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Extended Modality Propagation:
Image Synthesis of Pathological Cases

Nicolas Cordier, Herg Delingette, Matthieu & Nicholas Ayache

Abstract—This paper describes a novel generative model for
the synthesis of multi-modal medical images of pathological
cases based on a single label map. Our model builds updh a
generative model commonly used for label fusion and multi-atlas
patch-based segmentation of healthy anatomical structuresj)
the Modality Propagation iterative strategy used for a spatially-
coherent synthesis of subject-specic scans of desired image
modalities. The expression Extended Modality Propagation is
coined to refer to the extension of Modality Propagation to

the synthesis of images of pathological cases. Moreover, image_. . . . . .
synthesis uncertainty is estimated. An application to Magnetic Fig. 1. The generative model aims at synthesizing subject-

Resonance Imaging synthesis of glioma-bearing brains i§) SPeci ¢ MRI, provided a label map of a pathological brain.
validated on the training dataset of a Multimodal Brain Tumor

Image Segmentation challengeii) compared to the state-of-the-

art in glioma image synthesis, andii) illustrated using the output  creation of large, annotated, unbiased, anonymized, and easy-

of two different tumor growth models. Such a generative model to-maintain datasets of synthetic medical images of virtual
allows the generation of a large dataset of synthetic cases, Wh'Chpatients (namely atlases completely generated by a compu-
could prove useful for the training, validation, or benchmarking tati | biophvsical de. Th ability of a | dataset
of image processing algorithms. tational biophysical mo el). The availability of a large datase
is especially important for pathologies such as glioblastoma
which exhibit a high variability of shape and appearance. For
reference, the 2013 BraTS challenge only consisted of 20 real
high-grade cases for training, and 10 real high-grade cases
|. INTRODUCTION for benchmarking[[3]). The 2014 BraTS challenge included
A. Motivation abou_t 250 additional cases obtained from The Cancer Imaging
N ) —_ Archive [6], however other problems arose: the ground truth
The availability of public datasets [[1]4{3] of annotateqy,q \navailable and had to be obtained through a consensus

medical imaggs is a kgy factor in the devglopment of medicall automatic glioma segmentation algorithms, which resulted
image computing. For instance, the organization of the Mul§|r—1 a ground truth of lower reliability [7].

modal Brain Tumor Image Segmentation (BraTS) benchmark
challenge [[3] has lead to an important and fruitful resear@ Related work

activity in glioma segmentation. However, the creation of a o o ) )
benchmark dataset is costly for obvious reasdpsa large ~ 1he problem which is tackled in this paper is the synthesis
number of cases is required in the training and testing datasggnulti-modal medical images of pathological cases, based
to capture the variability of structures or pathologié, ©N @ Single label map, as illustrated in Figle 1 for brain
images should be annotated by experts, which requiresUfors imaged with Magnetic Resonance Imaging (MRI). In
complex and time-consuming manual work, and can still led@e following, the focus is on related work regarding MRI
to debatable results (e.g. inter-rater variability in the rang¥nthesis of healthy and tumor-bearing brains.

74-85% for glioblastomal [3], datasets can contain incorrectl) MRI synthesis of healthy braingOriginal attempts at
segmentations| [4])jii) the distribution of medical images 9enerating synthetic MRI of healthy brains relied on a numer-
leads to ethical concerns, since the identi cation of patienigl simulation of MR acquisition physics. Given MR scanner
may be possible despite anonymization steps such as sk@prameters such as echo time and relaxation time, a discrete-
stripping [2],iv) and nally, ensuring the continued quality of €vent simulation model [8]-{10] describes the dynamics of
a very large dataset of anonymized images is complex, dugiggnetization vectors, at each spatial position, according to
the presence of longitudinal data and duplicatés [5]. The devBioch equations [11]. Such numerical simulations are compu-
opment of image synthesis could alléthe augmentation of tationally expensive, except for speci c cases for which there

a dataset by including new realistic synthetic cases,jjuitle €XiSts @ closed-form solution to Bloch equations, such as for
spin-echo or gradient-echo MR sequences [8]] [12]] [13].

To describe the imaged object, two strategies are possible.

The rst strategy consists in describing the geometry of the

Universié Gote d'Azur, Inria, France. imaged tissues with tissue-speci ¢ templates, and providing
Asclepios Research Project ; email address: herve.delingette@inria.fr. the tissue-specic biophysical properties (spin density and

