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Abstract. In the last few years, many efforts have been devoted to the
development of solutions aiming at ensuring the confidentiality and in-
tegrity of data and computations in the cloud. In particular, a recent
solution for verifying the integrity of equi-join queries is based on the
insertion of checks (markers and twins) whose presence provides prob-
abilistic guarantees on the integrity of the computation. In this paper,
we propose an approach for verifying the integrity of approzximate join
queries, which is based on the introduction of a discretized version of the
join attribute and on the translation of the approximate join into an equi-
join defined over the discrete attribute added to the original relations.
The proposed approach guarantees the correctness and completeness of
the join result, while causing a limited overhead for the user.

1 Introduction

Cloud computing has brought enormous benefits in terms of the availability of
a universal access to data as well as of elastic storage and computation ser-
vices. More and more often users and organizations put their (possibly sensi-
tive) data in the hands of external cloud providers, which become responsible
for the storage and management of such data [5,10,16]. A recent trend in cloud
computing is a distinction between providers of storage services and providers of
computational services. This diversification supports the development of efficient
applications that combine the functions offered by different cloud providers. In
this context, users and organizations can therefore decide to store their data at
reliable and well-known storage servers and perform computationally intensive
processes (e.g., join operations) using the computational services offered by a less
expensive and potentially untrusted computational server. Besides performance
considerations, an important advantage of relying on storage and computational
servers is due to the economic advantage of such a choice [3]. While appealing,
this approach brings inherent risks related to the confidentiality and integrity of
data and computations, which are difficult to mitigate since data are not under
the direct control of their owners. The research community has dedicated many
efforts in developing solutions for these problems, resulting in several approaches



to protect the confidentiality and integrity of data at rest (e.g., [5]), as well as
of computations over them (e.g., [12,17,18]).

In this paper, we make a step forward and present a solution for verifying
the integrity of approximate join queries. An approximate join aims at com-
bining tuples with similar (even if not equal) values for the join attribute, and
can be needed in several applications (e.g., to detect duplicate entities in dif-
ferent databases or to identify data clusters). The current techniques can verify
the integrity of equi-join queries only (e.g., [3]) and then cannot be directly
applied to verify the integrity of approximate joins. Moreover, since data are
typically encrypted to protect their confidentiality, the evaluation of similarity
conditions characterizing an approximate join cannot be efficiently executed on
such encrypted data. A client is then not able to delegate the join operation to a
computational server without revealing the plaintext values of the join attribute.
In the remainder of this paper, after the presentation of some basic concepts and
of the problem we aim at addressing (Section 2), we illustrate an approach for
verifying the integrity of approximate joins (Section 3). Our solution consists
in adding to the original relations a discretized version of the join attribute,
translating approximate joins into equi-joins over the discretized attribute. The
equi-join is computed as a semi-join, delegating to an external computational
server the execution of the join, which is a computationally intensive opera-
tion. The techniques in [3] are used to verify the integrity of the computation
performed by the computational server (Section 4). Our solution does not im-
pact the correctness and completeness of the join result, and provides limited
overhead for the storage servers and for the user (Section 5).

2 Basic concepts and problem statement

We consider a scenario where a client wishes to evaluate an approximate join
between two relations B; and B, stored at two trustworthy storage servers S;
and S, respectively. The computation of the approximate join is delegated to
an external and potentially unreliable computational server Cs. Intuitively, an
approximate join between B; and B, matches tuples that are sufficiently similar,
meaning that the values of their join attribute are similar. The similarity between
the values of the join attribute can be measured by choosing a distance function
(the Euclidean distance in our scenario) and a threshold « set by the client. The
query formulated by the client is of the form “SELECT A FROM B; JOIN B, ON
|B;.I — B,.I|<a WHERE C; AND C,. AND C,.,” with A a subset of attributes in
B, U B,; I the set of join attributes; |B;.I — B,.I|<« the similarity condition
and « the threshold fixed by the client; and C, C,., and C},. Boolean formulas
of conditions over attributes in By, B,., and B;U B,., respectively. The evaluation
of conditions C; and C, is pushed down to the storage servers.

Current approaches for integrity verification consider only equi-joins that
are executed as semi-joins (or regular joins) by a computational server and are
based on the combined adoption of encryption on the fly (to protect data con-
fidentiality), and of markers and twins (to provide integrity guarantees) [2,3].



