thus it has finitely many singular points. Still
the curve H = PQ may contain vertical lines, and thus infinitely many critical points, but this
issue can easily be handled by shearing the coordinate system.

Proposition 20. Let P and Q be two coprime polynomials in Z[x, y] of maximum degree d and
maximum bitsize τ . We can compute a shearing of the coordinate system from (x, y) to (t =
x+ αy, y), with α an integer in [0, 2d], and a squarefree polynomial H in Z[t, y] of degree at most
2d, bitsize Õ(d+ τ), with Lcy(H) in Z, so that any separating linear form for the zero-dimensional
system {H, ∂H∂y } is also separating for {P,Q} after being sheared back. The worst-case complexity

of this computation is in ÕB(d5 + d4τ).

Proof. The proof is identical to the one of [BLP+14, Lemma 7] except for the fact that the complex-
ity of the gcd-free computation stated in Lemma 5 improves the overall complexity by a factor d.
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Algorithm 3 Number of critical points of H

Input: H in Z[x, y] squarefree such that Lcy(H) is in Z.
Output: The number of critical points of H.

1: return Algo 1’(H, (∂H∂y )2) - Algo 1’(H, ∂H∂y )

5.3 Separating linear form of a curve

In this section, we consider an arbitrary curve defined by H in Z[x, y] of degree d and bitsize τ ,
squarefree and with a constant leading coefficient in y. In particular, the polynomial H defined in
Proposition 20 satisfies these two last conditions, which yield that the curve has a finite number of
critical points. We show in the following three subsections that computing (i) the number of the
critical points of H, (ii) a lucky prime for the system of critical points {H, ∂H∂y } (see Definition 18),
and finally (iii) a separating form for the curve H (Definition 19) can be done with a bit complexity
in ÕB(d6 + d5τ).

5.3.1 Number of critical points

Algorithm 3 computes the number of critical points of a curve H as the difference between the
degrees of the triangular decompositions of the systems {H, (∂H∂y )2} and {H, ∂H∂y }. This algorithm

is identical to the one we presented in [BLP+14, Algorithm 4], however, our improvement on the
complexity analysis of the triangular decomposition (Proposition 16) immediately improves the
complexity of this counting algorithm. The correctness and complexity of Algorithm 3 follows
directly from that of [BLP+14, Algorithm 4] and from Proposition 16.

Proposition 21. If H in Z[x, y] has degree d and bitsize τ , Algorithm 3 computes the number of
distinct critical points of H in ÕB(d6 + d5τ) bit operations in the worst case and ÕB(d5 + d4τ) bit
operations on average.

5.3.2 Lucky prime for the system of critical points

Let Π = Algo 2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2) be the product of the luckiness certificates output by

Algo 2 for the triangular decompositions of {H, ∂H∂y } and {H, (∂H∂y )2}. Lemma 22 shows that we
can easily check using a divisibility test on Π whether a prime number is lucky for the system
{H, ∂H∂y } (see Definition 18). Algorithm 4 finds such a lucky prime by an iterative application of
this divisibility test. To keep the complexity in the desired bound, the primes to be tested are
grouped and a remainder tree is used for the computation of the reduction of Π modulo all the
primes in a group. In the following, LH(s) and L @H

@y
(s) are defined similarly as in Section 5.1.

Lemma 22. Let µ be a prime such that µ > 2d4 and φµ(LH(s)) φµ(L @H
@y

(s)) 6≡ 0. If µ does not

divide Π then µ is lucky for the system {H, ∂H∂y }.

Proof. If µ does not divide Π then it is a lucky prime for the triangular decompositions of {H, ∂H∂y }
and {H, (∂H∂y )2} (by Lemma 14). By definition of a lucky prime for a triangular decomposition
(Definition 13), the degrees of the decompositions are the same over Z or Fµ. Algorithm 3 computes
the number of solutions of the system {H, ∂H∂y } only from these degrees and thus the results are the

same over Z or Fµ. Together with the assumptions that µ > 2d4 and φµ(LH(s)) φµ(L @H
@y

(s)) 6≡ 0,

this yields that µ is lucky for the system {H, ∂H∂y }.
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Algorithm 4 Lucky prime for {H, ∂H∂y }

Input: H in Z[x, y] of degree d and bitsize τ , squarefree such that Lcy(H) is in Z and Π = Algo
2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2).

Output: A lucky prime µ for the system {H, ∂H∂y }.
1: Compute LH(s) and L @H

@y
(s) (defined as in Section 5.1).

2: m = 2d4

3: while true do
4: Compute the set B of the first d4 + d3τ primes > m.
5: for all µ in B do
6: Compute the reduction mod. µ of Π, LH , L @H

@y
.

7: if φµ(Π) φµ(LH(s)) φµ(L @H
@y

(s)) 6≡ 0 then

8: return µ
9: m = the largest prime in B

Proposition 23. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 4 computes a lucky prime
of bitsize O(log(dτ)) for the system {H, ∂H∂y } using ÕB(d4 + d3τ) bit operations.

Proof. The correctness of Algorithm 4 follows directly from Lemma 22 since the condition in Line 7
(together with µ > 2d4) matches exactly the assumptions of Lemma 22.

We now analyze the complexity of this algorithm. It is straightforward that, in Line 1, LH(s)
and L @H

@y
(s) can be computed with ÕB(d4 + d3τ) bit operations and that they have coefficients of

bitsizes Õ(d+ τ) (see e.g. [BLPR15, Lemma 7]). Furthermore, since Π has bitsize Õ(d4 + d3τ) (by
Proposition 16), the number of prime divisors of Π, LH(s), and L @H

@y
(s) is in Õ(d4 + d3τ). In other

words, there exists a function F that is polylogarithmic in d and τ such that the number of these
prime divisors is less than (d4 +d3τ)F (d, τ) (without O(·)). Hence, the number of iterations of the
loop in Line 3 is polylogarithmic in d and τ since it is bounded by F . This also implies that the
primes computed in Line 4 are among the M first primes with M = 2d4 + (d4 + d3τ)F (d, τ). The
bit complexity of computing the M first prime is in ÕB(M) = ÕB(d4 + d3τ) and their maximum
is in Õ(M) = Õ(d4 + d3τ) [vzGG13, Theorem 18.10]. Thus, the total bit complexity of Line 4 is in
ÕB(d4 + d3τ), the bitsize of every considered prime is in O(log(dτ)) and the sum of their bitsizes
is in Õ(d4 + d3τ).

The loop of line 5 consists in testing, for the d4 + d3τ primes of B, the non-vanishing of the
reduction of the integer Π and of the two polynomials LH(s), L @H

@y
(s). The product of Π and of all

these coefficients has bitsize Õ(d4 + d3τ) and it can be computed in bit complexity ÕB(d4 + d3τ).
The reduction of this product in Line 6 modulo all the primes in B can be computed via a remainder
tree in a bit complexity that is soft linear in the total bitsize of the input [MB74, Theorem 1], which
is in Õ(d4 + d3τ).

Hence, the bit complexity of one iteration of the loop of Line 3 is ÕB(d4 +d3τ) and since at most
polylog(dτ) iterations are performed, the overall bit complexity of Algorithm 4 is ÕB(d4 +d3τ).

5.3.3 Separating linear form of a curve

In this section, we assume that we have already computed, using Algorithms 3 and 4, the number
of distinct (complex) critical points of a curve and a lucky prime µ for the system of critical points.
With this information, Algorithm 4 of [BLPR15] computes a separating form with a bit complexity
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Algorithm 5 Separating form of a curve

Input: H in Z[x, y] of degree d and bitsize τ , squarefree and such that Lcy(H) is in Z.
Output: A separating linear form x+ ay of the curve H, with a < 2d4.

1: Compute N = Algorithm 3(H), the number of distinct (complex) critical points of H.
2: Compute Π = Algo 2(H, ∂H∂y ) · Algo 2(H, (∂H∂y )2), the product of the luckiness certificates output

by Algo 2 for the triangular decompositions of {H, ∂H∂y } and {H, (∂H∂y )2}.
3: Compute µ =Algorithm 4(H,Π), a lucky prime for {H, ∂H∂y }.
4: Compute H(t− sy, y) and ∂H

∂y (t− sy, y).
5: Compute Υµ(s) the reduction modulo µ of LH(s) · L @H

@y
(s).

6: Compute the resultant Rµ(t, s) of the reductions modulo µ of H(t− sy, y) and ∂H
∂y (t− sy, y).

7: Compute Rµ(t, a) for all a in {0, . . . , 2d4} using multipoint evaluation.
8: a = 0
9: repeat

10: Compute the degree Na of the squarefree part of Rµ(t, a).
11: a = a+ 1
12: until Υµ(a) 6= 0 (in Fµ) and Na = N
13: return The linear form x+ ay.

ÕB(d8 + d7τ). In this section, we slightly modify this algorithm to improve its complexity to
ÕB(d6 + d5τ).

More precisely, Algorithm 4 of [BLPR15] computes a separating linear form for a system {P,Q}
by considering iteratively linear forms x+ay, where a is an integer incrementing from 0 and by com-
puting the degree of the squarefree part of the reduction modulo µ of R(t, a) until this degree is equal
to the (known) number of distinct solutions of the system and such that φµ(LP (a)) φµ(LQ(a)) 6= 0.
Doing so, the algorithm computes a separating form for the system modulo µ, which, under the
hypothesis of the luckiness of µ, is proven to be also separating for the system {P,Q} [BLPR15,
Proposition 9].

Specialized to the system of critical points, Algorithm 5 follows the same approach except for
the way the reductions modulo µ of the R(t, a) are computed.

Proposition 24. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 5 computes, with a worst-
case bit complexity ÕB(d6 + d5τ), an integer a in [0, 2d4 − 2d] such that the linear form x + ay is
separating for the system {H, ∂H∂y } of critical points of the curve H = 0.

Proof. We first prove the correctness of Algorithm 5 which essentially follows from [BLPR15, Al-
gorithm 4]. The only relevant difference for the correctness is the way to compute Rµ(t, s). In
[BLPR15], Rµ(t, s) is computed by computing the resultant R(t, s) of H(t−sy, y) and ∂H

∂y (t−sy, y),
and reducing it modulo µ. Here, we first reduce the polynomials modulo µ before computing the
resultant. This yields the same result since µ is known to be lucky for the system {H, ∂H∂y }, thus it
does not divide the leading terms LH(s) and L @H

@y
(s). This proves the correctness of Algorithm 5.

Furthermore, the correctness of [BLPR15, Algorithm 4] implies that the value a output by our
algorithm is less than 2d4 − 2d.4

4[BLPR15, Theorem 19] is stated with a < 2d4 but its proof establishes a 6
(
d2

2

)
+ 2(d2 + d) which is less than

2d4 � 2d for d > 1. This refined bound will be convenient for yielding the simple bound of 2d4 when shearing back
the separating form in Theorem 26.
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We now prove the complexity of our algorithm. First, observe that, as argued in the proof of
Proposition 21, ∂H

∂y and (∂H∂y )2 have degrees at most 2d, bitsizes O(τ + log d), and that they can

be computed in complexity ÕB(d2τ). Furthermore, in Lines 1–3, the input of Algorithms 2, 3, and
4 satisfy the requirements of these algorithms, since H is squarefree with Lcy(H) in Z. The bit

complexity of Lines 1–3 is thus in ÕB(d6 + d5τ) by Propositions 16, 21, 23.
It is straightforward that, in Line 4, the sheared polynomials H(t − sy, y) and ∂H

∂y (t − sy, y)

can be computed in bit complexity ÕB(d4 + d3τ) and that their bitsizes are in Õ(d + τ) (see e.g.
[BLPR15, Lemma 7]). In Lines 5 and 6, the polynomials to be reduced modulo µ, in one or three
variables, have degree at most d and bitsize Õ(d + τ). The reduction of each of their O(d3)
coefficients modulo µ can be done in a bit complexity that is softly linear in the maximum bitsizes
[vzGG13, Theorem 9.8], that is in a total bit complexity of ÕB(d4 + d3τ). Then, computing in
Line 5 the product of φµ(LH(s)) and φµ(L @H

@y
(t−sy,y)(s)) amounts to computing O(d2) arithmetic

operations in Fµ.
The resultant in Line 6 can be computed in O(d5) arithmetic operations in Fµ (see Lemma 3).

In Line 7, Rµ(t, s) is a polynomial of degree O(d2) in t with coefficients in s of degree O(d2).
The arithmetic complexity, in Fµ, of the evaluation of one such coefficient at s = a is linear in
its degree (using for instance Horner’s scheme) but, using multipoint evaluation, the arithmetic
complexity of the evaluation of one such coefficient at O(d2) values is in Õ(d2) [vzGG13, Corollary
10.8]. It follows that the evaluation of all the O(d2) coefficients of Rµ(t, s) at d2 values of a can be

done with Õ(d4) arithmetic operations in Fµ. The overall arithmetic complexity of Line 7 is thus

Õ(d6). In Line 10, since Rµ(t, a) has degree O(d2), its squarefree part can be computed with Õ(d2)
arithmetic operations in Fµ (see Lemma 4) and, in Line 12, each evaluation of Υ(a) can be done in
O(d) arithmetic operations since Υ has degree O(d). Furthermore, since the algorithm stops with
a < 2d4, the arithmetic complexity of the whole loop is in Õ(d6).

We have shown that Lines 6 to 12 perform Õ(d6) arithmetic operations in Fµ. Since µ has
bitsize O(log(dτ)), the bit complexity of these lines is in OB(d6polylog(dτ)), which concludes the
proof.

Remark 25. From a worst-case complexity point of view, the knowledge of the number N of
(distinct) complex critical points of the input curve in Algorithm 5 is not mandatory since one
could instead compute the number of solutions Na of Rµ(t, a) for all integers a smaller than 2d4

and output a value of a that maximizes Na. However, knowing N , the algorithm can stop as soon
as a value of a is found such that Na = N , which improves the expected complexity of the algorithm
in a Las Vegas setting, as discussed in Section 5.5.