Index Terms—patch-based, multi-atlas, glioma, generative
model, medical image simulation, modality synthesis.
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relaxation times). This allows the synthesis of MRI acquiretlaining of machine learning algorithms [29]i) simulated
on virtual geometrical templates. However, it requires theages do not show the variability of intensity of realistic
knowledge of tissue-speci ¢ biophysical properties [8], whiclMR scans, and the addition of a very high Gaussian noise
are poorly referenced in the literature for glioblastoma conenly limits this effect.
partments. The second strategy does not rely on the de nitionThe simulator of synthetic pathological I\/ﬁzblescribed
of tissues: biophysical properties are specied voxel-wisé [28] has been used in a number of research articles
after an estimation from several MR scans obtained in a sharbstly for prototyping and validation, in the context of glioma
time-frame with a very strict acquisition protocol (quantitativeegmentation [3], [29],[30], outlier detection algorithm|[31],
MRI or relaxometry), or by optimization methods [12], [13]registration of a healthy brain atlas to a tumor-bearing patient
This strategy does not allow to generate synthetic images ipmage [32], and construction of a brain atlas|[33]. Other
virtual patients. Moreover, it cannot be applied to tumor scaagplications include the training of machine-learning algo-
when a proton density map is not available. rithms for glioma segmentation [29] trained random forest

Recently, an iterative patch-based heuristi¢ [14] was used tui a large dataset consisting of 740 synthetic cases and
Modality Propagation, i.e. the synthesis of a realistic subjeahowed good segmentation results on a few real cases for
specic scan of one modality given a scan acquired wittesting. [31] performed a thorough validation of an outlier
another modality. Roots of the Modality Propagation frameletection algorithm, based on 100 MR scans synthesized with
work include image reconstruction works, e.g. PET imagdifferent tumor volumes to test the robustness of the algorithm
reconstruction incorporating MR data as prior informatioto the amount of outliers. Image synthesis could also be
for anatomical boundary [15] and example-based approacheeful in the context of tumor growth modeling: ih [34],
using non-local patch similarity constraints, known as brafET images are synthesized for tumor-bearing brains, so as
image hallucination [[16]{19]. The core of the algorithnto allow clinically relevant interpretations of tumor growth
consists in modeling the covariation of local intensity pattermaodel outputs. Although the applications of MRI synthesis of
across modalities, in a fashion inspired by multi-atlas patcpathological cases are numerous, the competitors in the BraTS
based segmentation of healthy brain structufes [20]] [2Henchmark challenge tend to completely ignore the provided
Successful applications of Modality Propagation or relatesynthetic cases [3], which is likely due to their lack of realism.
methods include synthesis of a patient-specic attenuationin this paper, we address the image synthesis of patho-
map for hybrid MR-PET|[22], more accurate registration| [23]ogical cases by using an iterative multi-atlas patch-based
super-resolution[ [24], and outlier detectign |[14], |[24], |[25]algorithm, inspired by recent successful algorithms in MRI
However, Modality Propagation shows two limitations for theynthesis of healthy brains. The expression Extended Modality
synthesis of MRI for virtual pathological casey:the local Propagation (EMP) is coined for two reasoriy:to refer
search window framework is adopted, which does not take ini® the extension of Modality Propagation for the synthesis
account the variability of lesion position, and might restrict thef images of pathological cases) in contrast to Modality
method to the image synthesis of healthy cageshe inputis Propagation, EMP can deal with label maps in addition to
a real image, which is assumed not to be available for virtuahage intensity. The synthesis process only requires a single
cases. label map, or the output of any tumor growth model in terms of

2) MRI synthesis of tumor-bearing brain®revious works the usual tumor compartments. Realistic synthetic images are
regarding MRI synthesis of tumor-bearing brains|[26]+-[28btained in the speci ¢ application of our algorithm to MRI
build upon tissue-specic templates, as in the frameworynthesis of tumor-bearing brains. Our contributions include a
introduced for healthy braing |[8]. Typically, a tumor seed ifovel generative model, a heuristic iterative algorithm to solve
arti cially positioned in a healthy brain atlas, then a tumofor the posterior distribution of multi-channel MR intensities,
growth model simulates the tumor extension over time anle estimation of image synthesis uncertainty, the analysis of
its mass effect, i.e. the displacement of neighboring healtiodality Propagation iterative feature augmentation, and the
tissues, which results in templates of healthy tissues and tunpoiblic availability of a large dataset of annotated and realistic
compartments. However, in contrast to| [8], tissue-speci®IRI exhibiting gliomas. In the remainder, the generative
biophysical properties are not considered in favor of diregtodel is described and solved for the maximum a posteriori
speci cations of tissue-specic average MR intensities|[26]and for uncertainty estimation (Sectipf Il). Then synthesized
[27]. In [28], textures are learnt for each healthy tissue arMRI are compared to real MRI from the training dataset
tumor compartment, which results in a set of 3D texturef BraTS benchmark challenge, and to the state-of-the-art in
images. The only difference between different synthetic MRjlioma image synthesis, and illustrated using the output of two
lies in tissue-speci ¢ templates: tissue-speci ¢ average MR inttifferent tumor growth models (Sectign]lll). Finally, results
tensities and 3D texture images are therefore always identicatd perspectives are discussed (Secfiofs V[ dnd V).