Each storage server first receives from the client the sub-query it should evaluate
and the information necessary for the adoption of encryption on the fly, markers,
and twins. It then executes the received sub-query (obtaining relations L and R)
and projects the join attribute (obtaining relations LI and RI), thus naturally
removing duplicate values. Each storage server then duplicates the tuples in its
relation that satisfy a twinning condition Ciyi, defined by the client on the join
attribute (to guarantee that twins belong to the join result). Twinned tuples
are made unrecognizable to the computational server by combining the value
of the join attribute with a random salt before encryption. Each storage server
also inserts fake tuples (markers), not recognizable as such by the computational
server, into the relation before sending it to the computational server. Markers
generated by the two storage servers have the same values for the join attribute
(to guarantee their presence in the join result), and these values do not appear
in real tuples (to avoid spurious tuples). The resulting relations LI* and RI*are
encrypted by the storage servers (obtaining relations LI and RI}), with a key
communicated by the client and that changes at each query, and are sent to the
computational server. The computational server evaluates the equi-join between
the two relations received from the storage servers and sends the result JIj to
the client. The client decrypts JIj, verifies its integrity (i.e., the client checks
whether all expected markers are in the result and twinned tuples do not appear
solo), and removes markers and twins (obtaining relation JI). The client then
sends JI to both the storage servers, which return to the client all the tuples
in L and R having a value for the join attribute in JI. Upon receiving these
relations (L.J and RJ) the client recombines them with JI obtaining the join
result. Figure 1 illustrates an example of execution of an equi-join, assuming to
adopt one marker (with value m for the join attribute), and to twin tuples whose
join attribute is equal to a or d.

The semi-join approach mentioned above cannot be used for approximate
joins. In fact, the computational server should evaluate a similarity condition
|L.I — R.I|<« over encrypted attributes, which is possible only if the encryp-
tion function supports the evaluation of arithmetic operations. Such encryption
functions (e.g., homomorphic encryption) are inefficient and not suitable for all
scenarios. Also, the definition of markers and twins should be revised to comply
with the similarity condition, without revealing the nature of the tuples in the
encrypted relations.

3 Approximate join transformation

Our approach for verifying the integrity of an approximate join is based on a
discretization process applied on the domain of the join attribute. This discretiza-
tion allows us to translate an approximate join into an equi-join. For simplicity,
we assume that the domain D of the join attribute is the set of real, natural, or
integer numbers. We note however that our solution can be extended to operate
also over any domain characterized by a total order relationship.
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Fig. 1. Equi-join execution as a semi-join

3.1 Discretized domain

The discretization process redefines the domain of the join attribute, transform-
ing it into a (coarser grained) discrete domain. In this way, the similarity con-
dition |L.I — R.I|<« can be transformed into an equality condition over the
discretized join attribute, transforming the approximate join into an equi-join.

The discretization of domain D requires to define a discrete domain D and
a mapping function f that maps original values into discrete values. To this
aim, we chose a granularity v of the discrete domain, which corresponds to the
distance between two consecutive values in 15, and a reference point p. The
reference point p is a value in the original domain D that belongs also to the
discretized domain D and that, together with v, can be used to determine the
values in D. We define the values in D to be at a distance multiple of v from p.
Formally, a discretized domain is defined as follows.

Definition 1 (Discretized domain). Let D be a continuous domain, v be a
granularity, and p be an element in D. A discretized domain D of D is defined
as the set of values in D whose distance from p is a multiple of v, that is,
D={veD:v—p=uay, withz € Z}.



CUSTOMER — L ProDUCT — R L R

[Name[Availability| [Id] Price | | [Name|Availability| 7 | [Id[Price] I |

Alice 11 P1 27 Alice 11 10 P1 27 120

Bob 48 P2 8 Bob 48 50 P1 27 |30

Carol 18 P3 14 Carol 18 20 p2 8 0

David 62 pa 46 David 62 60 P2 8 10
pa| 14 |10
pa| 14 |20
Pa 46 40
pa| 46 |50

(a) original relations (b) discretized relations
I 0 5 10 15 20 25 30 35 40 45 50 55 60 65

O 5 10 15 20 2 30 35 40 45 50 55 60 65 70

(c) mapping
Fig. 2. An example of two relations (a), their discretization with oo = 5 (b), and the
corresponding mapping of the join attribute (c)

For instance, a discretized domain of the natural numbers N, which is the
domain of attribute Availability in relation CUSTOMER in Figure 2(a), is
domain ﬁ:{O, 10,20, ...}, assuming 0 as reference point and 10 as granularity.

The discretized domain of the join attribute should be the same for both the
relations involved in the join operation to permit the correct evaluation of the
equi-join condition between them. However, the mapping function used to map
each tuple in L to a value in D (i.e., the partitioning of D into intervals of size
~ and their association with discrete values) may be different from the mapping
function used for the tuples in R, as discussed in the following.

3.2 Choosing the correct granularity

Each relation stored at the two storage servers §; and S, is complemented with
an additional attribute, denoted I , whose values have been obtained through the
discretization of the corresponding join attribute domain. The similarity condi-
tion |L.I — R.I|<« is then transformed into an equi-join condition of the form
L.0 = R.I. The set of tuples returned by the evaluation of this equi-join condi-
tion should be correct, meaning that all tuples satisfying the original similarity
condition should be part of the result, and should include a limited number of
spurious tuples (i.e., tuples that do not satisfy the similarity condition).