5.4 Separating linear form of a system

Propositions 20 and 24 directly yield the following theorem where the separating form is obtained
by shearing back the separating form output by Algorithm 5.

Theorem 26. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . A separating
linear form x+ by for {P,Q} with an integer b in [0, 2d4] can be computed using ÕB(d6 + d5τ) bit
operations in the worst case. Furthermore, b is such that the leading coefficients of P (t− by, y) and
Q(t− by, y) in y are in Z.

Proof. The first statement of the theorem follows directly from Propositions 20 and 24 where
the integer b is the sum of the integers α and a defined in these propositions. We prove below
the second statement. The integer a computed by Algorithm 5 is such that Υ(a) 6= 0 and thus
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Algorithm 5’ Separating form of a curve – Las Vegas version

Input: H in Z[x, y] of degree d and bitsize τ , squarefree and such that Lcy(H) is in Z.
Output: A separating linear form x+ ay of the curve H, with a < 2d4.

1: Compute N = Algorithm 3(H), the number of distinct (complex) critical points of H.
2: Compute H(t− sy, y), ∂H

∂y (t− sy, y), and Υ(s) = LH(s) · L @H
@y

(s).

3: M = 2d4

4: repeat
5: M = 2M
6: Choose uniformly at random an integer a in [0, 2d4 − 2d] and a prime µ in (2d4,M).
7: Compute Υµ(a) = φµ(Υ)(a).
8: Compute φµ(H(t− ay, y)), φµ(∂H∂y (t− ay, y)) and their resultant Rµ,a(t) with respect to y.

9: Compute the degree5 Na of the squarefree part of Rµ,a(t).
10: until Υµ(a) 6= 0 (in Fµ) and Na = N .
11: return The linear form x+ ay.

LH(a) 6= 0. Since LH(a) ∈ Z is non-zero, it is the leading coefficient in y of the sheared polynomial
H(t− ay, y). H is the product of the squarefree parts of the sheared polynomials P̃ and Q̃ where
P̃ (t, y) = P (t − αy, y) and similarly for Q̃. Hence, the leading coefficient in y of the sheared
polynomial P̃ (t − ay, y) = P (t − ay − αy, y) = P (t − by, y) divides LH(a), which is an integer.
Similarly for Q̃.

5.5 Las Vegas algorithm

We show here that the algorithm presented above for computing a separating linear form can
easily be transformed into an efficient Las Vegas algorithm.

Theorem 27. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . A separating
linear form x + by for {P,Q} with an integer b in [0, 2d4] can be computed with ÕB(d5 + d4τ)
bit operations on average. Furthermore, b is such that the leading coefficients of P (t − by, y) and
Q(t− by, y) in y are in Z.

Our Las Vegas algorithm is obtained from our deterministic version by only modifying Algorithm
5 into a randomized version, Algorithm 5’. The main difference between these two versions is that,
in Algorithm 5’, we choose randomly a candidate separating linear form x + ay and a candidate
lucky prime µ for {H, ∂H∂y } (Definition 18) until the degree Na of the squarefree part of Rµ(t, a) is
equal to the known number of solutions N . If a and µ are chosen randomly in sufficiently large
sets, the probability that x+ay is separating and that µ is lucky is larger than a positive constant,
which implies that the expected number of such choices is a constant.

This modification yields a major simplification: since we do not compute anymore a lucky
prime in a deterministic way, we do not need Algorithm 4 (Lucky prime), which again implies that
Algorithm 2 (Luckiness certificate) is not needed. Furthermore, note that, in Algorithm 5’, we
do not need anymore to use multipoint evaluation for evaluating Rµ(t, s) at a since the expected
number of choices of a is a constant. Note finally that we choose the candidate lucky prime µ

5We use the convention that the degree of the zero polynomial is +∞ because we want Na to be the
number of distinct roots of Rµ,a(t). Note that in Algorithm 5, this issue was not relevant because µ was
known to be lucky for the zero-dimensional system {H, ∂H∂y }, implying by Definition 18 that the system

{φµ(H), φµ(∂H∂y )} was zero dimensional and thus that Rµ(t, a) 6≡ 0.
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in increasingly larger sets. The reason is that, if we wanted to compute a unique set for which a
random prime would be lucky with probability at least some constant, we would need an explicit
upper bound (without Õ notation) on the number of unlucky primes and such a computation is
highly unappealing.

We now prove the correctness and complexity of Algorithm 5’ in the two following lemmas and in
Proposition 31, which, together with Proposition 20, yield Theorem 27 similarly as for Theorem 26.

Lemma 28 (Correctness of Algorithm 5’). Algorithm 5’ terminates if and only if the values of the
random variables a and µ are such that Υµ(a) 6= 0, µ is lucky for {H, ∂H∂y } and x+ ay is separating

for {φµ(H), φµ(∂H∂y )}, which implies that x+ ay is also separating for {H, ∂H∂y }.

Proof. The proof relies on Lemma 10 and Propositions 9 and 12 in [BLPR15] which, together,
require the hypotheses that Υµ(a) 6= 0, a < µ, 2d4 < µ, and {φµ(H), φµ(∂H∂y )} is zero dimensional.
We first prove that these hypotheses are satisfied when either side of the if-and-only-if claim holds
in the statement of the lemma.

First, Υµ(a) 6= 0 follows from Line 10 if Algorithm 5’ terminates and it appears in the right
hand side of the if-and-only-if claim. Second, a 6 2d4 < µ by definition of a and µ (Line 6). Finally,
if Algorithm 5’ terminates, {φµ(H), φµ(∂H∂y )} is zero dimensional because, otherwise, Rµ,a(t) ≡ 0,

thus Na = +∞ cannot be equal to N in Line 10 (since {H, ∂H∂y } is zero dimensional). On the other

hand, if µ is lucky for {H, ∂H∂y } then {φµ(H), φµ(∂H∂y )} is zero dimensional since it has the same

number of solution as {H, ∂H∂y }.
We can now apply Lemma 10 and Proposition 12 in [BLPR15], which state

degt(squarefree part(Rµ(t, a))) 6 #V (Iµ) 6 #V (I)

where Rµ(t, s) refers to the resultant with respect to y of φµ(H)(t−sy, y) and φµ(∂H∂y )(t−sy, y), and

#V (I) and #V (Iµ) are the number of distinct solutions of the systems {H, ∂H∂y } and {φµ(H), φµ(∂H∂y )},
respectively.

Assume for now that Rµ(t, a) = Rµ,a(t) (as defined in Line 8). This implies that
degt(squarefree part(Rµ(t, a))) = Na (Line 9). Since N = #V (I) by definition (Line 1), the
algorithm terminates if and only if a and µ are such that Υµ(a) 6= 0 and Na = N (Line 10), which
is equivalent to Υµ(a) 6= 0 and

degt(squarefree part(Rµ(t, a))) = #V (Iµ) = #V (I).

The first equality holds if and only if x+ay is separating for {φµ(H), φµ(∂H∂y )} [BLPR15, Lemma

10] and the second equality holds if and only if µ is lucky for the system {H, ∂H∂y } (Definition 18).
This proves the if-and-only-if claim of the lemma (assuming that Rµ(t, a) = Rµ,a(t)). Furthermore,
when both equalities hold, x + ay is also separating for the system {H, ∂H∂y } by Proposition 9 in
[BLPR15].

It remains to show that Rµ(t, a) = Rµ,a(t), that is that the resultant commutes with the
evaluation at s = a in the following way:

Res(φµ(H)(t− sy, y), φµ(
∂H

∂y
)(t− sy, y))

∣∣
s=a

= Res(φµ(H(t− ay, y)), φµ(
∂H

∂y
(t− ay, y))).

This equality holds if the polynomials in the left-hand side resultant are such that their leading
coefficients (in y) Lφ�(H)(s) and Lφ�( @H

@y
)(s) do not vanish at s = a. This follows from the hypothesis

that Υµ(a) 6= 0. Indeed, Υµ(a) 6= 0 implies φµ(LH(a)) 6= 0. Then, φµ(LH(s)) 6≡ 0 implies
φµ(LH(s)) = Lφ�(H)(s) and thus Lφ�(H)(a) 6= 0. Similarly for ∂H

∂y , Lφ�( @H
@y

)(a) 6= 0, which concludes

the proof.
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Lemma 29. The expected number of iterations of the loop in Algorithm 5’ is in O(log(dτ)). More
precisely, after O(log(dτ)) iterations, the probability that the algorithm terminates is at least 1/8
at every iteration.

Proof. The number of unlucky primes for {H, ∂H∂y } is in Õ(d4 +d3τ) [BLPR15, Proposition 13]. Let

K(d, τ) in Õ(d4 + d3τ) be an upper bound on the number of unlucky primes, which we denote for

simplicity by K. If the algorithm terminates with a value of M such that M/2
2 lnM/2 6 2K, the number

of loop iterations is in O(log(dτ)). Indeed, the number of iterations is less than logM which is in

O(logK) since
√
M/2 < M/2

lnM/2 6 4K. It is thus sufficient to prove that, for any iteration such that
M/2

2 lnM/2 > 2K, the probability that Υµ(a) 6= 0 and Na = N (Line 10) is at least 1/8. Note that
this implies that the expected number of such iterations is at most 8 and thus that the expected
number of all iterations in the loop is in O(log(dτ)).

We can thus assume that, in Line 6, µ is chosen uniformly at random in a set of primes of
cardinality at least 2K. Indeed, µ is chosen in (2d4,M) ⊇ (M/2,M) and the number of primes in

(M/2,M) is at least M/2
2 lnM/2 [vzGG13, Theorem 18.7 (see also Exercise 18.18)].

By Lemma 28, the algorithm terminates if and only if a and µ are such that Υµ(a) 6= 0, µ is
lucky for {H, ∂H∂y } (Definition 18) and x+ ay is separating for {φµ(H), φµ(∂H∂y )}. Let P denote the
probability that these three events simultaneously occur. We have

P = Pr(µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )})

· Pr(Υµ(a) 6= 0 | µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )})

= Pr(µ is lucky for {H, ∂H∂y })

· Pr(x+ ay is separating for {φµ(H), φµ(∂H∂y )} | µ is lucky for {H, ∂H∂y })

· Pr(Υµ(a) 6= 0 | µ is lucky for {H, ∂H∂y } and x+ ay is separating for {φµ(H), φµ(∂H∂y )}).

The probability that µ is lucky for {H, ∂H∂y } is at least 1/2 since, as argued above, µ is chosen
uniformly at random in a set of primes of cardinality at least 2K and there are at most K unlucky
primes.

The conditional probability that x+ ay is separating for {φµ(H), φµ(∂H∂y )} is also at least 1/2.
Indeed, we prove that the conditional probability that x + ay is not separating for that system is
at most 1/2. For any choice of a lucky µ, {φµ(H), φµ(∂H∂y )} is zero dimensional since it has the

same number of distinct solutions as {H, ∂H∂y }, which is at most d2 by Bézout’s bound. Thus, for

any choice of a lucky µ, there are at most
(
d2

2

)
< d4−d directions in which two distinct solutions of

{φµ(H), φµ(∂H∂y )} are aligned, that is, at most d4 − d values of a for which x+ ay is not separating

for that system. Since a is chosen uniformly at random in a set of cardinality 2d4 − 2d + 1, the
conditional probability that x + ay is not separating for {φµ(H), φµ(∂H∂y )} is thus at most d4 − d
times the number of choices of a lucky µ over the number of choices of couples of a and a lucky µ.
In other words, it is at most d4 − d over 2d4 − 2d+ 1, which is less than 1/2, and thus proves the
claim.

Finally, we show that the conditional probability that Υµ(a) 6= 0 is also at least 1/2. Given
that µ is lucky, Υµ(s) 6≡ 0, by Definition 18. Thus, for any given lucky µ, Υµ(s) has degree at most
2d and it vanishes for at most 2d values of a. The conditional probability that Υµ(a) = 0 is thus at
most 2d times the number of choices of a lucky µ over the number of choices of couples of a lucky µ
and a value a such that x+ ay is separating. This probability is thus equal to 2d over the number
of choices of such values a. The number of such choices for a is at least d4 since a is considered in
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[0, 2d4− 2d] and there are at most
(
d2

2

)
< d4− 2d choices for which x+ ay is not separating. Hence

the conditional probability that Υµ(a) = 0 is at most 2d/d4, which is less that 1/2 for d > 2. This
proves the claim that the conditional probability that Υµ(a) 6= 0 is at least 1/2 and concludes the
proof.

The next technical lemma is instrumental for the complexity analyses of Propositions 31 and 48.

Lemma 30. If a while-loop is such that (i) the expected bit complexity of the i-th iteration is
ÕB(A ik) where A is a polynomial in the input parameter sizes and (ii) the probability that the loop
ends at the i-th iteration, given that it has not stopped before, is at least a constant c > 0, then the
expected bit complexity of the entire loop is ÕB(A).

Proof. Let xj > c be the probability that the loop stops at the j-th iteration given that it has not
yet stopped before. The probability that the loop stops at the i-th iteration is xi

∏i−1
j=1(1 − xj) 6

(1− c)i−1. On the other hand, the total expected bit complexity of all the iterations until the i-th
is ÕB(A ik+1). Hence the total expected bit complexity of the entire loop is

∞∑
i=1

ÕB(A ik+1(1− c)i−1) = ÕB(A

∞∑
i=1

ik+1(1− c)i−1).