This last approach is applicable to a wide variety of cases,
but also bears some limitationg: the complex distribution
of image intensities for tumor compartments is summarized
by its expectation, which is oblivious of multi-modal intensity In the following, a label map. describing the anatomy of
distributions,ii) the inter-patient MR normalization procedurea tumor-bearing brain is assumed to be known. The goal of
is not speci ed, which makes it dif cult to standardize real
MRI so that they look like synthetic MRI, typically for the Freely available online at http://www.nitrc.org/projects/tumorsim

Il. EXTENDED MODALITY PROPAGATION
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Fig. 2: Pipeline for Extended Modality Propagation. Green disks mark known tumor locations. A fundamental idea is that
central voxels of similar label patches should have similar multi-channel image intensity. During the rst iteration, multi-
channel intensityl is assigned for every test label patch based on comparisons with a database of training label patches. During
subsequent iterations, multi-channel intenditis updated based on comparisons between augmented label patches, which are
the concatenation of label patches and multi-channel image patches synthesized during the previous iteration (feedback).

Extended Modality Propagation (EMP) is to synthesize methe training database. This means that the target segmentation
ical images corresponding to the same anatomy. To achidves the result of sampling patches from atlagks; I,) at
this goal, EMP relies on a set &f training casesL;l,g, different positions/ in the reference space. The membership
where L, is a label map and, denotes multi-channel index M encodes, for every position 2 , both the atlas
MRI (T1, T1C, T2, FLAIR). In practice, the set of labelsindex n and the positiory to sample from:M (x) = ( n; y).
comprisesL = 7 classes: cerebrospinal uid, grey matterji) There is a uniform prior oM : no training case or patch
white matter, necrotic core, edema, non-enhancing tumor cdagationy is preferred a priori. This assumption is in sharp
and enhancing core. contrast with a common assumption of local search window
The EMP probabilistic generative model is rst introducedn the patch-based frameworki.) The only constraint oM
to describe the synthesis of images. Second, an approximat®rnhat the source patch for a target pa@iiL;x) has the
of the marginalization step is introduced to estimate the masame central labdl , (y) = L(x). iv) If M were known, the
imum a posteriori and the image synthesis model uncertaintgrget imageJ would be given by intensity, perturbed with
Finally, more consistent patch matching is obtained by aughite noise,l,(y) at central voxels of sampled patches.
menting label patche§) multi-scale patches allow to considerGiven M (x), probabilities of observing intensity(x) and
larger patches in a computationally ef cient manngra patch label L(x) are conditionally independent. This assumption
match invariant to cube isometries allows to consider largertroduces a symmetry between segmentation and synthesis
patches without being impacted by a smaller sample sizgpblems. Moreover, this assumption is reasonabléd {i)
andiii) as for Modality Propagation, an iterative patch matctvere known, then the information regarding label would be
procedure results in smoother and more consistent synthetienpletely de ned byL, only, and the information regarding
images. The EMP pipeline is detailed in Figlife 2. intensity would be completely de ned bly, only.

. I . The corresponding graphical model is shown in Fiddre 3.
A. De nition of a probabilistic generative model This model mirrors the graphical model described in [38] for

1) Graphical model: The proposed generative model foimyti-atias patch-based segmentation of pathological cases.
Extended Modality Propagation builds upon the Bayesian

modeling of local weighted voting for multi-atlas segmenta- 2) Class-conditional image intensity likelihood:et j 2
tion [35], which was then adapted for patch-based segmd®? denote multi-channel voxel-wise image intensity, with
tation [36], [37]. Conventionally, a patcB (I;x) is a cube d being the number of MR channels. In our case,
of edge length2r + 1, centered at spatial position 2 R®, d = 4. Class-conditional image intensity likelihood
consisting of image intensity values taken from an image p, J(X)=j jln; Y, L,y La(y); L(X) is the proba-
Our model is based on the 5 following assumptioh&very bility that the target intensityl(x) = j is sampled from a
patchS (L; x) originates from a single patc8(L,;y) from multivariate Gaussian probability density functidh, with
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Log-Odds label probability values is concatenated with the
@ vector in RY of synthetic image intensity of the previous
iteration. In this case, a patch of edge lengtlwould result
in a vector inR@"+D° (L+d)
5) Label patch likelihood: Label patch likelihood

< :> @ () @ Pn S(E;X) j £, y;  2(x) comprises the similarity
between label patches. It is de ned as the probability that the

J target Log-Odds patcB(E; x) is sampled from a multivariate

Gaussian probability density function, wiS(Ifn;y) as mean

Fig. 3: Graphical model for Extended Modality Propagatiorand isotropic scaling 2(x) as variance:

A membership variableM : 'f 1, :::; Ng is

sampled at every positior in the MNI space to encode pn S(E;X) j I‘:n; Y, 2(x)

the training casen to sample from, and the spatial offset oo 5

y: M(x) = (n;y). The observed Log-Odds maB(x) IN  S(E:ix)jS(Laiy): “(x) 1

results from the sampling of a pat&{(E; x) from a Gaussian

distribution WithS(I‘in ;y) as mean and isotropic scaling(x)

as variance. The intensity at positionx is sampled from a

Gaussian distribution with the central valugy) as mean and

L(x) @s covariance matrix.

wherel is the identity matrix.

