Skip to Main content Skip to Navigation
Journal articles

Efficient and Robust Persistent Homology for Measures

Mickaël Buchet 1 Frédéric Chazal 2 Steve Oudot 2 Donald Sheehy 1
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
2 DATASHAPE - Understanding the Shape of Data
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Résumé : Efficient and Robust Persistent Homology for Measures. Computational Geometry, Elsevier, 2016, . HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et a la diffusion de documents scientifiques de niveau recherche, publiés ou non, ´ emanant des etablissements d'enseignement et de recherche français oú etrangers, des laboratoires publics ou privés. Copyright
Document type :
Journal articles
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download

https://hal.inria.fr/hal-01342385
Contributor : Frédéric Chazal <>
Submitted on : Tuesday, July 5, 2016 - 9:49:05 PM
Last modification on : Tuesday, June 18, 2019 - 2:36:02 PM
Long-term archiving on: : Thursday, October 6, 2016 - 2:10:40 PM

File

PapierCGTA2016.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Mickaël Buchet, Frédéric Chazal, Steve Oudot, Donald Sheehy. Efficient and Robust Persistent Homology for Measures. Computational Geometry, Elsevier, 2016, 58, ⟨10.1016/j.comgeo.2016.07.001⟩. ⟨hal-01342385⟩

Share

Metrics

Record views

510

Files downloads

295