The series
∑∞

i=0W (i)λi is convergent for any polynomial W and 0 < λ < 1. Indeed, |W (i)| < δi for
any 1 < δ < 1

λ and i sufficiently large, which implies |W (i)λi| < (δλ)i with 0 < δλ < 1. Therefore,

the expected bit complexity of the entire loop is in ÕB(A).

Proposition 31. Given H in Z[x, y] of degree d and bitsize τ , Algorithm 5’ computes, with an
expected bit complexity ÕB(d5 + d4τ), an integer a in [0, 2d4 − 2d] such that the linear form x+ ay
is separating for the critical points of H.

Proof. By Proposition 21, Line 1 has expected complexity ÕB(d5 + d4τ). In Line 2, similarly as
in Line 4 of Algorithm 5, H(t − sy, y) and ∂H

∂y (t − sy, y) have coefficients of bitsize Õ(d + τ) and

they can be computed with ÕB(d4 + d3τ) bit operations (see the proof of Proposition 24). Still in
Line 2, Υ(s) can be computed with O(d2) arithmetic operations on integers of bitsize O(τ + log d),
and thus with ÕB(d2τ) bit operations. The worst-case bit complexity of Lines 1 and 2 is thus in
ÕB(d5 + d4τ).

Consider now one iteration of the loop in Algorithm 5’ and let IM denote the interval (2d4,M).
In Line 6, we can compute a prime µ by choosing uniformly at random an integer in IM and testing
whether it is prime until a prime is found. Finding a random integer smaller than M amounts
to computing a sequence of logM random bits, which we assume can be done in OB(logM) bit
operations. A random integer smaller than M is larger than 2d4 with probability at least 1/2,
thus a random integer in IM can be computed in OB(logM) bit operations. The number of primes

in (M/2,M) ⊆ IM is at least M/2
2 lnM/2 [vzGG13, Theorem 18.7 (see also Exercise 18.18)]. The

probability that a randomly chosen integer in IM is prime is thus at least 1
4 lnM/2 and a prime is

thus found after at most 4 lnM/2 trials on average. Testing whether an integer in IM is prime
can be done with a polynomial bit complexity in the bitsize of M , ÕB(log7.5M) [AKS04]. The
expected bit complexity of computing a prime in Line 6 is thus in ÕB(log8.5M). Furthermore,
since a random integer a in [0, 2d4] can be computed in ÕB(log d) bit operations, the expected bit
complexity of one iteration of Line 6 is in ÕB(log8.5M).

In Line 7, O(d) coefficients of bitsize O(τ + log d) are reduced modulo µ. Each reduction can
be done in a bit complexity that is softly linear in the maximum bitsizes [vzGG13, Theorem 9.8],

26



that is in a total bit complexity of ÕB(d(τ + log d + logM)). Evaluating Υ(s) at a can then be
done with O(d) arithmetic operations in Fµ and thus with ÕB(d logM) bit operations. The total

bit complexity of one iteration of Line 7 is thus in ÕB(d(τ + logM)).
In Line 8, first notice that φµ(H(t−ay, y)) = φµ(H(t−sy, y))

∣∣
s=a

. Similarly as above, the O(d3)

coefficients of H(t− sy, y) of bitsize Õ(d+ τ) can be reduced modulo µ with ÕB(d3(d+ τ + logM))
bit operations in total. The evaluation at s = a in Fµ then amounts to evaluating O(d2) univariate
polynomials in s of degree O(d). Similarly as above, this can be done with O(d3) arithmetic
operations Fµ and thus with ÕB(d3 logM) bit operations. Thus, φµ(H(t − ay, y)) and similarly

φµ(∂H∂y (t−ay, y)) can be computed with ÕB(d3(d+τ+logM)) bit operations in the worst case. By

Lemma 4, their resultant Rµ,a(t) has degree O(d2), and it can be computed with Õ(d3) arithmetic

operations in Fµ and thus with ÕB(d3 logM) bit operations. The bit complexity of one iteration

of Line 8 is thus in ÕB(d3(d+ τ + logM)) in the worst case.
In Line 9, the squarefree part of Rµ,a(t), and thus its degree, can be computed with Õ(d2)

arithmetic operations in Fµ (by Lemma 4) and thus with ÕB(d2 logM) bit operations in the worst
case.

Hence, the expected bit complexity of one iteration of the loop is in ÕB(d3(d + τ + logM) +
log8.5M), which is also in ÕB(d3(d+ τ + log9M)). More precisely, at the end of the j-th iteration
of the loop, M = 2j+1d4, thus the expected bit complexity of the j-th iteration of the loop is
in ÕB(d4 + d3τ + d3j9). The expected bit complexity of the entire loop is thus ÕB(d4 + d3τ), by
Lemmas 29 and 30. Summing up with the complexity of Lines 1 and 2, we obtain that the expected
bit complexity of the algorithm is in ÕB(d5 + d4τ).

6 RUR decomposition

In this section, we consider that a separating form for the bivariate system {P,Q} has been com-
puted as shown in Section 5 and we focus on the computation of Rational Univariate Representa-
tions of the solutions. We present a new algorithm of worst-case bit complexity ÕB(d6 + d5τ) for
computing a RUR decomposition of {P,Q}, that is a sequence of RURs that encodes the solutions
of {P,Q} (see Definition 34 and Theorem 43). This algorithm is multi-modular and it relies on
both the triangular decomposition and the luckiness certificate of Section 4. We also present a
Las Vegas version of this algorithm, of expected bit complexity ÕB(d5 + d4τ) (Theorem 44), which
only computes some coefficients of the above triangular decomposition and avoids computing the
luckiness certificate.

In Section 6.1, we first recall the definitions and main properties of RURs. We present our
deterministic algorithm and its complexity analysis in Section 6.2 and its Las Vegas version in
Section 6.3.

6.1 RUR definition and properties

Definition 32 ([Rou99, Definition 3.3]). Let I ⊂ Q[x, y] be a zero-dimensional ideal, V (I) = {σ ∈
C2, v(σ) = 0, ∀v ∈ I} its associated variety, and let (x, y) 7→ x + ay be a linear form with a in Q.
The RUR-candidate of I associated to x + ay (or simply, to a), denoted RURI,a, is the following
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set of four univariate polynomials in C[t]

fI,a(t) =
∏

σ∈V (I)

(t− x(σ)− ay(σ))µI(σ)

fI,a,v(t) =
∑

σ∈V (I)

µI(σ)v(σ)
∏

ς∈V (I),ς 6=σ

(t− x(ς)− ay(ς)), for v ∈ {1, x, y}
(2)

where, for σ in V (I), µI(σ) denotes the multiplicity of σ in I. If (x, y) 7→ x + ay is injective on
V (I), we say that the linear form x + ay separates V (I) (or is separating for I) and RURI,a is
called a RUR (the RUR of I associated to a).

The following proposition states fundamental properties of RURs, which are all straightforward
from the definition except for the fact that the RUR polynomials have rational coefficients [Rou99,
Theorem 3.1].

Proposition 33 ([Rou99, Theorem 3.1]). If I ⊂ Q[x, y] is a zero-dimensional ideal and a in Q, the
four polynomials of the RUR-candidate RURI,a have rational coefficients. Furthermore, if x + ay
separates V (I), the following mapping between V (I) and V (fI,a) = {γ ∈ C, fI,a(γ) = 0}

V (I) → V (fI,a)
(α, β) 7→ α+ aβ(

fI,a,x
fI,a,1

(γ),
fI,a,y
fI,a,1

(γ)

)
←[ γ

is a bijection, which preserves the real roots and the multiplicities.

Next, we define a RUR decomposition of an ideal.

Definition 34. Let I ⊂ Q[x, y] be a zero-dimensional ideal, V (I) = {σ ∈ C2, v(σ) = 0,∀v ∈ I}
its associated variety, and let (x, y) 7→ x + ay be a linear form with a in Q. A RUR-candidate
decomposition of I is a sequence of RUR-candidates, associated to x + ay, of ideals Ii ⊇ I, i ∈ I
such that V (I) is the disjoint union of the varieties V (Ii), i ∈ I. If x+ ay separates V (Ii) for all
i ∈ I, the RUR-candidate decomposition is a RUR decomposition of I.

The following proposition recalls an upper bound on the bitsize of a RUR of an ideal containing
two coprime polynomials P and Q, that is a RUR parameterizing a subset of the solutions of
the system {P,Q}. This bound applies to the RURs of our RUR decomposition and is used in
Algorithm 6.

Proposition 35 ([BLPR15, Proposition 28]). Let P and Q in Z[x, y] be two coprime polynomials
of total degree at most d and maximum bitsize τ , let a be a rational of bitsize τa, and let J be any
ideal of Z[x, y] containing P and Q. The polynomials of the RUR-candidate of J associated to a
have degree at most d2 and bitsize in Õ(d2τa + dτ).

Note that according to Theorem 26, a separating form x+ ay can be computed with an integer
a of bitsize O(log d) and the bound in Proposition 35 becomes Õ(d2 + dτ). In addition, even if
Proposition 35 only states an asymptotic upper bound, an explicit upper bound C(d2 +dτ) logk(dτ)
with C, k ∈ Z can be obtained from straightforward, although unappealing, computations following
the proof of that proposition. Indeed, this proof is based on Hadamard’s inequality and Mignotte’s
lemma, which both state explicit bounds.

Proposition 35 also yields the following bound on the total bitsize of any RUR decomposition.
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Algorithm 6 RUR decomposition

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ .
Output: RUR decomposition of {P,Q} of total bitsize Õ(d4 + d3τ).

1: Compute a separating form x+ay for {P,Q} with a ∈ Z of bitsize O(log d) such that the leading
coefficients of P (t− ay, y) and Q(t− ay, y) with respect to y are coprime (see Theorem 26).

2: Compute P̃ (t, y) = P (t− ay, y) and Q̃(t, y) = Q(t− ay, y), and let d̃ and τ̃ be their maximum
degree and bitsize.

3: Compute {Ti}i∈I = Algorithm 1(P̃ , Q̃).
Recall that Ti = {Ai(t), Bi(t, y)} with Bi(t, y) = sresi(P̃ , Q̃)(t) yi+ sresi,i−1(P̃ , Q̃)(t) yi−1 + · · ·
Let T̂i = 〈Ai, i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃)〉 be the radical ideal of Ti (see Lemma 37).

4: Let K = dC(d̃2 + d̃τ̃) logk(d̃τ̃)e be an integer that bounds from above the bitsize of the coef-
ficients of the RURs of the systems T̂i (see Proposition 35 and subsequent discussion) and let
Π = Algorithm 2(P̃ , Q̃). Compute the set L of the 2K first prime numbers that are larger than
d̃ and that do not divide Π. Let ΠL be the product of all primes in L.

5: for all i in I do
6: for all µ in L do
7: Compute φµ(T̂i) by reducing modulo µ the polynomials Ai, sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃).

8: Compute RURµ
i the RUR in Fµ of φµ(T̂i) associated to the separating form (t, y) 7→ t (see

Lemma 38).
9: Lift {RURµ

i }µ∈L to RURΠL
i in Z/ΠLZ using the Chinese Remainder Algorithm.

10: Compute RURQ
i , the RUR in Q of T̂i associated to the separating form (t, y) 7→ t, with a

rational reconstruction from RURΠL
i (see the proof of Proposition 41).

11: return the image of RURQ
i , i ∈ I, through the reverse shearing from (t, y) to (x, y) (see

Lemma 40).

Corollary 36. Let P and Q in Z[x, y] be two coprime polynomials of total degree at most d and
maximum bitsize τ , and let a be a rational of bitsize τa. The sum of the bitsizes of all coefficients
of any RUR-candidate decomposition of 〈P,Q〉, associated to x+ ay, is in Õ(d4τa + d3τ).

Proof. By Definition 34, the ideals Ii defining a RUR-candidate decomposition of 〈P,Q〉 are such
that (i) the solutions of Ii (counted with multiplicity) are included in those of 〈P,Q〉 (since Ii ⊇
〈P,Q〉) and (ii) the sets V (Ii) of (distinct) solutions of Ii are pairwise disjoint. Hence, the sum
over all i of the number of solutions of Ii, counted with multiplicity, is at most d2, the Bézout
bound of {P,Q}. By Definition 32, the sum over all i of the degrees of the first polynomial of the
RUR-candidate of Ii is thus also at most d2. Moreover, still by Definition 32, the degree the first
polynomial of a RUR-candidate bounds from above the degrees of the other polynomials of the
RUR-candidate. Hence, the total number of coefficients of the RUR-candidate decomposition is
O(d2). The result then follows from Proposition 35.

6.2 Decomposition algorithm

Algorithm 6 computes a RUR decomposition of a zero-dimensional system {P,Q}, by first
computing a separating form x + ay as shown in Section 5 (Line 1). We then use this separating
form to shear the system in generic position (Line 2) and compute the radical of a triangular
decomposition of this system (Line 3). Then, using a multimodular approach, we compute RURs
of each of the resulting radical systems (Lines 4–10) and return these RURs after a shear back
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(Line 11).
The section is organized as follows. We first prove some preliminary lemmas that are instrumen-

tal for the proof of correctness of Algorithm 6. We show in Lemma 37 that the ideals we compute
in Line 3 are the radicals of the ideals output by the triangular decomposition of Algorithm 1.
We then determine in Lemma 38 formulas for the RURs of these radical ideals. These formulas
are valid over the rationals but, for complexity issues, we use these formulas in a multimodular
setting, in Lines 4 to 10. For this purpose, Lemma 39 states conditions on primes µ under which the
reductions modulo µ of the RURs of these ideals are equal to the RURs of the reductions modulo
µ of these ideals. We also show in Lemma 40 how to compute the image of the computed RURs
through the reverse shearing of the one performed in Line 2. With these lemmas, we prove in
Propositions 41 and 42 the correctness and complexity of Algorithm 6. Theorem 43 finally gathers
these results.