6) Symmetry: The symmetry between the segmentation
model described in [38] and our synthesis model is empha-
sized by the de nitions of label and intensity likelihoods, as
shown in Tabld]l. Indeed, regarding likelihood for observed
variables, image intensity likelihood for segmentation [38] and
label patch likelihood for synthesis are Gaussian densities on

In(y) as mean and | (yy = L(x) @s covariance matrix:  patches, respectively image patches and Log-Odds patches,
. with an isotropic scaling parameter for variance, respectively
Pn JX)=J jlnsys Lo La(y)s L(X) 2(x) and 2(x). Moreover, regarding likelihood for hidden
I Loyyicoo N T T Loy variables, label likelihood for segmentation [38] and class-

conditional image intensity likelihood for synthesis are de-
ned voxel-wise instead of patch-wise, and both involve a
Kronecker delta.

where . is Kronecker delta, which translates assumpfion
In this case,L,(y) = L(x), and the notation for intensity
likelihood is simplied top, J(X)=j jln; ¥: L(x) -

3) Log-Odds label mapsThe likelihood label model relies
on continuous Log-Odds ma@sandi,, [35], i.e. probability B. Inference

values computed from categorical label mapsand Ln.  ginceM is not observed, the inference has to be performed
Indeed, durmg_the st iteration of image synthes_ls, Pat_CBy marginalizing oveM [35]. The marginalization consists
match only relies on a label map as input. It IS_CI’UCI% a weighted vote involving patches at every positipin

to choqse the best representation for this .smgle input. eA\‘/ery atlasn, with weights proportional to both label patch
categorical label map could be used, but this representatigry intensity likelihoods.

does not distinguish patches inside a tissue from those alariance parameters are rst estimated : second, the problem
its bor_der. If c_at_egorlcal label maps were directly used, thg estimatingJ is stated by marginalizing oveM : third, a
matching of similar label con gurations could be poor fOlsi ateqy to determine the arg-max of the posterior distribution

label con gurations not present in the training dataset. f proposed ; nally, a method to estimate the uncertainty of
better strategy, as recommended|in|[35], consists in adoptipg synthesis procedure is mentioned.

Log-Odds, so as to take into account the distance to bordersl) Estimation of the variance parametersThere are
between tissues and to be able to distinguish different patcﬁla kinds of variance parameter$) covariance matrices
among patches completely englosed in a Itlssue. Log-O S|9|2f 1 = g for class-conditional image intensity likeli-
d|stancgs are de ned as proportmnalaxp @ (x) , where hoods, which are pre-computed, dijdsotropic scaling 2(x)

> 0 is the slope constant (in our experiments= 1 as for label patch likelihood, which is computed online.

in [35]), and B' (L;x) is the signed distance transform of For each label 2 f1; :::; Lg, a covariance matrix |
labell for label maplL at spatial positiorx, which is positive results from the t, using Expectation-Maximization [39], of
inside structures labelled &s a multivariate Student distribution to average intensity of pure

4) Augmented Log-Odds label mapBuring the rst it- patches, i.e. for which all voxels belong to the same class.
erationt = 1 of the algorithm, the notatiof corresponds Robustness to outliers is achieved with Student distributions
to a multi-label Log-Odds map: a vector Rt consisting of to model the heavy-tailed distributions of multi-channel image
Log-Odds label probability values is assigned for each spatiatensity. Supplementary material, available in the supplemen-
position x. Therefore, a patch of edge lengthwould result tary les /multimedia tab, presents 2D projections of obtained
in a vector inR@™*D *LHowever, for subsequent iterationsStudent distributions.

t 2, the same notatiof corresponds to augmented Log- As with patch-based segmentation, the varianégx) for
Odds maps: for each spatial positian the vector inR- of Log-Odds patch is spatially varying. In contrast|to|[38}(x)
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TABLE I: Symmetry between likelihoods for segmentation & synthesis. Observed variables are displayed with grey background.

Likelihoods Segmentation model Synthesis model
Intensity likelihood| N S(J;x) j S(In;y); 2(x) 1 Lay)iLx) N b(x) i) Loy
Label likelihood N S(E;X) j S(If_n;y); 2(x) 1

