Continuous Speech Classification Systems for Voice Pathologies Identification

Abstract : Voice pathologies identification using speech processing methods can be used as a preliminary diagnostic. The aim of this study is to compare the performance of sustained vowel /a/ and continuous speech task in identification systems to diagnose voice pathologies. The system recognizes between three classes consisting of two different pathologies sets and healthy subjects. The signals are evaluated using MFCC (Mel Frequency Cepstral Coefficients) as speech signal features, applied to SVM (Support Vector Machines) and GMM (Gaussian Mixture Models) classifiers. For continuous speech, the GMM system reaches 74% accuracy rate while the SVM system obtains 72% accuracy rate. For the sustained vowel /a/, the accuracy achieved by the GMM and the SVM is 66% and 69% respectively, a lower result than with continuous speech.
Type de document :
Communication dans un congrès
Luis M. Camarinha-Matos; Thais A. Baldissera; Giovanni Di Orio; Francisco Marques. 6th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr 2015, Costa de Caparica, Portugal. IFIP Advances in Information and Communication Technology, AICT-450, pp.217-224, 2015, Technological Innovation for Cloud-Based Engineering Systems. 〈10.1007/978-3-319-16766-4_23〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01343485
Contributeur : Hal Ifip <>
Soumis le : vendredi 8 juillet 2016 - 14:59:46
Dernière modification le : vendredi 8 juillet 2016 - 15:33:08

Fichier

336594_1_En_23_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Hugo Cordeiro, Carlos Meneses, José Fonseca. Continuous Speech Classification Systems for Voice Pathologies Identification. Luis M. Camarinha-Matos; Thais A. Baldissera; Giovanni Di Orio; Francisco Marques. 6th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr 2015, Costa de Caparica, Portugal. IFIP Advances in Information and Communication Technology, AICT-450, pp.217-224, 2015, Technological Innovation for Cloud-Based Engineering Systems. 〈10.1007/978-3-319-16766-4_23〉. 〈hal-01343485〉

Partager

Métriques

Consultations de la notice

41

Téléchargements de fichiers

14