Lemma 37. The radical T̂i of ideal Ti is 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 where Ai is squarefree

and coprime with sresi(P̃ , Q̃).

Proof. Since x + ay separates the solutions of {P,Q}, the system {P̃ , Q̃} is in generic position in
the sense that no two of its solutions are vertically aligned. The systems Ti = {Ai(t), Bi(t, y)} of
the triangular decomposition of {P̃ , Q̃} are thus also in generic position (since the set of solutions
of {P̃ , Q̃} is the disjoint union of those of the Ti by Lemma 10). Bi(t, y) = sresi(P̃ , Q̃) yi +
sresi,i−1(P̃ , Q̃) yi−1 + · · · is of degree i in y and its leading coefficient sresi(P̃ , Q̃) is coprime with
Ai (by Lemma 10). Hence, for any α solution of Ai(t), Bi(α, y) has a unique root, which is of
multiplicity i. This multiple root is thus also root of the (i − 1)-th derivative of Bi(α, y), which
is i! sresi(P̃ , Q̃)(α) y + (i − 1)! sresi,i−1(P̃ , Q̃)(α). Hence, the distinct solutions of Ti are exactly

those of T̂i. Finally, T̂i is radical because Ai(t) is univariate and squarefree (by Lemma 10) and
i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃) has degree one in the other variable, y.

The next lemma states formulas for the RURs of the radical ideals T̂i. We state this lemma in
general form because we also use it for computing the RURs of φµ(T̂i).

Lemma 38. Let F be a field, A,B0, B1 be three polynomials in F[t] and let I = 〈A(t), B1(t) y+B0(t)〉
be an ideal such that A is squarefree and coprime with B1. The linear form (t, y) 7→ t is separating
for that ideal and its associated RUR is given by6

fI = A
Lc(A) fI,1 = f ′I fI,t = t fI,1 rem A fI,y = −B0 U fI,1 rem A

where U ∈ F[t] is the inverse of B1 modulo A, defined by Bézout’s identity UB1 + V A = 1 and
where f rem g denotes the remainder of the Euclidean division of f by g.

Proof. By Definition 32, the first polynomial of the RUR of I associated to the form (t, y) 7→ t
is the unique monic polynomial that encodes the t-coordinates of the solutions of I, counted with
multiplicity in I. Since A is squarefree and coprime with B1, the solutions of I have multiplicity one
and their t-coordinates are exactly the roots of A. Hence, since A is squarefree, the first polynomial
of the RUR is fI = A

Lc(A) . It also follows from the definition of the RUR that if fI is squarefree

then fI,1 = f ′I .

By Proposition 33,
fI;t
fI;1

(α) = α for any root α of fI = A
Lc(A) , since the separating form is

(t, y) 7→ t. Hence, fI,t(t) = t fI,1(t) mod A. It follows that fI,t = t fI,1 rem A since fI,t has the
degree of A minus 1 by Definition 32.

6We omit in the subscript of the polynomials of the RUR the reference to the parameter, 0, of the separating form
(t, y) 7! t+ 0y.
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We also have by Proposition 33 that fI,1 y − fI,y is in I. Multiplying it by B1 and subtracting
fI,1 (B1 y + B0), which is also in I, we obtain that B1 fI,y + fI,1B0 is in I. This polynomial is
univariate in t, hence it is equal to zero modulo A. On the other hand, since A and B1 are coprime,
by Bézout’s identity, there exists a pair (U, V ) of polynomials in F[t] such that UB1 + V A = 1,
and we have that UB1 = 1 mod A. It follows that fI,y + U fI,1B0 = 0 mod A and thus that
fI,y = −U fI,1B0 rem A since fI,y has the degree of A minus 1 by Definition 32.

Even if the bitsize of the RUR of T̂i is known to be in Õ(d̃2 + d̃τ̃) = Õ(d2 + dτ) (Proposition 35
and [BLPR15, Lemma 7]), the naive computation of these RURs using the above formulas over
the rationals would suffer from large intermediate bitsizes.7 To overcome this difficulty, we use in
Algorithm 6 a classical multimodular technique, which consists in first computing the polynomials
modulo a set of primes whose product is larger than the bitsize of the output coefficients, then lifting
the result using the Chinese Remainder Algorithm and finally performing a rational reconstruction.
However, to output a correct result, this technique requires that, for any selected prime µ, the
formulas of Lemma 38 commute with the reduction modulo µ. We show in Lemma 39 how to
satisfy this requirement using the luckiness certificate output by Algorithm 2. This lemma is
instrumental for the proof of correctness of Algorithm 6.

Lemma 39. Let µ > i be a prime that does not divide Π. The ideals T̂i and φµ(T̂i) satisfy the
hypotheses of Lemma 38. In particular, the linear form (t, y) 7→ t is separating for both ideals. For
this linear form, the RUR of φµ(T̂i) is equal to the reduction modulo µ of the RUR of T̂i.

Proof. By Lemma 37, the ideal T̂i = 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 is such that Ai is squarefree

and coprime with sresi(P̃ , Q̃). Lemma 38 thus applies and yields that the linear form (t, y) 7→ t is
separating for ideal T̂i and that the associated RUR can be computed with the given formulas.

In the following, we assume that µ > i is a prime that does not divide Π. We first show that
the ideal φµ(T̂i) = 〈φµ(Ai), i φµ(sresi(P̃ , Q̃)) y + φµ(sresi,i−1(P̃ , Q̃))〉 also satisfies the hypotheses
of Lemma 38. Recall the notation used in the proof of Lemma 14: let (Aµi (t), Bµ

i (t, y)) be the

triangular systems computed by Algorithm 1 applied to φµ(P̃ (t, y)) and φµ(Q̃(t, y)). Lemma 14

implies that µ is lucky for the triangular decomposition of {P̃ , Q̃}, hence φµ(Ai) = Aµi and φµ(Bi) =

Bµ
i , the latter being equivalent to φµ(Sresi(P̃ , Q̃)) = Sresi(φµ(P̃ ), φµ(Q̃)). We thus have that

gcd(φµ(Ai), i φµ(sresi(P̃ , Q̃))) = gcd(Aµi , i sresi(φµ(P̃ ), φµ(Q̃))), which a non-zero constant in Fµ by
Lemma 10. In addition, Lemma 10 implies that φµ(Ai) = Aµi is squarefree. Lemma 38 thus applies

to the ideal φµ(T̂i). Hence, the linear form (t, y) 7→ t is separating for φµ(T̂i) and the associated
RUR can be computed with the formulas of Lemma 38.

Second, we prove that µ does not divide any denominator of the rational coefficients of the
polynomials of the RUR of T̂i and thus that the images of these polynomials by φµ are well defined.

By definition, Ai divides the resultant of P̃ and Q̃, which is equal to sres0(P̃ , Q̃). It follows that
µ does not divide Lc(Ai) because µ does not divide Lc(sres0(P̃ , Q̃)) by definition of Π. Thus µ
does not divide any denominator of the coefficients of the RUR polynomials fbTi = Ai

Lc(Ai)
and

fbTi,1 = f ′bTi . On the other hand, if F is a polynomial in Q[t] such that µ does not divide the

denominators of its coefficients, then µ does not divide the denominators of the coefficients of
F rem Ai (the denominator of a coefficient of the remainder is the product of Lc(Ai) and some
denominators of coefficients of F ). It follows that µ does not divide the denominators of the

7More precisely, the computation of the RURs using the formulas of Lemma 38 over the rationals would require
ÕB(d8 + d7τ) bit operations for each triangular system and ÕB(d9 + d8τ) for all of them. This bit complexity

corresponds roughly to the cost of multiplications and divisions involving the inverse of sresi(P̃ , Q̃) rem Ai, which is

a polynomial of degree O(d2) and bitsize in Õ(d4 + d3τ).
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coefficients of fbTi,t = tfbTi,1 rem Ai. Similarly, to prove that µ does not divide the denominators

of the coefficients of fbTi,y = −sresi,i−1(P̃ , Q̃)U fbTi,1 rem Ai, it is sufficient to prove the µ does

not divide the denominators of the coefficients of U , the inverse of i sresi(P̃ , Q̃) modulo Ai (since
sresi,i−1(P̃ , Q̃) has integer coefficients). By definition of Π, µ does not divide Lc(sresi(P̃ , Q̃)).

In addition, we have shown that µ does not divide Lc(Ai), Ai and i sresi(P̃ , Q̃) are coprime by
Lemma 37 and we have shown above that φµ(Ai) and φµ(i sresi(P̃ , Q̃)) are also coprime. It follows

that µ is lucky for gcd(Ai, i sresi(P̃ , Q̃)) (Definition 6). Thus, by Lemma 7, µ does not divide
res = Rest(Ai, i sresi(P̃ , Q̃)). By [BPR06, Prop. 8.38.a] and since Ai and i sresi(P̃ , Q̃) are coprime,
there exist u, v in Z[t] such that, degt(u) < degt(A) and u i sresi(P̃ , Q̃) + vAi = res, which is
equivalent to u

res i sresi(P̃ , Q̃) + v
resAi = 1. By uniqueness of Bézout’s coefficients in Q[t], U the

inverse of i sresi(P̃ , Q̃) modulo Ai is equal to u
res and µ does not divide any denominator of its

coefficients.
It is now clear that the image by φµ of the RUR polynomials fbTi , fbTi,1, fbTi,t are those

of the RUR of φµ(T̂i). For fbTi,y = −sresi,i−1(P̃ , Q̃)U fbTi,1 rem Ai, since we have shown

that φµ(Sresi(P̃ , Q̃)) = Sresi(φµ(P̃ ), φµ(Q̃)), it is sufficient to show that φµ(U) is the inverse

of φµ(i sresi(P̃ , Q̃)) modulo φµ(Ai). As shown above, φµ(U) is well defined and the relation

φµ( u
res)φµ(i sresi(P̃ , Q̃)) +φµ( v

res)φµ(Ai) = 1 implies that it is the inverse of φµ(i sresi(P̃ , Q̃)) mod-
ulo φµ(Ai).

Lemma 40. Let {fI , fI,1, fI,t, fI,y} be the RUR6 of an ideal I in Q[t, y] associated to the separating
linear form (t, y) 7→ t. Let J in Q[x, y] be the image of I through the mapping (t, y) 7→ (x = t−ay, y).
The linear form (x, y) 7→ x+ ay is separating for J and its associated RUR is given by

fJ,a = fI , fJ,a,1 = fI,1, fJ,a,x = fI,t − a fI,y, fJ,a,y = fI,y.

Proof. By Definition 32, the RURs of I and J are defined by

fI(t) =
∏

σ2V (I)

(t− t(σ))µJ (σ) fI,v(t) =
∑

σ2V (I)

µI(σ)v(σ)
∏

ς2V (I),ς 6=σ

(t− t(ς))

for v ∈ {1, t, y},

fJ,a(t) =
∏

σ02V (J)

(t− x(σ0)− ay(σ0))µJ (σ0) fJ,a,v(t) =
∑

σ02V (J)

µJ(σ0)v(σ0)
∏

ς02V (J),ς0 6=σ0

(t− x(ς 0)− ay(ς 0))

for v ∈ {1, x, y}.

The change of coordinates (t, y) 7→ (x = t − ay, y) induces an affine transformation of the
solutions that preserves their multiplicities, such that, for every solution σ of I, there exists a unique
solution σ′ of J with the same multiplicity and satisfying x(σ′) = t(σ) − ay(σ) and y(σ′) = y(σ).
This directly implies all four equalities of the lemma.

We finally prove the correctness and analyze the complexity of Algorithm 6 in the following two
propositions.

Proposition 41 (Correctness of Algorithm 6). Algorithm 6 computes a RUR decomposition of
{P,Q} of total bitsize Õ(d4 + d3τ).

Proof. The correctness of Line 1 follows directly from Theorem 26. In particular, the sheared
polynomials P̃ and Q̃ are coprime and their leading coefficients with respect to y are also coprime.
In Line 3, Algorithm 1 can thus be applied to compute the ideals Ti. By Lemma 37, T̂i is the
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radical ideal of Ti and, since both ideals have the same (distinct) solutions, the set of solutions of
{P̃ , Q̃} is the disjoint union of the sets of solutions of all T̂i, by Lemma 10.

In Line 4, the upper bound K can be computed according Proposition 35 and the subsequent
discussion.

In Line 8, the RUR of φµ(T̂i) can be computed using the formulas of Lemma 38 (which applies

by Lemma 39). Moreover, by Lemma 39, the RUR of φµ(T̂i) is the reduction modulo µ of the RUR

of T̂i. Thus, in Line 9, by the Chinese Remainder Theorem, RURΠL
i is the reduction modulo ΠL

of the RUR of T̂i.
Finally, in Line 10, we use a rational number reconstruction [vzGG13, Section 5.10] with pa-

rameter 2M with M = 2K : for any coefficient c of RURΠL
i in Z/ΠLZ a rational number r

t with r, t

in Z is computed such that gcd(r, t) = 1, gcd(t,ΠL) = 1, rt−1 = c mod ΠL, |r| < 2M , 0 < t 6 ΠL
2M .

According to [vzGG13, Theorem 5.26 (iv)], there exists at most one solution such that |r| < M . On
the other hand, RURQ

i , the RUR of T̂i computed in Q defines such a solution for each coefficient.