Ln (y):R(x)

is a heuristic inspired by [21]; [40] and involving the minimak xed point of a functionT : R* 7! R*:

patch distance, de ned such that: Q
pé (x)=min d S(&;x); s(f,:y) j =70 )= ) n( ) n
Y n=
The same formula is applied to augmented Log-Odds patctvésere:
during subsequent iterations of the proposed algorithm. As n = In (Yn (S(L;X)))
proximity between samples is not well characterized by their
distance in high dimensional spaces, the use of the minimalg) 4 Wn o Pn J(X)=J jln: Yo (S(LiX) s L
. . = p .
d!stance !nstead of ano'tht.ar measure (such as the. avgra@ Ezl Wo Pn J0= 01 v (SILiX): Lo
distance) is preferred to limit the number of patches with high
probability. _ _ )
2) Approximate marginalization‘Assuming the member- 8n; () O n(i)=1
ship index M (x) is independent and identically uniformly n=1
distributedp(M) = (N j j)' !, the marginalization over For voxelsx for which T is a contraction mapping, Banach
M [35] is given voxel-wise by: Fixed Point Theorem gives thgt is unique, and that for
N any initializaftionjo 2 R%, any sequencéjk)k_zN_ such that
9(x)= argmax b S(E:X) | Itn; v 2(x) jk+1 = T {(jk) converges to the xed poin§ with a

geometric rate. An implementation of the EMP algorithm is
o ) ) given in Algorithm[1. In fact, we adopt a slight variant of this
P JOO= T 0 Tni Y L La(y)s LX) approach wheren(jg) is computed with a more robust Student
The marginalization ovevl would require a high number of likelihood (Section TI-B1) instead of a Gaussian likelihood
comparisons between patches, which is infeasible in practife. J(X) = J j In; ¥Yn (S(L;X)); L(x) » to cope with the
However, the marginalization step could be approximated, lidre case where a few, are far away fronj . We could not
a similar fashion ad [38]. Lef, (S(L;x)) be the position in prove that the Lipschitz constant df is strictly less than 1
reference space of the closest Log-Odds patch, in candnicalfor every voxel in the image, hence the assumption of Banach
distance, of central labél= L (x) found in the atlagL,,; 1,). Fixed Point Theorem may not be ful lled. Nonetheless, in our
For image synthesis of pathological cases, we propose experiments for all test cases, the algorithm does converge in
marginalize over onl\N patches, wherdl is the total number aboutK = 60 iterations for 99.9% of the voxels of the brain
of atlases: given a target Log-Odds patch of central lalje), mask. For the remaining 0.01% of the voxels, the intensity
the approximate marginalization only includes patches foun@lue obtained at the last iteration is used.
at the spatial positiory, (S(L;x)) in atlasn, which results ~ 4) Estimation of the image synthesis uncertaintyith the
in: Fixed Point procedure, the estimation of the arg-max of the
X posterior image intensity distribution involves the iterative
b(x) = argmax P S(E;X) | f,: Yo (S(L;X)); 2(X) estimation off as a weighted average of intensitigs found
j n=1 in the atlases. Therefore, the uncertainty of the image synthesis
Pr J(X) =] Jln; Yn(S(L;X)); L(x) Process can be similarly estimated as the weighted sample
varianceb?, thanks to the optimal weights, (j ). Estimation
3) Arg-max of the posterior distribution\With the ap- of image synthesis uncertainty is illustrated in Figliie 4.
proximate marginalization, our original belief was thx) Uncertainty estimation could allow to pin-point regions with

Theorem. Indeed, a necessary condition foto be an optimal

solution is given by gradient cancelling. LEt: R* 7! R be:

I n=1y2

C. Consistent patch match

FG)= ) Wn o Pn J(X)=] jln; Yn(S(L;X) s Lx) Patch match consistency can be improved by relying on
n=t augmented Log-Odds patches and by adopting an iterative
where: feature augmentation strategy.
Wo = pn S(E:X) f.: o (S(L:X)); 2(x) >0 1) Multi-scale patches: As shown in [38], multi-scale

patches are computationally ef cient representations for large
Gradient cancelling gives the necessary conditionjthas patches, which allows more effective patch match. The central
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Algorithm 1: Extended Modality Propagation. the combination of multi-scale patches and invariance to cube
foreach iterationt 2 1:2:::: do isometries yields better segmentation results, and thus could
foreach voxelx 2 do be bene cial for patch-based image synthesis as well. The
evaluate label patcB(L ; x) 48 cube isometries consist of certain rotations under which

let] = L(x) be the central label iS(L ; x) the cube is invariant, plus their composition with central

evaluate Log-Odds patcB(E;x)
augment Log-Odds patch with result at iteration 1

foreach training casen do
nd the closest patch of central labglin t,

symmetry. For healthy brain structures, rotated patches can
be unrealistic, only sagittal plane symmetry is considered.
For pathological patches, the similarity measure should be

let yn (S(L;x)) be this patch spatial position insensitive to rotation and symmetry: the number of atlases
evaluate Log-Odds patcB(f »;yn (S(L;x))) is small, and using multi-scale patches further decreases the
evaluate image intensityn (yn (S(L;X))) sample size. Therefore, the addition of plausible con gurations
augment Log-Odds patch with image intensity  of patches, generated by applying sagittal plane symmetry or
set variance (x) based on augmented patches cube isometries, to observed patches is relevant, and ultimately
set the intensity(x) by applying a Fixed Point leads to a patch match invariant to the group of cube isome-

