
HAL Id: hal-01345020
https://inria.hal.science/hal-01345020

Submitted on 13 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Envisage: Developing SLA-aware Deployed Services
with Formal Methods

Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen, Cosimo
Laneve

To cite this version:
Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen, Cosimo Laneve. Envisage: Devel-
oping SLA-aware Deployed Services with Formal Methods. ESOCC 2016:Fifth European Conference
on Service-Oriented and Cloud Computing, Sep 2016, Wien, Austria. �hal-01345020�

https://inria.hal.science/hal-01345020
https://hal.archives-ouvertes.fr


Envisage: Developing SLA-aware Deployed
Services with Formal Methods?

Elvira Albert1, Frank de Boer2, Reiner Hähnle3,
Einar Broch Johnsen4, and Cosimo Laneve5

1 Complutense University of Madrid, Spain, elvira@fdi.ucm.es
2 CWI Amsterdam, The Netherlands, f.s.de.boer@cwi.nl
3 TU Darmstadt, Germany, haehnle@cs.tu-darmstadt.de

4 University of Oslo, Norway, einarj@ifi.uio.no
5 University of Bologna, Italy – INRIA FOCUS, cosimo.laneve@unibo.it

Insufficient scalability and bad resource management of software services can
easily eat up any potential savings from cloud deployment. Failed service-level
agreements (SLAs) cause penalties for the provider, while oversized SLAs waste
resources on the customer’s side. IBM Systems Sciences Institute estimates that
a defect which costs one unit to fix in design, costs 15 units to fix in testing
(system/acceptance) and 100 units or more to fix in production [6]; this cost
estimation does not even consider the impact cost due to, for example, delayed
time to market, lost revenue, lost customers, and bad public relations. The En-
visage project aims at shifting deployment decisions from the end of the software
engineering process to become an integral part of software design [2].

Deployment on the cloud gives software designers far reaching control over the
resource parameters of the execution environment, such as the number and kind
of processors, the amount of memory and storage capacity, and the bandwidth.
In this context, designers can also control their software’s trade-offs between
the incurred cost and the delivered quality-of-service. SLA-aware services, which
are designed for scalability, can even change these parameters dynamically, at
runtime, to meet their service contracts. Envisage permits to design and validate
these services by connecting executable models to formal service contracts and
an API that is an abstraction of the cloud environment, see Fig. 1. This approach
enables new kinds of analysis:

– Simulation (“Early modeling”): The formally defined modeling language
ABS [10] realizes a separation of concerns between the cost of execution
and the capacity of dynamically provisioned cloud resources [11]. Models are
executable; a simulation tool supports rapid prototyping and visualization.

– Formal methods (“Early analysis”): as ABS was designed for analysis,
it enables a range of tool-supported formal techniques, including behavioral
types for deadlock analysis and SLA compliance [8], worst-case cost analy-
sis [1], deductive verification [7], and automated test-case generation [4].

– Monitoring (“Late analysis”): ABS supports code generation backends [5]
that preserve upper bounds on cost and permit performance monitoring of
the provisioned cloud resources after deployment [13].

? Supported by the EU project FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu).



Formal Service Contract

Executable Model of Client Layer

Cloud API

Provisioning Layer

Simulation
“early modeling”

Formal Methods
“early analysis”

Runtime Monitoring
“late analysis”

Fig. 1. Making services SLA-aware by means of formal methods, from [9].

The modeling approach and analyses developed in Envisage have been suc-
cessfully applied in an industrial context to SDL Fredhopper’s eCommerce Op-
timization [3] and Apache Hadoop YARN [12].

References

1. E. Albert, P. Arenas, A. Flores-Montoya, S. Genaim, M. Gómez-Zamalloa,
E. Martin-Martin, G. Puebla, and G. Román-Díez. SACO: Static Analyzer for
Concurrent Objects. In TACAS, LNCS 8413, pages 562–567. Springer, 2014.

2. E. Albert, F. de Boer, R. Hähnle, E. B. Johnsen, and C. Laneve. Engineering
virtualized services. In 2nd Nordic Symposium on Cloud Computing & Internet
Technologies (NordiCloud’13), pages 59–63. ACM Press, 2013.

3. E. Albert, F. S. de Boer, R. Hähnle, E. B. Johnsen, R. Schlatte, S. L. Tapia Tarifa,
and P. Y. H. Wong. Formal modeling of resource management for cloud architec-
tures: An industrial case study using Real-Time ABS. Journal of Service-Oriented
Computing and Applications, 8(4):323–339, 2014.

4. E. Albert, M. Gómez-Zamalloa, and M. Isabel. SYCO: A systematic testing tool
for concurrent objects. In Compiler Construction (CC’16). ACM, 2016.

5. N. Bezirgiannis and F. de Boer. ABS: A high-level modeling language for cloud-
aware programming. In SOFSEM, pages 433–444. Springer, 2016.

6. B. W. Boehm and P. N. Papaccio. Understanding and controlling software costs.
IEEE Trans. SW Eng., 14(10):1462–1477, 1988.

7. C. C. Din, R. Bubel, and R. Hähnle. KeY-ABS: A deductive verification tool for
the concurrent modelling language ABS. In CADE, LNCS 9195. Springer, 2015.

8. E. Giachino, C. Laneve, and M. Lienhardt. A Framework for Deadlock Detection
in ABS. Software and Systems Modeling, 2016. To Appear.

9. R. Hähnle and E. B. Johnsen. Designing resource-aware cloud applications. IEEE
Computer, 48(6):72–75, 2015.

10. E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In FMCO, LNCS 6957, pages 142–
164. Springer, 2011.

11. E. B. Johnsen, R. Schlatte, and S. L. Tapia Tarifa. Integrating deployment ar-
chitectures and resource consumption in timed object-oriented models. Journal of
Logical and Algebraic Methods in Programming, 84(1):67–91, 2015.

12. J.-C. Lin, I. C. Yu, E. B. Johnsen, and M.-C. Lee. ABS-YARN: A formal framework
for modeling Hadoop YARN clusters. In FASE, LNCS 9633. Springer, 2016.

13. B. Nobakht, S. de Gouw, and F. S. de Boer. Formal verification of service level
agreements through distributed monitoring. In ESOCC, LNCS 9306, pages 125–
140. Springer, 2015.


	Envisage: Developing SLA-aware Deployed Services with Formal Methods 
	Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen, and Cosimo Laneve