Indeed, let r̃/t̃ be the coefficient in RURQ
i corresponding to c, with gcd(r̃, t̃) = 1 and t̃ > 0. By def-

inition, M is larger than |r̃| and t̃. In Line 4, ΠL is defined such that ΠL > 2M2 (indeed, ΠL is the
product of 2K primes and with K > 1 at least one is larger than 4 thus ΠL > 22K+1 = 2M2), thus
0 < t̃ < M < ΠL

2M . On the other hand, we prove in Lemma 39 that, modulo a prime µ > i that does

not divide Π, the reduction of RURQ
i is well defined, thus gcd(t̃,ΠL) = 1. Finally, since, as shown

above, RURΠL
i is the reduction modulo ΠL of RURQ

i , the RUR of T̂i, we have that c = φΠL(r̃/t̃),

that is r̃t̃−1 = c mod ΠL. The unique solution of the rational reconstruction of RURΠL
i is thus

well defined and equal to the RUR of T̂i in Q.
At the end of Line 10, we have thus computed the sequence of RURs of T̂i associated to the

separating form (t, y) 7→ t, for all i ∈ I. This is a RUR decomposition of 〈P̃ , Q̃〉 since as shown
above, the set of solutions of {P̃ , Q̃} is the disjoint union of the sets of solutions of all T̂i and since
〈P̃ , Q̃〉 ⊆ Ti ⊆ T̂i by Lemma 10.

By definition of P̃ and Q̃, the images of these RURs through the mapping (t, y) 7→ (x =
t− ay, y) yield a RUR decomposition of 〈P,Q〉 associated to the form (x, y) 7→ x+ ay. This RUR
decomposition is computed in Line 11 using the formulas of Lemma 40.

Finally, the total bitsize of Õ(d4 +d3τ) of all the coefficients of this RUR decomposition follows
from Corollary 36 since the bitsize of a is in O(log d) by Theorem 26.

Proposition 42. Algorithm 6 computes a RUR decomposition of {P,Q} with ÕB(d6 + d5τ) bit
operations in the worst case.

Proof. The bit complexity of Line 1 is ÕB(d6 + d5τ) by Theorem 26. In Line 2, since a has bitsize
in O(log d), the sheared polynomials P̃ and Q̃ can be computed in bit complexity ÕB(d4 +d3τ) and
their maximum degrees d̃ and bitsizes τ̃ are in O(d) and Õ(d+ τ), respectively (see e.g. [BLPR15,
Lemma 7]).

In Lines 3 and 4, the bit complexities of Algorithms 1 and 2 applied on {P̃ , Q̃} are in ÕB(d̃6+d̃5τ̃)
by Proposition 16. In Line 4, computing K has bit complexity ÕB(log(d̃τ̃)) (since the constants C
and k are known according to the discussion following Proposition 35). Still in Line 4, computing
L can be done by (i) computing the first 2K + dlog Πe primes larger than d̃, then (ii) reducing
Π modulo these primes using a remainder tree [MB74] and (iii) keeping the first 2K primes that
do not divide Π (there exists at least 2K primes that do not divide Π since the number of primes
that divide Π is smaller than dlog Πe). The bit complexity of computing the r first prime numbers
is in ÕB(r) and their maximum is in Õ(r) [vzGG13, Theorem 18.10]. Hence, since Π has bitsize
Õ(d̃4 + d̃3τ̃) by Proposition 16, phase (i) has bit complexity Õ(d̃4 + d̃3τ̃), every prime has bitsize
O(log(d̃τ̃)) and their product has bitsize Õ(d̃4+d̃3τ̃). Phase (ii) can be computed in a bit complexity
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that is soft linear in the total bitsize of the input [MB74, Theorem 1], hence in Õ(d̃4 + d̃3τ̃) bit
operations. Therefore, the bit complexity of Lines 3 and 4 is Õ(d̃4 + d̃3τ̃).

In Lines 5 and 6, the cardinality of I is O(d̃) (see Algorithm 1) and the cardinality of L is
2K = Õ(d̃2 + d̃τ̃).

In Line 7, every subresultant of P̃ and Q̃ (including the resultant) has degree O(d̃2) in t and its
coefficients have bitsize Õ(d̃τ̃) by Lemma 3. Furthermore, Ai is factor of Res(P̃ , Q̃) by construction,
hence the bitsize of its coefficients is in Õ(d̃2 + d̃τ̃) by Mignotte’s lemma (see e.g. [BPR06, Corollary
10.12]). Hence, in Line 7, Ai, sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃) have degree O(d̃2) and coefficients of

bitsize Õ(d̃2 + d̃τ̃). For every i, the reductions of each of these coefficients modulo the Õ(d̃2 + d̃τ̃)
primes µ (of bitsize O(log(dτ))) in L can be done, using again a remainder tree, in bit complexity
ÕB(d̃2 + d̃τ̃). The reductions of all O(d̃2) coefficients for all i ∈ I and all µ ∈ L can thus be done
in bit complexity ÕB(d̃5 + d̃4τ̃).

In Line 8, for every i and µ, we compute RURµ
i using the formulas of Lemma 38 where the input

polynomials are A = φµ(Ai), B1 = φµ(sresi(P̃ , Q̃)) and B0 = φµ(sresi,i−1(P̃ , Q̃)) in Fµ[t]. Following
these formulas, computing RURµ

i can be done with O(1) additions, multiplication and inverse
computations in Fµ[t]/〈A〉 once B0 and B1 are reduced in Fµ[t]/〈A〉. These reductions amount
to computing the remainders of the divisions of B0 and B1 by A, whose arithmetic complexity
in Fµ is softly linear in their degrees O(d̃2) [vzGG13, Theorem 9.6]. Furthermore, the arithmetic
complexity in Fµ of every operation in Fµ[t]/〈A〉 is softly linear in the degree O(d̃2) of A [vzGG13,

Corollary 11.11]. Summing over all i ∈ I and all µ ∈ L, the Õ(d̃3 + d̃2τ̃) RURµ
i can be computed

with Õ(d̃5 + d̃4τ̃) arithmetic operations in Fµ∈L. Finally, since every µ ∈ L has bitsize O(log(d̃τ̃)),

the total bit complexity of Line 8 is ÕB(d̃5 + d̃4τ̃).
In Line 9, for any given i, the complexity of lifting {RURµ

i }µ∈L to RURΠL
i in Z/ΠLZ is the

complexity of lifting its O(d2) coefficients. Every coefficient reconstruction in Z/ΠLZ can be done
using the Chinese Remainder Algorithm with ÕB(log ΠL) = ÕB(d̃2 + d̃τ̃) bit operations [vzGG13,
Theorem 10.25]. Summing over all coefficients and all i, the total bit complexity of Line 9 is thus
in ÕB(d̃5 + d̃4τ̃).

In Line 10, for any given i, the complexity of the rational reconstruction of RURQ
i from RURΠL

i

is the complexity of the rational reconstructions with parameter 2M = 2K+1 of the O(d2) rationals
coefficients of RURQ

i from those of RURΠL
i (see the proof of Proposition 41 for details). The rational

reconstruction r/t ∈ Q of c ∈ Z/ΠLZ with parameter 2M is the cost of computing the first line of
the Extended Euclidean Algorithm (EEA) for ΠL and c such that the remainder is smaller than
2M [vzGG13, Theorem 5.26]. Using binary search, we can compute at most a logarithmic number
of lines of the EEA. Since the total number of lines of the EEA and the bit complexity of computing
one line of the EEA are (at most) softly linear in the bitsize of the input [vzGG13, Corollary 11.9],
the rational reconstruction of one rational has bit complexity ÕB(d̃2 + d̃τ̃). Summing over all
coefficients and all i, the total bit complexity of Line 10 is thus in ÕB(d̃5 + d̃4τ̃).

In Line 11, for every i, the image of RURQ
i through the reverse shearing can be computed

with O(d̃2) arithmetic operations on integers of bitsize Õ(d̃2 + d̃τ̃) by Lemma 40. Hence, the bit
complexity of Line 11 is trivially ÕB(d̃5 + d̃4τ̃). (Note that in Lines 9, 10 and 11 an amortized
analysis yields a complexity of ÕB(d̃4 + d̃3τ̃) by observing that the degrees d̃i ∈ O(d2) of the first
polynomials of RURµ

i sum up, over all i, to at most d̃2.)

Finally, since d̃ and τ̃ are in O(d) and Õ(d + τ), the total bit complexity of Algorithm 6 is
in ÕB(d̃6 + d̃5τ̃).

Propositions 41 and 42 directly yield the following theorem.
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Algorithm 6’ RUR decomposition – Las Vegas version

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ .
Output: RUR decomposition of {P,Q} of total bitsize Õ(d4 + d3τ).

1: Compute a separating form x+ay for {P,Q} with a ∈ Z of bitsize O(log d) such that the leading
coefficients of P (t− ay, y) and Q(t− ay, y) with respect to y are coprime (see Theorem 27).

2: Compute P̃ (t, y) = P (t− ay, y) and Q̃(t, y) = Q(t− ay, y), and let d̃ and τ̃ be their maximum
degree and bitsize.

3: Compute the coefficients sresi(P̃ , Q̃)(t) of subresultant sequence of P̃ and Q̃ with respect to y
and, for i such that sresi(P̃ , Q̃) 6≡ 0, compute sresi,i−1(P̃ , Q̃)(t) (see Corollary 50).

Compute the polynomials Ai(t), i ∈ I, of the triangular decomposition of P̃ and Q̃ following
Algorithm 1.
Let T̂i = 〈Ai, i sresi(P̃ , Q̃) y + sresi,i−1(P̃ , Q̃)〉, i ∈ I, be the radicals of the ideals output by

Algorithm 1(P̃ , Q̃) (see Lemma 37 and note that, in Algorithm 1, sresi(P̃ , Q̃) 6≡ 0 for i ∈ I).
4: Let K = dC(d̃2 + d̃τ̃) logk(d̃τ̃)e be an integer that bounds from above the bitsize of the co-

efficients of the RURs of the systems T̂i (see Proposition 35 and subsequent discussion). Let
U = 8K and L = ∅.

5: repeat
6: Double U , choose uniformly at random 8K primes in [1, U ], and let P be the resulting set.
7: For all i ∈ I, µ ∈ P, reduce Ai and i sresi(P̃ , Q̃) modulo µ (using remainder trees).
8: Add in L the µ ∈ P such that, ∀i, φµ(Ai) is squarefree and coprime with φµ(i sresi(P̃ , Q̃)).
9: until L contains at least 2K distinct primes.

10: return The image of RURQ
i , the RUR of T̂i, i ∈ I, through the reverse shearing from (t, y) to

(x, y), as in Algorithm 6, Lines 5-11.

Theorem 43. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . Algorithm 6
computes, with ÕB(d6 + d5τ) bit operations in the worst case, a RUR decomposition of {P,Q} of
total bitsize Õ(d4 + d3τ).

6.3 Las Vegas algorithm

We show here that the algorithm presented above for computing a RUR decomposition can
easily be transformed into an efficient Las Vegas algorithm. We prove here the following.

Theorem 44. Let P,Q in Z[x, y] be of total degree at most d and maximum bitsize τ . Algorithm 6’
computes, with ÕB(d5 + d4τ) bit operations on average, a RUR decomposition of {P,Q} of total
bitsize Õ(d4 + d3τ).

Algorithm 6’, our Las Vegas version of Algorithm 6, is obtained from the latter with only three
modifications. First, in Line 2, we use the Las Vegas version of our algorithm for computing a
separating linear form for {P,Q}, described in Section 5.5.

Second, in Line 3, we modify the way we compute the radicals T̂i of the ideals Ti output by
Algorithm 1(P̃ , Q̃). We still use the formula T̂i = 〈Ai, i sresi(P̃ , Q̃) y+sresi,i−1(P̃ , Q̃)〉 of Lemma 37
for computing these radical ideals, but instead of computing the Ti with Algorithm 1, we show in
Section 6.3.1 that the subresultant coefficients sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃) can be computed
more efficiently.

Third, we modify the way we compute in Algorithm 6, Line 4, a set L of 2K prime numbers
µ > d̃ that do not divide Π = Algorithm 2(P̃ , Q̃). Here, in Line 9, we weaken the constraints on
these primes and we avoid, in particular, computing Π.
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We prove Theorem 44 by first proving its correctness in Proposition 45 and then its complexity
in Proposition 48.

Proposition 45 (Correctness of Algorithm 6’). Algorithm 6’ computes a RUR decomposition of
{P,Q} of total bitsize Õ(d4 + d3τ).

Proof. As described above, Algorithm 6’ is obtained with only three modifications from Algorithm 6,
whose correctness is proved in Proposition 41. The first two modifications do not jeopardize the
correctness of Algorithm 6’ since we compute the same objects as in Algorithm 6 (in particular,
we use the same formula for T̂i, i ∈ I). However, in the third modification, we weaken the
constraints on the primes of L. In the proof of correctness of Algorithm 6, the constraints on the
primes of L (that µ > d̃ does not divide Π) are only used in Lemma 39. Furthermore, in proof of
Lemma 39, these constraints are only used for proving that φµ(T̂i) = 〈φµ(Ai), φµ(i sresi(P̃ , Q̃)) y+

φµ(sresi,i−1(P̃ , Q̃))〉 satisfies the hypotheses of Lemma 38, that is that φµ(Ai) is squarefree and

coprime with φµ(i sresi(P̃ , Q̃)), which are the constraints on µ we impose in Line 8 of Algorithm 6’.
The correctness of Algorithm 6’ thus follows from that of Algorithm 6.

We now analyse the complexity of Algorithm 6’. A key step of this algorithm is the computation,
in Line 3, of sresi(P̃ , Q̃) and sresi,i−1(P̃ , Q̃), which we postpone to Section 6.3.1. Before proving
Proposition 48, which states the complexity of Algorithm 6’, we prove two lemmas. The first one
bounds the number of primes that are rejected in Line 8 and the second one will be instrumental
for bounding the probability that the loop ends in Line 9.

Lemma 46. There are Õ(d̃5+d̃4τ̃) primes that are unlucky for gcd(Ai, i sresi(P̃ , Q̃)) or gcd(Ai, A
′
i),

for some i. Furthermore, if prime µ is lucky for these two gcds, for some i, then φµ(Ai) is squarefree

and coprime with φµ(i sresi(P̃ , Q̃)).

