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Insufficient scalability and bad resource management of software services can
easily eat up any potential savings from cloud deployment. Failed service-level
agreements (SLAs) cause penalties for the provider, while oversized SLAs waste
resources on the customer’s side. IBM Systems Sciences Institute estimates that
a defect which costs one unit to fix in design, costs 15 units to fix in testing
(system/acceptance) and 100 units or more to fix in production [6]; this cost
estimation does not even consider the impact cost due to, for example, delayed
time to market, lost revenue, lost customers, and bad public relations. The En-
visage project aims at shifting deployment decisions from the end of the software
engineering process to become an integral part of software design [2].

Deployment on the cloud gives software designers far reaching control over the
resource parameters of the execution environment, such as the number and kind
of processors, the amount of memory and storage capacity, and the bandwidth.
In this context, designers can also control their software’s trade-offs between
the incurred cost and the delivered quality-of-service. SLA-aware services, which
are designed for scalability, can even change these parameters dynamically, at
runtime, to meet their service contracts. Envisage permits to design and validate
these services by connecting executable models to formal service contracts and
an API that is an abstraction of the cloud environment, see Fig. 1. This approach
enables new kinds of analysis:

– Simulation (“Early modeling”): The formally defined modeling language
ABS [10] realizes a separation of concerns between the cost of execution
and the capacity of dynamically provisioned cloud resources [11]. Models are
executable; a simulation tool supports rapid prototyping and visualization.

– Formal methods (“Early analysis”): as ABS was designed for analysis,
it enables a range of tool-supported formal techniques, including behavioral
types for deadlock analysis and SLA compliance [8], worst-case cost analy-
sis [1], deductive verification [7], and automated test-case generation [4].

– Monitoring (“Late analysis”): ABS supports code generation backends [5]
that preserve upper bounds on cost and permit performance monitoring of
the provisioned cloud resources after deployment [13].

? Supported by the EU project FP7-610582 Envisage: Engineering Virtualized Services
(http://www.envisage-project.eu).



Formal Service Contract

Executable Model of Client Layer

Cloud API

Provisioning Layer

Simulation
“early modeling”

Formal Methods
“early analysis”

Runtime Monitoring
“late analysis”

Fig. 1. Making services SLA-aware by means of formal methods, from [9].

The modeling approach and analyses developed in Envisage have been suc-
cessfully applied in an industrial context to SDL Fredhopper’s eCommerce Op-
timization [3] and Apache Hadoop YARN [12].
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