procedure as i were a contraction mapping: tries. Indeed, if we were to apply cube isometries to the target
_ P N wa n . patch, the minimal patch distance between the transformed
jo= AJW 2R target patch and the augmented learning dataset would be
le ) equal to the minimal patch distance between the target patch
8K 2 N, jin = T (jk) and the augmented learning dataset.
bx)= lim j«  jk 3) lterative feature augmentationAn iterative augmen-
Kol tation procedure guarantees a spatially more coherent patch
- match, which results in an overall more coherent image
synthesis. This is illustrated in Figuf¢ 5. Augmented Log-
Odds patches are the concatenation)ofog-Odds patches,
weighted with1 t, andii) multi-channel image patches
synthesized during the previous iteration 1, weighted with
t. There are different possible de nitions for weight.
As with Modality Propagation| [14], the feedback weight
increases with the number of iterations, starting with=0
for iterationt = 1. Unless mentioned, a maximal number of
iterations is set tdmax =3, and  =(t 1)=tmax, SO that
the weight of Log-Odds patches is never zero and decreases
linearly with the number of iterations.

Fig. 4: lllustration of image synthesis uncertainty estimation. I1l. RESULTS
Along with the model pred|ct|ori7(x) (synthesis mean), the Our goal is to synthesize four MR channels commonly

knowledge of the model uncertainty is illustrated with th%cquired for glioma assessment: pre-contfasweighted im-

standard-deviatiorb(x) (square-root of the synthesis vari- ) e i
ance). Please note that only the FLAIR MR sequence age (T1), contrast-enhancdd-weighted (T1C),T>-weighted

shown here, bulb(x) consists in fact in four synthesized 2), andTo-FLAIR MR images. Fast approximate nearest

! . neighbour search are used for patch match, more precisel
MR channels, which are taken into account lbfx) shown 9 P e y

o X Itipl i k- for high di ional datd [43].
here. Uncertainty is more important at the boundary betvve(rennu tiple randomized k-d trees for high dimensional data [43]

cerebrospinal uid and brain tissues (ventricles, sulci) and in
the tumor core. A. Pre-processing pipeline
Every image is afnely registered to an MNI atlas and
warped to the same reference space. For experiments which

part of the patch is described voxel-wise, while the periphenaquire strictly more than 3 iterations, a resampling to 2 mm
part is described by average intensity values over neighboriggtropic resolution is performed to decrease computation time,
patches, by analogy with the foveal vision. Similar ideastherwise we keep the original 1 mm isotropic resolution. A
regarding foveation and non-uniform sampling are detailgdsampling to 2 mm resolution was used by the top-performing
in [41]. In the following, parameters are set as|in|[38]: a 3x3xdlioma segmentation method at the 2012 BraTS challenge,
patch is used for the central part, and a 26-neighborhood fehich indicates that the generation of a synthetic dataset
the peripheral part. of 2 mm resolution images could already be of interest for

2) Patch match with invariance propertiesEvery atlas applications other than medical image synthesis. Atlas images
is af nely registered to the MNI space [42] so that patch, are standardized with a global af ne intensity transform,
extraction is invariant to the pose of the subject. Moreovapplied to each modality independently: non-zero intensity are
the canonical , distance used for patch matching is sensitivelipped below 1% and above 99% quantiles, then intensity
to rotation or symmetry of the patches. As shown [in| [38mean and standard deviation are set to the corresponding
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Fig. 5: From left to right: input label map, synthetic contrast-enharicedeighted MRI after iterations = 1; 2; 3, and

ground truth (real MRI). Image parts near the brain border are better synthesized due to iterative feature augmentation. The
presence of dark synthesized regions around the brain, instead of the presence of skull, is due to the fact that atlases are skull
stripped. Supplementary material, available in the supplementary les /multimedia tab, presents maps of absolute differences
between synthesized images and ground truth.