Proof. By Lemma 7, the unlucky primes for the gcd of two polynomials A and B in Z[t] are
exactly the divisors of their leading coefficients and the divisors of sresd(A,B) where d is the degree
of gcd(A,B). In order to bound the number of unlucky primes, we bound the bitsizes of the relevant
coefficients.

By Lemma 10, Ai divides the resultant Res(P̃ , Q̃). Thus, Ai has degree O(d̃2) and coefficients
of bitsize Õ(d̃2 + d̃τ̃), as shown in the proof of Proposition 42. It follows that the same bounds also
apply to A′i. On the other hand, i sresi(P̃ , Q̃) has degree O(d̃2) and coefficients of bitsize Õ(d̃τ̃),
by Lemma 3. Still by Lemma 3, the coefficients of the subresultant polynomials of any two of these
polynomials have bitsize Õ(d̃2(d̃2 + d̃τ̃)). The number of prime divisors of any such coefficient is
thus also in Õ(d̃4 + d̃3τ̃). Since i varies from 1 to at most d̃ (see Algorithm 1), the number of
unlucky primes is in Õ(d̃5 + d̃4τ̃).

Finally, for any i, both gcd(Ai, i sresi(P̃ , Q̃)) and gcd(Ai, A
′
i) are equal to constants, by Lemma 10.

Furthermore, if µ is lucky for these gcds, these gcds commute with φµ, by Lemma 7. Hence, φµ(Ai)

is squarefree and coprime with φµ(i sresi(P̃ , Q̃)).

Lemma 47. Let n2p be the random variable that represents the number of distinct elements obtained
by choosing uniformly at random 2p elements among n with replacement. If n > 2p > 4, then the
probability that n2p > p is larger than 1

2 .

Proof. Consider one of the
(
n
d

)
sets of d distinct elements among n. Denote it by Sd, denote the

set of p random elements by S and its cardinal by |S|. The probability that S ⊆ Sd, which is the
probability that the p random elements in S are all in Sd is

(
d
n

)p
. On the other hand, Pr(|S| 6 d)
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is less than the sum of all Pr(S ⊆ Sd) for the
(
n
d

)
choices of sets Sd. Hence, Pr(|S| 6 d) <

(
n
d

) (
d
n

)p
and Pr(|S| > d) > 1−

(
n
d

) (
d
n

)p
.

Setting p = 2 d and using Stirling’s approximation
√

2π nn+1/2e−n 6 n! 6 e nn+1/2e−n, we
obtain that (

n

d

)(
d

n

)2d

=
n!

d!(n− d)!

d2d

n2d
(3)

6
e nn+ 1

2 e−n

2πdd+ 1
2 e−d(n− d)n−d+ 1

2 e−(n−d)

d2d

n2d
=

e

2π

nn+ 1
2
−2ddd−

1
2

(n− d)n−d+ 1
2

. (4)

Replacing n by kd with k > 2, we get

(
n

d

)(
d

n

)2d

6
e

2π

(
k
k−1

)(k−2)d+ 1
2

d
1
2 (k − 1)d

(5)

and the derivative with respect to d of the right-hand side of the inequality is

e

2π

(
k
k−1

)(k−2)d+ 1
2

d
3
2 (k − 1)d

(
−1 + 2d ln

kk−2

(k − 1)k−1

)
. (6)

It is straightforward to prove that the function k 7→ kk−2

(k−1)k−1 is decreasing for k > 2, hence

ln kk−2

(k−1)k−1 is negative for k > 2 and (6) is negative for k > 2. It follows that, for d > 2, the right-

hand side of (5) is smaller than e
2π

( k
k−1)

2k− 7
2

√
2(k−1)2

. It is straightforward to show that this is decreasing

for k > 2 and it is thus less than e
2π

√
2√
2

= e
2π <

1
2 . Therefore, for n > 2d and d > 2,

(
n
d

) (
d
n

)2d
< 1

2

and thus Pr(|S| > d) > 1
2 .

Proposition 48. Algorithm 6’ computes a RUR decomposition of {P,Q} with ÕB(d5 + d4τ) bit
operations on average.

Proof. The expected bit complexity of Line 1 is ÕB(d5+d4τ) by Theorem 27 and, as in Algorithm 6,
the (worst-case) bit complexity of Line 2 is ÕB(d4 + d3τ) and P̃ and Q̃ have maximum degree
d̃ ∈ O(d) and maximum bitsize τ̃ ∈ Õ(d+ τ) (see the proof of Proposition 42).

In Line 3, the sequence of coefficients sresi(P̃ , Q̃) and, for those that do not identically vanish,
the coefficients sresi,i−1(P̃ , Q̃) can be computed in ÕB(d̃4τ̃) bit operations by Corollary 50. Hence,

the sequence of polynomials Ai can be computed in ÕB(d̃5 + d̃4τ̃) bit operations by Remark 17.
We thus get, in Line 3, the sequence of ideals T̂i in ÕB(d̃5 + d̃4τ̃) bit operations.

In Line 4, the complexity of computing K and U is ÕB(log(d̃τ̃)), as in Algorithm 6.
In Line 6, we choose uniformly at random, one at a time, 8K primes in [1, U ]. Some primes

might be chosen more than once and thus the resulting set of primes, P, may be of cardinality
smaller than 8K. The analysis is similar to the one in Proposition 31. A random integer in [1, U ]
can be computed in OB(logU) bit operations. There are at least U

lnU primes in [1, U ] [vzGG13,
Theorem 18.7]. The probability that a randomly chosen integer in [1, U ] is prime is thus at least 1

lnU
and a prime is thus found after at most lnU trials on average. Testing whether an integer in [1, U ]
is prime can be done with a polynomial bit complexity in the bitsize of U , ÕB(log7.5 U) [AKS04].
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The expected bit complexity of computing a prime in Line 6 is thus ÕB(log8.5 U) and the expected
bit complexity of computing 8K ∈ Õ(d̃2 + d̃τ̃) primes in Line 6 is thus in ÕB((d̃2 + d̃τ̃) log8.5 U).

In Line 7, each of the O(d̃) polynomials Ai and i sresi(P̃ , Q̃) have O(d̃2) coefficients of bitsize
Õ(d̃2 + d̃τ̃), as shown in the proof of Lemma 46. Using remainder trees [MB74], the reductions of
one coefficient modulo all the primes in L can be done in a bit complexity that is softly linear in
the maximum bitsize of the coefficient and the product of the primes, that is in ÕB((d̃2 + d̃τ̃) +
(d̃2 + d̃τ̃) logU). Hence, the bit complexity of Line 7 is ÕB((d̃5 + d̃4τ̃) logU).

In Line 8, for any i, gcd(φµ(Ai), φµ(i sresi(P̃ , Q̃))) and gcd(φµ(Ai), φµ(A′i)) can be computed in

Fµ[t] in ÕB(d̃2 logU) bit operations, by Lemma 4, since the polynomials have degree O(d̃2) and µ

has bitsize O(logU). Hence, the bit complexity of Line 8 is ÕB((d̃5 + d̃4τ̃) logU) since i 6 d̃ and
the number of primes in P is in Õ(d̃2 + d̃τ̃).

We have shown that the expected bit complexity of one iteration of the loop in Lines 5 to 9 is in
ÕB((d̃5 + d̃4τ̃) log9 U). At the end of the j-th iteration of the loop, U = 2j · 8K, thus the expected
bit complexity of the j-th iteration of the loop is in ÕB((d̃5 + d̃4τ̃)j9).

We now bound the total expected bit complexity of all the iterations of the loop in Lines 5 to
9. By Lemma 46, the primes that are rejected in Line 8 are unlucky for some gcd(Ai, i sresi(P̃ , Q̃))
or gcd(Ai, A

′
i) and there are less than Γ = C ′(d̃5 + d̃4τ̃) logk

′
(d̃τ̃) such unlucky primes for some

constants C ′ and k′. We refer in the rest of the proof to these unlucky primes simply as unlucky
primes. It follows that the probability that the loop ends in Line 9 is larger than the probability
that P contains at least 2K distinct lucky primes. Furthermore,

Pr(P contains 2K lucky primes) > Pr(P contains 2K lucky primes and 4K primes)

> Pr(P contains 4K primes)

· Pr(P contains 2K lucky primes | P contains 4K primes).

As seen above, [1, U ] contains at least U
lnU primes. Thus, when U

lnU > 8K, P contains at least
4K distinct primes with probability at least 1

2 , by Lemma 47. On the other hand, the primes in
P are chosen uniformly at random among at least U

lnU primes, thus if U
lnU > 2Γ, the primes in P

are lucky with probability at least 1
2 . Thus, if U

lnU > 2Γ, given that P contains at least 4K primes,
the probability that P contains at least 2K lucky primes is at least 1

2 . We thus have proved that,
if U

lnU > max(8K, 2Γ), the loop ends in Line 9 with probability at least 1
4 .

There are O(log(d̃τ̃)) loop iterations that are performed while U
lnU is smaller than max(8K, 2Γ).

Indeed, logU ∈ O(log(d̃τ̃)) while U
lnU < max(8K, 2Γ) ∈ Õ(d̃5 + d̃4τ̃) since

√
U < U

lnU . The overall

bit complexity of these iterations is thus in ÕB(d̃5+d̃4τ̃). It follows that the expected bit complexity
of the entire loop is in ÕB(d̃5 + d̃4τ̃), by Lemma 30.

Summing up the complexities of all lines and since d̃ ∈ Õ(d) and τ̃ ∈ Õ(d+ τ), we obtain that
the expected bit complexity of the algorithm is ÕB(d5 + d4τ).

6.3.1 Computation of subresultant coefficients

A key step of Algorithm 6’ is the computation of the coefficients sresi(P̃ , Q̃) and the computation
of sresi,i−1(P̃ , Q̃) when sresi(P̃ , Q̃) 6≡ 0. We show that all these coefficients can be computed in

ÕB(d4τ) bit complexity in Theorem 49 and Corollary 50. This result generalizes [vzGG13, Corollary
11.18] to the case where one wants to compute the k terms of greater degrees in the sequence of
remainders in the Euclidean algorithm.

Given two polynomials P,Q ∈ F[y] such that deg(P ) > deg(Q), we denote by rj and qj the
polynomials appearing in the Euclidean algorithm such that r0 = P, r1 = Q and ri−1 = qiri + ri+1.
For any polynomial P ∈ F[y] and any integer n, we denote by P|n the coefficient of its term of
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degree deg(P ) − n, if any, and 0 otherwise. It follows that ri|j denotes the coefficient of the term
of ri of degree deg(ri)− j.

Theorem 49. Let k be an integer and P,Q ∈ F[y] be two polynomials with d = deg(P ) > deg(Q).
We can compute, for all 0 6 j 6 k and for all the remainders ri appearing in the Euclidean
algorithm, the coefficients ri|j in O(k2d + M(d) log d) arithmetic operations, where M(d) is the
complexity of the multiplication of degree d polynomials.

Proof. First, all the quotients qi appearing in the remainder sequence can be computed in
O(M(d) log d) arithmetic operations ([vzGG13, Corollary 11.9]). Then, for k = 0, we have di-
rectly the coefficients r0|0 and r1|0, and from the formula

ri−1 = qiri + ri+1 such that deg(ri+1) < deg(ri)

we deduce that ri|0 =
ri−1|0
qi|0

. Thus we can compute by recurrence all the ri|0 with less than d

divisions.
Assume now that we have computed the coefficients ri|j for all i and 0 6 j 6 k − 1. We show

that in this case, we can compute the coefficients ri|k, for all i, in O(kd) arithmetic operations.
From the recurrence formula in the Euclidean algorithm, we can derive the following equality:

ri−1|k = ri|kqi|0 + · · ·+ ri|0qi|k + ri+1|l

where l = k + deg(ri+1)− deg(ri−1) < k. Thus,

ri|k =
ri−1|k − ri|k−1qi|1 − · · · − ri|0qi|k − ri+1|l

qi|0
,

which yields ri|k from the values of ri−1|k, ri|j , ri+1|l, with j, l 6 k−1, in 2k+2 arithmetic operations.
Thus, given the coefficients ri|j for all i and 0 6 j 6 k − 1, we can compute the ri|k, for all i, in
O(kd) arithmetic operations, which trivially concludes the proof.

We can now state the corollary that we use in the analysis of Algorithm 6’.

Corollary 50. Let P,Q ∈ Z[x, y] be of degree at most d with coefficients of bitsize at most τ . We
can compute in ÕB(d4τ) bit operations in the worst case the sequence of all subresultant coefficients
sresi(P,Q) and, for i such that sresi(P,Q) 6≡ 0, the coefficients sresi,i−1(P,Q).

Proof. We compute the subresultant coefficients using multimodular and interpolation techniques.
First, we select pairs (µ, k) with µ prime and k a value in Fµ satisfying the specialization property of
the subresultants. Second, we compute the subresultant coefficients sresi(P,Q) and sresi,i−1(P,Q)
evaluated at x = k in Fµ. Third, we interpolate the results in Fµ[x] and apply the Chinese remainder
algorithm to recover the final results in Z[x].

To use the specialization property of subresultants, the leading coefficients of P and Q seen
as polynomials in y, Lcy(P ) and Lcy(Q), must not vanish when evaluated at x = k in Fµ. The
coefficients of P and Q being of bitsize at most τ , there are at most 2τ primes µ such that Lcy(P )
or Lcy(Q) identically vanish modulo µ. When both do not identically vanish modulo µ, they are
polynomials of degree at most d, hence there are at most 2d values in Fµ at which one of them
vanishes. In Fµ, we will compute the subresultant coefficients via evaluation and interpolation.
The number of evaluation values must be larger than the degrees of the subresultant coefficients
sresi(P,Q) and sresi,i−1(P,Q), which are at most 2d2. It is sufficient to consider primes µ larger
than 2d2 + 2d because, then, there are at least 2d2 values in Fµ such that none of Lcy(P ) and
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Lcy(Q) vanishes modulo µ. For lifting the subresultants using the Chinese remainder algorithm,
the sum of the bitsizes of the primes must be larger than the bitsizes of the subresultants coefficients
sresi(P,Q) and sresi,i−1(P,Q), which are at most N = 2d(τ + 2 log d) [BPR06, Proposition 8.46].

