Embedded subspace-based modal analysis and uncertainty quantification on wireless sensor platform PEGASE

Vincent Le Cam 1, * Michael Döhler 1 Mathieu Le Pen 1 Ivan Guéguen 1 Laurent Mevel 1
* Auteur correspondant
1 I4S - Statistical Inference for Structural Health Monitoring
IFSTTAR/COSYS - Département Composants et Systèmes, Inria Rennes – Bretagne Atlantique
Abstract : Operational modal analysis is an important step in many methods for vibration-based structural health monitoring. These methods provide the modal parameters (frequencies, damping ratios and mode shapes) of the structure and can be used for monitoring over time. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to unknown excitation, measurement noise and finite data length. Estimating the standard deviation of the modal parameters on the same dataset offers significant information on the accuracy and reliability of the modal parameter estimates. However, computational and memory usage of such algorithms are heavy even on standard PC systems in Matlab, where reasonable computational power is provided. In this paper, we examine an implementation of the covariance-driven stochastic subspace identification on the wireless sensor platform PEGASE, where computational power and memory are limited. Special care is taken for computational efficiency and low memory usage for an on-board implementation, where all numerical operations are optimized. The approach is validated from an engineering point of view in all its steps, using simulations and field data from a highway road sign structure.
Type de document :
Communication dans un congrès
EWSHM - 8th European Workshop on Structural Health Monitoring, Jul 2016, Bilbao, Spain
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01344213
Contributeur : Michael Döhler <>
Soumis le : lundi 11 juillet 2016 - 14:37:33
Dernière modification le : mercredi 29 novembre 2017 - 15:59:35
Document(s) archivé(s) le : mercredi 12 octobre 2016 - 13:43:07

Fichier

pegase_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01344213, version 1

Collections

Citation

Vincent Le Cam, Michael Döhler, Mathieu Le Pen, Ivan Guéguen, Laurent Mevel. Embedded subspace-based modal analysis and uncertainty quantification on wireless sensor platform PEGASE. EWSHM - 8th European Workshop on Structural Health Monitoring, Jul 2016, Bilbao, Spain. 〈hal-01344213〉

Partager

Métriques

Consultations de la notice

185

Téléchargements de fichiers

71