average values over the training dataset, respectively 360tlaes user-speci ¢ coef cients chosen in our implementation of
mean and 120 as standard deviation. Except for the clippirtbis procedure|[28].
and potentially the resampling if performed, all the proposed For a fair comparison, synthetic MRI generated w(th|[28]
pre-processing operations can be reverted, which eases ijhase the same input categorical label map as our method,
adaptation of such a synthetic dataset for the analysis afdii) are standardized as described in Sedfion ]II-A, so that
another real dataset. the average image intensity and the variance corresponds to
the average and variance of the real image. Supplementary
material, available in the supplementary les /multimedia tab,
illustrates results obtained with [28] based on tumor growth
1) Dataset and evaluationThe dataset consists of MRImodel probabilistic outputs instead. However, no quantitative
of 20 high-grade (HG) and 10 low-grade (LG) cases, skukvaluation can be performed on these results due to a lack of
stripped and made publicly available as training dataset @iound truth.
the 2013 edition of the MICCAI BraTS benchmaikl [3]. A 2) Results: A visual inspection of image synthesis results
leave-one-out procedure is always applied to exclude the targah be performed in axial views for a high-grade glioma in
image from the training dataset. There is no atlas pre-selectiéigure[§. Axial, coronal and sagittal views are also presented
and all training cases, remaining after leave-one-out, are usedsmaller displays in supplementary material, available in
as atlases for the synthesis of MRI of cases of the same graitie. supplementary les /multimedia tab. The model does not
Only the segmentation of the tumor compartments is originaligplicate artifacts or croppings present on some real cases.
available [[3], so healthy tissues are automatically segmentEais is expected, since the image synthesis model is based on
by applying FSL FAST([44] to the T1C image, which cona label map, which was created from a high-resolution T1C
sistently has the highest resolution among the different MiRhage of a whole brain.
channels. Quantitative results are reported for each MR channel in
The validation of the experiment consists in comparingigure 7 for PSNR, and in supplementary material, available in
real MRI with synthetic MRI generated solely based on #he supplementary les /multimedia tab, for other assessment
segmentation of the brain and the tumor. Quantitative asmeasures. A summary of assessment measures is presented
sessment include Peak Signal to Noise Ratio (PNSR) ito Table[Tl. PSNR, MAE, and mean SSIM are always higher
quantify the quality of the synthesis, Mean-Absolute-Errdor the proposed image synthesis method. Moreover, with the
(MAE) to quantify bias, and nally mean Structural Similaritylinearly increasing feedback weight, most results are improved
(SSIM) [45] (with default values) as an additional imagevith additional iterations. To con rm this statement, paired
reconstruction criterion. All these measures are classicatlyo-sample t-tests are performed independently for each MR
used for assessment of image reconstruction or synthesis [2ZBjannel. With 1% signi cance level, EMP with 2 iterations
[46]-[48]. Whenever an average is computed, only the voxgderforms signi cantly better than the state-of-the-art|[28] for
which belong to a region-of-interest (ROI) are considered: tlewery criterion (PSNR/SSIM/MAE) and for every MR channel
ROl is the whole brain mask as de ned by the input label ma@@1/T1C/T2/FLAIR), which is not the case when using EMP
(segmentation of healthy and pathological tissues). with a single iteration. Moreover, with 1% signi cance level,
Our image synthesis model is compared to the imadm@m iteration 1 to iteration 3, EMP improves signi cantly the
synthesis procedure describedin|[28]. Supplementary materialage between each iteration.
available in the supplementary les /multimedia tab, includes The in uence of the feedback weight; was studied. The

B. Validation & comparison to state-of-the-art
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Fig. 6: Qualitative evaluation of our synthesis method after 3 iterations on a high-grade case (HG-0009). Axial views. Top to

bottom: synthetic MRI obtained with our method, ground truth (real MRI), synthetic MRI obtained with the method described
in [28] with the same categorical label map as input. Ground truth FLAIR image is partially dark, corresponding to the brain
mask for which the FLAIR image is unknown, most likely for a faster MR acquisition. Interestingly, this does not happen on

T1C images, and hence does not affect the label map for healthy brain tissues. Synthetic images are not affected since the)
rely only on the label map. Supplementary material, available in the supplementary les /multimedia tab, presents maps of

absolute differences between synthesized images and ground truth.

Fig. 7: Comparison to ground truth MRI in terms of PSN
for each MR sequence. From left to right: state-of-the}art [28@
iterations 1, 2 and 3 of our method.

protocol is the following: different values are chosen for
feedback weights, then Extended Modality Propagation is run
for 10 iterations with ; = 0 and subsequent; xed at the
chosen value. The highest PSNR (18.6) and highest mean-
SSIM (0.63) are obtained for the smallest non-zero feedback
weight @=9). The variance of the PSNR is lower when a non-
zero feedback weight is chosen, however the median PNSR is
nearly the same for all feedback weight values. MAE increases
when the weight increases. In the end, any small non-zero
feedback weight is reasonable for image synthesis.

The in uence of the number of iterations of EMP was stud-
ied. A high constant feedback weight, xed2t3, is chosen to
emphasize the effect of the number of iterations. The highest
PSNR (18.7) and highest mean SSIM (0.64) are obtained at the

and of the second iteration. MAE decreases notably with the
umber of iterations. In the end, a small number of iterations
hould be preferred, typically 2 to 3 iterations. A similar trend

is observed with a linearly increasing feedback weight
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TABLE II: Average assessment measures for image synthesisgeyeral MR channels are simultaneously synthesized, which

based on the 2013 BRATS Evaluation dataset. leads to a more constrained patch match (for iterationsl),
and ultimately to more consistent synthetic MRI. However,
T1 PSNR  mean SSIM MAE using a higher number of MR sequences implies that patches