According to [vzGG13, Theorem 18.10], we can compute the M first primes µj ∈ Z of bitsizes τj
in ÕB(M) bit operations and their maximum bitsize is in O(logM). Among this set, the constraint
for the specialization property of subresultants discards at most 2τ primes, and the constraint for the
interpolation discards at most the first 2d2+2d primes. ChoosingM = N+2d2+2d+2τ = O(d2+dτ)
is thus sufficient to select a set of N primes satisfying these constraints. In addition, the sum of
the bitsizes of these N primes is larger than N and in O(N logM) = Õ(dτ).

We now analyze the complexity of selecting N primes µj satisfying the above constraints and
specializing P and Q at 2d2 values x = k in Fµj [y]. The reduction of one coefficient of P and Q
modulo all the N + 2τ primes larger than 2d2 + 2d can be computed via a remainder tree in a
bit complexity that is soft linear in the total bitsize of the input [MB74, Theorem 1], which is in
Õ(dτ). The reductions of all the O(d2) coefficients of P and Q can hence be done in ÕB(d3τ) bit
operations. We select N primes µj such that Lcy(P ) and Lcy(Q) do not identically vanish modulo
µj . For a given prime µj , the evaluation of the reduction of P (x, y) in Fµj [x, y] at 2d2 + 2d values
x = k` ∈ Fµj involves O(d2) evaluations of O(d) polynomials of degree O(d) in Fµj [x]. For a given

prime µj , this can be done using multi-evaluation in Õ(d3) arithmetic operations in Fµj [vzGG13,

Corollary 10.8] and thus with ÕB(d3τj) = ÕB(d3 logM) = ÕB(d3 log(dτ)) bit operations. For all

N primes, the total bit complexity of these evaluations is thus in ÕB(Nd3 log(dτ)) = ÕB(d4τ).
For each prime µj , we select 2d2 values k`, among the 2d2 + 2d values considered in Fµj , at which
neither Lcy(P ) nor Lcy(Q) vanishes when evaluated at x = k` in Fµj .

In this paragraph, all polynomials are considered evaluated at x = k and in Fµj [y] and, to

clarify the presentation, any polynomial K̃ refers to K(k, y) mod µj . Then computing, for all

i, sresi(P̃ , Q̃) can be done in a total of ÕB(dτj) bit operations [vzGG13, Corollary 11.18]. If

sresi(P̃ , Q̃) 6= 0, let r be the remainder of degree i appearing in the Euclidean algorithm of P̃
and Q̃. We know that r and Sresi(P̃ , Q̃) are equal up to a constant [BPR06, Corollary 8.34],

thus Sresi(P̃ , Q̃) =
Lcy(Sresi( eP , eQ))

Lcy(r) r = sresi( eP , eQ)
r|0

r, which directly implies that sresi,i−1(P̃ , Q̃) =

sresi( eP , eQ)
r|0

r|1. Using Theorem 49, we can compute r|0 and r|1 in Fµj [y] in ÕB(dτj) bit operations,

which yields sresi,i−1(P̃ , Q̃).

Thus, for a given µj , computing the two first subresultant coefficients sresi(P̃ , Q̃) and

sresi,i−1(P̃ , Q̃) for 2d2 values of k in Fµj costs ÕB(d3τj) bit operations. Then using fast interpola-
tion [vzGG13, Corollary 10.12], we can recover sresi(P,Q) mod µj and sresi,i−1(P,Q) mod µj in

ÕB(d3τj) = ÕB(d3 log(dτ)) bit operations, which sums up to ÕB(d4τ) for all N = Õ(dτ) values of
µj . Finally, recovering all the O(d3) coefficients of sresi(P,Q) and sresi,i−1(P,Q) (whose bitsizes

are smaller than N) can be done with ÕB(d3N logM) = ÕB(d4τ) bit operations with the Chinese
remainder algorithm [vzGG13, Theorem 10.25].

7 Computing isolating boxes from a RUR decomposition

By definition, the RUR of an ideal I defines a mapping between the roots of a univariate poly-
nomial and the solutions of I. Based on this mapping, Algorithm 7 computes isolating boxes
using univariate isolation and approximate polynomial evaluation. Section 7.1 recalls or proves
several complexity results on isolation and evaluation of univariate polynomials. In Section 7.2,
the isolation algorithm using fast approximate multipoint evaluation is presented and analyzed in
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Theorem 59.

7.1 Preliminaries

We start with some basic definitions. In addition, we recall some bounds on univariate polynomial
roots and their separation (for a single root and also amortized over all the roots), the complexity
of isolating the roots of a univariate polynomial, and elementary results on approximate polynomial
evaluation.

For an arbitrary complex value x, we define M(x) = max(1, |x|). In addition, let L be an
arbitrary positive integer. Then, we define x̃ ∈ Q+iQ to be an absolute dyadic L-bit approximation
of x (or just L-bit approximation for short) if x̃ is of the form x̃ = (m< + im=) · 2−L−2, with
m<,m= ∈ Z, and |x − x̃| < 2−L. Notice that an L-bit approximation x̃ = (m< + im=) · 2−L−2 of
some point x ∈ C naturally defines a box

B(x̃) =
[m< − 4,m< + 4]

2L+2
+ i · [m= − 4,m= + 4]

2L+2
⊂ C (7)

of width 2−L+1 in C that contains x.
For a complex root γ of a polynomial f ∈ Z[x] and an arbitrary positive integer L, we say that a

connected region D in C (typically, we consider a disk or a box) is isolating for γ (or that D isolates
γ) if it contains γ but no other root of f . We define the separation of γ (with respect to f), denoted
sep(γ, f), to be the minimal distance between γ and any root γ′ of f , with γ′ 6= γ. The separation
of f is defined as sep(f) = minγ:f(γ)=0 sep(γ, f). The same notions for a zero-dimensional ideal of
Z[x, y] are also naturally defined.

We now recall some well-known facts about the separations and the magnitudes of the complex
roots of a univariate polynomial f of degree d with integer coefficients of bitsize at most τ .

Lemma 51 ([Yap00, §6.2 Lemma 6.5)]). For any root γ ∈ C of f , M(γ) = 2O(τ).

Lemma 52 ([SY11]). If f is squarefree,
∏
{γ root of f}min(1, sep(γ, f)) = 2−

eO(dτ).

Lemma 53 ([Yap00, Lemma 6.34]). Let f and g be coprime polynomials of degree at most d with
integer coefficients of bitsize at most τ . Then, for any root γ ∈ C of f , |g(γ)| = 2−O(d(τ+log d)).

Lemma 54 ([MSW15, Theorem 5]). We can compute isolating disks Di with radius ri <
sep(γi,f)

64d

for all complex roots γi of f using ÕB(d3 + d2τ) bit operations. For an arbitrary positive integer
L, we can compute corresponding L-bit approximations γ̃i for all roots using ÕB(d3 + d2τ + dL) bit
operations.

Proof. The first part follows directly from [MSW15, Theorem 5]. In addition, [MSW15, Theorem
5] also states that we can further refine the disks Di such that each of them has radius less than
2−L−2 using ÕB(d3 + d2τ + dL) bit operations. In addition, the centers of the disks are computed
in dyadic form. We can thus round the center of each disk Di to an absolute precision of size
2−L−2 to obtain an L-bit approximation γ̃i of each root γi of f . The bit complexity of rounding
all the disks’ centers is linear in the total bitsize of the dyadic coordinates, which is bounded by
ÕB(d3 + d2τ + dL), the complexity of the algorithm that computes them.

We further remark that there also exist dedicated real root isolation and refinement meth-
ods [SM16, KS15a] that compute isolating intervals of size 2−L for all real roots of f with a number
of bit operations that is comparable to the bound stated in Lemma 54. When computing the solu-
tions of a bivariate system (see Section 7.2), the choice of an efficient univariate solver is critical,
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and thus we propose to use a dedicated method for real root finding if only the real solutions of
the bivariate system are asked for.

Now, suppose that we want to approximately evaluate a polynomial g ∈ Z[x] of degree dg with
integer coefficients of bitsize τg at all roots of f . More precisely, for a given positive integer L, we
are aiming for L-bit approximations ỹi of the values yi = g(γi), where γ1, . . . , γd denote the roots
of f . For this, we use fast approximate multipoint evaluation.

Lemma 55 ([KS15b, Theorem 22]). Let x1, . . . , xdg ∈ C be such that, for each of them, an L′-bit
approximation can be accessed in OB(L′) bit operations. For any positive integer L, we can compute
L-bit approximations of all values yi = g(xi) using ÕB(dg(L+τg+dgΓ)) bit operations, where Γ > 1
is an upper bound on the maximum of all values logM(xi). For the computation, we need L′-bit
approximations of all points xi, where L′ = L+ Õ(τg + dgΓ).

We remark that the multipoint evaluation algorithm from [KS15b] uses certified interval arith-
metic based on fixed-point computations. It adaptively increases the (absolute) working precision
L′ during the computation. That is, in each iteration, it asks for L′-bit approximations x̃i of the
points xi, and if it does not succeed to compute L-bit approximations ỹi of the values yi, it doubles
the precision and restarts. Hence, the algorithm might also succeed with a smaller precision than
the precision predicted in the worst case.

Lemma 56. Let f ∈ Z[x] be a polynomial of degree d with integer coefficients of bitsize at most
τ and let γ1, . . . , γd denote the roots of f . Let g ∈ Z[x] be a polynomial of degree dg = O(d) with
integer coefficients of bitsize at most τg. Then, for any given positive integer L, we can compute

L-bit approximations of all values g(γi) using a number of bit operations bounded by ÕB(d3 +d2τ +
d (L+ τg)).

Proof. Applying Lemma 55 dd/dge times, L-bit approximations of d values g(xi) can be computed

with ÕB(dd/dgedg(L+ τg + dgΓ)) bit operations assuming that we can access each L′-bit approxi-
mation of xi in OB(L′) bit operations. Moreover, as mentioned above, the L-bit approximations of
the g(xi) are computed iteratively by doubling L′ at every iteration and the algorithm stops with
L′ = L+ Õ(τg + dgΓ). Thus, the number of iterations is in O(log(L+ τg + dgΓ)).

By Lemma 54, L′-bit approximations of the d roots of f can be computed in ÕB(d3 +d2τ +dL′)
bit operations. Thus, these approximations can be computed for all iterations in ÕB(d3 + d2τ +
d(L+ τg + dgΓ)) bit operations.

The total complexity is thus in ÕB(dd/dgedg(L+ τg + dgΓ)) + ÕB(d3 + d2τ + d(L+ τg + dgΓ)).
The result follows since dg = O(d) and since Γ = O(τ) by Lemma 51.

We can further extend the above result to the evaluation of a fraction G = g1
g2

at the roots γi
of f , where g1 and g2 are both polynomials of degree bounded by O(d) with integer coefficients of
bitsize less than τG, and g2 is coprime with f .

Lemma 57. Let G = g1
g2

, with g1, g2 ∈ Z[x] polynomials of degree at most dG = O(d) with co-
efficients of bitsize at most τG. Suppose that g2 does not vanish at any of the roots γ1, . . . , γd
of f . Then, for any given positive integer L, we can compute L-bit approximations of all values
yi = G(γi) using a number of bit operations bounded by ÕB(d3 + d2(τ + τG) + dL).

Proof. According to Lemma 53, it holds that |g2(γj)| = 2−
eO(d(τ+τG)) for all j. Now, in a first step,

we compute L′-approximations ỹ2,j of all y2,j = g2(γj) for L′ = 1, 2, 4, . . . until |ỹ2,j | > 2−L
′+1, and

thus 2|ỹ2,j | > |y2,j | > |ỹ2,j |/2. Notice that we succeed in doing so for an L′ = L′0 in Õ(d(τ + τG)).
Then, for an L′ > L′0, we can compute L′-approximations ỹ1,j = 2−L

′−2 · (m1,j + i · n1,j) and ỹ2,j =

42



2−L
′−2 ·(m2,j+i·n2,j) of the values y1,j = g1(γj) and y2,j , respectively, with m1,j ,m2,j , n1,j , n2,j ∈ Z.

Notice that each of the latter integers has bitsize Õ(d(τ + τG)) as |g1(γj)|, |g2(γj)| 6 (dG + 1) · 2τG ·
M(γj)

dG 6 2O(log d+τG+dτ) for all j. Hence, we conclude that∣∣∣∣ ỹ1,j

ỹ2,j
−G(xj)

∣∣∣∣ =
|ỹ1,j · y2,j − y1,j · ỹ2,j |

|y2,j · ỹ2,j |
6
|ỹ1,j − y1,j | · |y2,j |+ |y1,j | · |y2,j − ỹ2,j |

|y2,j · ỹ2,j |

6 2−L
′ · 4

|ỹ2,j |2
· (dG + 1) · 2τG ·M(γj)

dG = 2−L
′ · 2 eO(d(τ+τG)).

Notice that the above bound on the approximation error is explicit (i.e. computable). Thus, we
can directly estimate the error from the given values L′, |ỹ2,j |, dG, τG, and M(γj). Hence, we

may consider L′ = L′0, L
′
0 + 2, L′0 + 4, . . . until we can guarantee that

∣∣∣ ỹ1;jỹ2;j
−G(xj)

∣∣∣ < 2−L−2. For

this, we need to increase L′ at most O(log(d(τ + τG))) many times, and we succeed for an L′ in

Õ(L+d(τ+τG)). Then, we approximate each fraction
ỹ1;j
ỹ2;j

=
m1;j+i·n1;j

m2;j+i·n2;j
by a corresponding (L+1)-

bit approximation to obtain an L-bit approximation of G(xj). Due to Lemma 56, the total bit

complexity for computing the fractions
ỹ1;j
ỹ2;j

is in ÕB(d3 + d2τ + d (L+ d(τ + τG) + τG)) = ÕB(d3 +

d2τ + d2τG + dL), whereas the total bit complexity for computing the (L+ 1)-bit approximations

of the fractions
ỹ1;j
ỹ2;j

is in ÕB(d2(τ + τG) + dL). Indeed, using fast integer division, computing an

L-bit approximation from a rational has a bit complexity that is softly linear in L and the bitsize
of the rational.

7.2 Isolating boxes

We now give a method for computing disjoint isolating boxes for the solutions σ ∈ C2 of a zero-
dimensional system P = Q = 0, where P,Q ∈ Z[x, y] are coprime polynomials of total degree
at most d with integer coefficients of bitsize at most τ . More specifically, for a given L, we first
compute L-bit approximations8 σ̃i,j of the solutions σi,j = (xi,j , yi,j), 1 6 j 6 di = deg fi, of each
factor RURi = (fi, fi,1, fi,x, fi,y) in the RUR decomposition (RURi)i6d of {P,Q} as computed by
Algorithm 6 or 6’. This is achieved by first computing sufficiently small isolating disks for the roots
γi,j of the univariate polynomial fi ∈ Z[x] in RURi, and then evaluating the fractions

fi;x
fi;1

and
fi;y
fi;1

at the roots γi,j to an absolute error less than 2−L. From the corresponding L-bit approximations
x̃i,j and ỹi,j , we can then derive boxes Bi,j = B(σ̃i,j) = B(x̃i,j) × B(ỹi,j) ⊂ C2 of width 2−L+1

containing all solutions of RURi; see (7) for the definition of B(x̃i,j) and B(ỹi,j). If, for all i and
j, the boxes Bi,j do not overlap, then they are already isolating for the solutions of P = Q = 0.
Otherwise, we have to increase L until the boxes do not overlap. We give details in Algorithm 7.

In order to bound the complexity of the above approach, we first need to derive bounds on the
separations of the solutions σi,j = (xi,j , yi,j) of the factor RURi. In addition, we derive amortized
bounds on the separations of all solutions of the system P = Q = 0.

Lemma 58. Let P,Q ∈ Z[x, y] and RURi = (fi, fi,1, fi,x, fi,y), i ∈ I, be as defined in the input of
Algorithm 7 and let di and τi be the maximum degree and bitsize of the polynomials in RURi. In
addition, let Ii ⊇ I = 〈P,Q〉 be the ideal corresponding to RURi and V (Ii) be the corresponding set
of solutions. Then,

(a)
∑

σ∈V (Ii)
logM(sep(σ, Ii)

−1) = Õ(diτi) = Õ(di(d
2 + dτ)) = Õ(d4 + d3τ),

8We extend the definition of an L-bit approximation x̃ of a point x 2 C to that of an L-bit approximation (x̃, ỹ)
of a point (x, y) 2 C2 by requiring that both x̃ and ỹ are L-bit approximations of x and y, respectively.
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Algorithm 7 Isolating boxes for the solutions of P = Q = 0

Input: P,Q coprime in Z[x, y] of degree at most d and bitsize at most τ and (RURi)i∈I =
(fi, fi,1, fi,x, fi,y)i∈I the RUR decomposition of {P,Q} as computed computed by Algorithm 6
or 6’.

Output: Isolating boxes for all solutions of P = Q = 0.
1: f =

∏
i∈I fi

2: Compute isolating disks Dγ ⊂ C for all complex roots γ of f .
3: S = {(γ, γ′) | γ and γ′ distinct roots of f}
4: L = 1
5: repeat
6: L = 2L
7: for i ∈ I do
8: For all roots γ of fi, compute L-bit approximations σ̃γ,x and σ̃γ,y of σγ,x =

fi;x(γ)
fi;1(γ) and

σγ,y =
fi;y(γ)
fi;1(γ) , respectively (Lemma 57).

9: until for all pairs (γ, γ′) ∈ S, |σ̃γ,x − σ̃γ′,x| > 2−L+2 or |σ̃γ,y − σ̃γ′,y| > 2−L+2

10: return {B(σ̃γ,x)×B(σ̃γ,y) | γ root of f}

(b) logM(|σ|) = Õ(dτ) for all σ = (σx, σy) ∈ V (Ii), where |σ| = max(|σx|, |σy|),

(c)
∑

σ∈V (I) logM(sep(σ, I)−1) = Õ(d4 + d3τ).

Proof. Let (x, y) 7→ x + ay be the separating form for {P,Q} with a ∈ Z of bitsize O(log d),
as computed by Algorithm 6 or 6’ as part of the input of Algorithm 7. This separating
form defines a one-to-one mapping from the set of solutions σ ∈ V (Ii) to the set of roots
γ of fi. Now let σ = (σx, σy) ∈ V (Ii) and σ′ = (σ′x, σ

′
y) ∈ V (Ii) be two solutions with

sep(σ, Ii) = |σ − σ′|, and let γ and γ′ be the corresponding roots of fi. Then, we have
sep(γ, fi) 6 |σx − σ′x| + |a| · |σy − σ′y| 6 (|a| + 1) sep(σ, Ii), or equivalently sep(σ, Ii)

−1 6
(|a|+ 1) sep(γ, fi)

−1. We thus have logM(sep(σ, Ii)
−1) 6 log(|a|+ 1) + logM(sep(γ, fi)

−1). On the
other hand, fi is squarefree since it is the first polynomial of the RUR of a radical ideal (see Algo-

rithm 6 or 6’). Thus, Lemma 52 yields that
∏
{γ root of fi}min(1, sep(γ, fi))

−1 = 2
eO(diτi) and thus∑

{γ root of fi} logM(sep(γ, fi)
−1) = Õ(diτi). Part (a) follows directly since a has bitsize O(log d)

and, by Theorem 35, di 6 d2 and τi = Õ(d2 + dτ).
Part (b) follows directly from Lemma 51 since each coordinate of a solution σ is a root of either

the resultant polynomial Sresx,0(P,Q) ∈ Z[y] or Sresy,0(P,Q) ∈ Z[x], and both of these polynomials

have integer coefficients of bitsize Õ(dτ) by Lemma 3. For part (c), notice that, by definition of
RUR decompositions (Definition 34), the roots of f =

∏
i fi are exactly the images of the solutions

of {P,Q} through the mapping (x, y) 7→ x+ ay. The degree of f is thus at most d2. Furthermore,
the fi are monic (by Definition 32), thus f is monic and the bitsize of its coefficients is at most that
of the resultant of the sheared polynomials P (t− ay, y) and Q(t− ay, y) with respect to y, whose
bitsize is in Õ(d2 + dτ) (see e.g. [BLPR15, Lemma 7]). Hence, the same argument as for the proof
of part (a) yields that sep(γ, f) 6 (|a|+ 1) sep(σ, I) and then the result.

The following theorem analyzes the complexity of the isolation of a system {P,Q} from a RUR
decomposition as computed in Section 6.

Theorem 59. Let P,Q ∈ Z[x, y] be coprime polynomials of degree at most d with integer coefficients
of bitsize at most τ . Algorithm 7 computes isolating boxes for all complex solutions of P = Q = 0
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using ÕB(d6 + d5τ) bit operations.

Proof. As argued at the end of the proof of Lemma 58, f is a polynomial of degree at most d2

with coefficients of bitsize Õ(d2 + dτ), and thus the bit complexity of Step 2 in Algorithm 7 is
ÕB(d6 + d5τ) (Lemma 54). In addition, the degree of all polynomials fi,y and fi,1 is at most the

degree di of fi (Definition 32), and the bitsize of their coefficients is in Õ(d2 + dτ) (Theorem 35).
According to Lemma 58(c), the distance between any two solutions of P = Q = 0 is lower bounded

by 2−
eO(d4+d3τ), which implies that Algorithm 7 terminates with L in Õ(d4 + d3τ). We also have

that the loop in Line 5 is executed logL = O(log(dτ)) times and thus, ignoring the polylogarithmic
factors, it is sufficient to study the complexity of the last call to this loop. From Lemma 57, the
bit complexity of computing the L-bit approximations σ̃γ,x and σ̃γ,y for all roots of the factor fi
in Step 8 is in ÕB(d3

i + d2
i (d

2 + dτ) + di(d
4 + d3τ)) = ÕB(d3

i + di(d
4 + d3τ)). Summing over all

i yields the bound ÕB(d6 + d5τ) for the total bit complexity of this step, since the sum of all di
is at most d2. In Step 9, consider a fixed pair (γ, γ′) of distinct roots of f and let σ and σ′ be
the corresponding solutions in I = 〈P,Q〉. From Definition (7) of the box associated to an L-bit
approximation, the inequalities |σ̃γ,x − σ̃γ′,x| > 2−L+2 or |σ̃γ,y − σ̃γ′,y| > 2−L+2 imply that the
boxes B(σ̃γ,x)×B(σ̃γ,y) and B(σ̃γ′,x)×B(σ̃γ′,y) do not overlap, which implies the correctness of the
algorithm. Testing these inequalities can be done in OB(log(M(|σ|) +M(|σ′|)) + logM(|σ−σ′|−1))
bit operations (where |σ| = max(|σx|, |σy|)) because, for each comparison, the first term bounds
the number of bits before the binary point, and in the case where these bits coincide, the second
term bounds the number of bits after the binary point that need to be considered. Notice that
the sum of logM(|σ − σ′|−1) over the O(d4) pairs (σ, σ′) is at most d2

∑
σ∈V (I) logM(sep(σ, I)−1).

Thus, summing over the O(d4) pairs and using Lemma 58 yields the bound ÕB(d6 + d5τ) for the
total bit complexity of Step 9, which concludes the proof.

Remark 60. If we set f = fi in Step 1 of Algorithm 7, the algorithm only computes isolating boxes
for the solutions of the specific RURi. Following the proof of Theorem 59, it is straightforward to
prove that the bit complexity of the algorithm then decreases to ÕB(d2

i (d
2 + dτ)) where the degree

di of RURi can be much smaller than d2.

Remark 61. In order to isolate only the real solutions of P = Q = 0, it suffices to iterate in
Algorithm 7 over the real roots of f since the separating form (x, y) 7→ x + ay is a one-to-one
mapping between the real solutions of P = Q = 0 and the real roots of f (see Proposition 33). Note
that, in this case, it is preferable to consider a dedicated real root isolation method in Step 2 for
computing the real roots of f .

8 Conclusion

We have studied the problem of solving a bivariate system of two polynomials of degree bounded
by d and bitsize bounded by τ via a combination of triangular decomposition and RUR. We have
designed algorithms of worst-case complexity ÕB(d6 +d5τ) for all the steps: (i) finding a separating
linear form x+ ay with a ∈ {0, . . . , 2d4}, (ii) computing a RUR decomposition and (iii) computing
isolating boxes of the solutions. We have also proposed Las Vegas algorithms of expected complexity
ÕB(d5 + d4τ) for Steps (i) and (ii).

Since the size of the RURs output is upper bounded by Õ(d4 +d3τ) (Corollary 36), one natural
question is whether it is possible to improve our algorithms. Consider Step (i) or actually the
simpler problem of checking whether a linear form is separating in the regular case, that is when
the system has no multiple solutions. In this simpler case, the problem amounts to shearing the
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coordinate system, then computing a resultant and checking whether it is squarefree. The best
known complexities for that problem are ÕB(d5 + d4τ) in the Las Vegas setting and ÕB(d6 + d5τ)
in the worst case. Indeed, after shearing, the input polynomials have degree d and bitsize Õ(d+τ)
(see e.g. [BLPR15, Lemma 7]). The best known complexity for computing their resultant is
ÕB(d4(d+τ)) in the worst case (Lemma 3) and, up to our knowledge, there is no better complexity
even in the Las Vegas setting. Finally, the squarefreeness test amounts to a gcd computation and
the best-known complexities are ÕB(d4 + d3τ) in the Las Vegas setting and ÕB(d6 + d5τ) in the
worst case [vzGG13, corollary 11.14]. Since the resulting bounds match those of our algorithms,
it is likely that improving our Las Vegas and deterministic algorithms for computing a separating
linear form would require improving the complexities of computing resultants of gcds. On the other
hand, considering Step (iii), we observe that our worst-case bound ÕB(d6 + d5τ) also matches the
best known complexity for the isolation of the roots of a given polynomial of degree and bitsize
comparable to those of the resultant of the input polynomials [MSW15, Theorem 5]. All these
observations hint that it is likely difficult to improve the Las Vegas and worst-case complexities of
our sequence of algorithms for solving bivariate systems.

Finally, we note that, for computing a separating linear form of an arbitrary system {P,Q},
the algorithm presented here is likely to be purely theoretical because (i) considering the system
{PQ, ∂PQ∂y } instead {P,Q} essentially doubles the degree of the input polynomials, and (ii) the
shearing of the coordinate systems, done to avoid vertical asymptotes, spoils the sparsity of the
coefficients and increases their bitsize, which is not efficient in practice. However, for the problem
of computing the critical points of a curve, there is some hope that our algorithm can be efficient
not only in theory but also in practice.
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for zerodimensional systems. In Algorithms in Algebraic Geometry and Applications,
volume 143 of Progress in Mathematics, pages 1–20. Birkhäuser, 1996.
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