lie in a space of higher dimension, which tends to homogenize

State-of-the-art [28] 21.4 0.70 80.7 . ) . .
. i patch distances. Indeed, for high dimensional data, every patch
Ours (iteration 1) 225 0.76 65.6 . .
. . is more or less a close neighbor of others, and the notion of
Ours (iteration 2) 22.7 0.81 63.0 t-neiahborhood b | | t Thi Id it
Ours (iteration 3) 208 0.82 626 nearest-neighborhood becomes less relevant. This could resu
in fuzzier synthetic images. Conversely, less consistent, yet
T1C PSNR mean SSIM MAE potentially more textured, results could arise when trying to
synthesize a single image modality.
gtate-qg-thci—artl[zs] 22218 8;; 7785 EMP relies on a marginalization over several training cases,
Ours (!terat!on 2) 22'1 0.81 68.6 which has an averaging effect. Therefore, if labeling errors are
Ours (!terat!on 3) 222‘ 0 éz 686 assumed to be incoherent in the training cases, an incorrect
urs (iteration 3) : : : labeling should have little impact, theoretically proportional
T2 PSNR mean SSIM MAE to 1 over the number of atlases. However, if the target label
mapL is close to one of the incorrect segmentations, then the
State-of-the-art [28] ~ 16.5 0.67 97.2 impact would be greater in practice.
Qurs (iteration 1) 18.5 0.69 76.0 One limitation of the proposed method is the running time:
Qurs (iteration 2) 18.7 0.74 /3.3 \with 20 atlases, one iteration to simultaneously synthesize the
Ours (iteration 3) 18.8 0.75 73.0 4 MR channels (for the whole brain) requires about 2 days of
FLAIR PSNR  mean SSIM MAE computation (16 cores, 100 GB of RAM) for 1 mm isotropic
MRI, and about 3 hours of computation (3 cores, 20 GB of
State-of-the-art [28] 18.7 0.63 95.4  RAM) for 2 mm isotropic MRI. Typically, sulci are less visible
Ours (iteration 1) 193 0.66 78.2  on 2 mm synthetic MRI. Atlas selection could result in a
Ours (iteration 2) 19.8 0.73 73.6  decrease of the number of atlases, which could ultimately lead
Ours (iteration 3) 19.9 0.75 73.1  to ner details on 2 mm synthetic MRI. However, this would

require a strategy to pre-select relevant atlases based on some
similarity criterion between label maps.
Regarding running time in the perspective of generating a
large database of synthetic cases, a region-of-interest enclosing
In this section, we use an advanced tumor growth modgle tumor could be de ned such that the rest of the synthetic
to generate probabilistic label maps, based on which wmage is supplied by a template. Indeed, tumor growth models
create a hard label map. The proposed image synthesis maitel based on a healthy atlas in which a tumor seed is placed,
is then used to generate synthetic MRI of virtual patientand a T1 template is available for the healthy atfas [42]. In
The tumor growth model is a multi-population cell modethis case, image intensity does not have to be optimized for
driven by angiogenesis and vascularization. It is a variati&xels outside the ROI, since these voxels are assumed not to
of the Proliferation Invasion Hypoxia Necrosis Angiogenesisresent intensity abnormalities.
(PIHNA) model described in 1D in [49]. It was also used in 3D Without resorting to tumor growth models, by only per-
to simulate the impact of anti-angiogenic therapy in an atlas farming the patch-based synthesis on pathological regions,
a healthy brain[[50]. Supplementary material, available in thRe extended modality propagation could be applied to any
supplementary les /multimedia tab, details the model and itsrain MR image, provided that a realistic label map of tumor
implementation. Synthetic MRI based on the PIHNA mode&jompartments exists for that image. The generation of those
are shown in Figurg]8. tumor label maps could be either borrowed and transported
from real pathological cases in the BRATS database or could
be generated procedurally through an additional label map
model. This would allow to create a high number of complex
In the experiments presented in this paper, the iteratiged detailed cases, with different locations of the same tumor
nature of the proposed image synthesis method allows l&el maps in the brain. The impact of this perspective would
reach higher PSNR and synthesize qualitatively more realistiave to be carefully considered since some tumor patterns
images. The optimal number of iterations seems to be abanight be more or less likely in different brain regions.
2 or 3. A progressive increase of the feedback weight with All experiments were conducted with a label map as single
the number of iterations, as suggested|in [14] leads to betteput. Due to the iterative process described in this paper, it
synthesis results. would be straightforward to provide as input an MR channel
Automatically setting the value for the feedback weighin top of the label map. Typically, if a contrast-enhanced T1
would require to consider the weight as an additional randdwiR image is available on top of the label map, we could
variable together with an hyper prior which depends on tleynthesize MR channels such as FLAIR or T2. Additional
amount of spatial correlation d&F. inputs are merely additional constraints for the patch match.

C. lllustration using an advanced tumor growth model

IV. DISCUSSION
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Fig. 8: lllustration of the modularity of our image synthesis model. Synthetic 1 mm isotropic MRI, obtained after 3 iterations,
based on a categorical label map generated by the PIHNA tumor growth 3D model.
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