To guarantee the correctness of the join result and to reduce the number of
spurious tuples, the granularity v and the mapping function f should be carefully
chosen. In fact, a too coarse granularity may cause the presence of an excessive
number of spurious tuples, and a too fine granularity could cause the absence
of tuples from the join result. Analogously, a bad mapping function could cause
the incompleteness of the join result. (The reference point p influences neither
the number of spurious tuples nor the correctness of the join). The correctness
of the join result is guaranteed when the values at distance lower than « are



mapped to the same discrete value. Suppose to choose v = «, and a mapping
function f :D—D that associates with each tuple ¢t in L and R the value v in D
closest to t[I] (i.e., f(t[I])={v € D : [v—t[I]] < 0.57}). In this case, the equi-join
result would not be correct because some tuples satisfying the original similarity
condition would be omitted. For instance, consider relations CUSTOMER and
ProDUCT in Figure 2(a) and assume a=5 and p = 0. The discrete domain Dis
{0,5,10,...} and f maps: values in the interval [0,2.5) to 0, values in the interval
[2.5,7.5) to 5, and so on (we assume that the upper bound of each interval is
excluded from the interval itself). Value 18 (associated with Carol) and value
14 (associated with pys) would then be mapped to different discrete values (i.e.,
20 and 15, respectively), even if the difference between them is 4. Therefore, the
pair (Carol,p,) satisfies the similarity condition but does not satisfy the equi-
join condition over the discrete attributes. This problem happens independently
from the granularity chosen. In fact, values at distance lower than o may be
associated with different discrete values by function f. Consider, as an example,
two values 1.5y + ¢ and 1.5y — €, with € an arbitrarily small value, and assume
that ﬁ:{O,% 27,...}. Tt is easy to see that, independently from the granularity
v, the first value is mapped by f to 27, while the second value is mapped by
f to ~v. Hence, the corresponding tuples will not satisfy the equi-join condition
even if the difference between the two original values is 2e < a.

Our solution consists in replicating the tuples in the original relations and
in associating a different discrete value with each replica. The number of copies
to be generated for each tuple depends on the granularity v (i.e., the finer the
granularity, the higher the number of necessary replicas). Let us consider v = .
In this case, it is necessary to duplicate each tuple in L and each tuple in R, and to
associate each tuple ¢ with the two values closest to t[I] in D. Hence, the mapping
function f is defined as f:D—Dx D with f(t[I])={v1,vs € D:|vy—(t[I]—0.57)| <
0.5y and |va — (¢[I] + 0.5y)| < 0.5v}. This approach, although effective, has
the drawback of doubling the data transferred from the storage servers to the
computational server. If instead v = 2a«, only the tuples in one of the two
relations (say R) should be duplicated. In this case, it is sufficient to associate
each tuple [ in L with the discrete value nearest to [[I]. Each tuple r in R
is instead duplicated and associated with the two discrete values nearest to
r[I]. This approach limits the communication overhead as only one of the two
relations (possibly the smallest) is duplicated. Further, increasing v does not
provide advantages and causes a higher number of spurious tuples in the equi-
join result. A good balance between the number of spurious tuples in the join
result and the number of additional tuples in the relations is then v = 2a.
Figure 2(c) illustrates how the values of attributes Availability and Price
are mapped assuming o« = 5 and p = 0. The mapping function for relation
CUSTOMER is fr(t[I])={v € D:L’U — t[I]| < 5}, while the function for relation
PropucT is fr(t[I])={v1,v2 € D:|vy — (t[I] = 5)| < 5 and |ve — (¢[I] +5)| < 5}.
The original domain is then partitioned in a different way for the two relations.
In particular, there is a shift of a=5, which guarantees an intersection between
the intervals of original values associated with the same discrete values in L



and R, guaranteeing the effectiveness of the equi-join condition. As an example,
values in [5,15) in CUSTOMER are mapped to 10, as well as the values in [0,20) in
PropuCT (intervals [0,10) and [10,20)), with an intersection of width y=10. The
relations resulting from the discretization are then formally defined as follows.

Definition 2 (Discretized tables). Let L(I,Attr) and R(I,Attr) be two rela-
tions, I be the join attribute defined over domain D, and « be the threshold fized
by the similarity condition. The discretized versions L of L and R of R are two
relations defined over schema (I,Attr,I) where the domain of I is the discretized
domain D of D with v = 2, and:

— VieL, 3lel s.t. [[I]=1]1], [[Attr]=l[Attr], and [[I]=fL(I[1])), with fr : D —
D and fr(l[I])={v e D: v =[] < a};

— VreR, 371,72€R such that 71 [I]|=ro[I]=r[I], #1[Attr]|=ra[Attr]=r[Attr], and
(721[1],722[[]):]05{([[1]), with fR :D —- DxD and fR(T[I]):{’Ul,’UQ S D.‘|’U1 —
(rlI] — o) < a and (v — (r[I] + a)| < a}.

Figure 2(b) represents the discretized version of relations CUSTOMER and
PropucCT in Figure 2(a), obtained considering the discretized domain in Fig-
ure 2(c). Note that each original tuple in PRODUCT is replaced by two tuples
with discrete values representing the end-points of the interval to which the orig-
inal value belongs. The size of the discretized relation is then twice as the size
of the original relation.

4 Join evaluation and correctness of the approach

Like for the execution of an equi-join, the storage and computational servers do
not need to coordinate for join execution. The client sends to the storage servers
their sub-queries along with the information necessary to encrypt their relations,
to generate markers and twins, and to perform the discretization process. The
storage servers execute their sub-query and on the resulting relations apply the
discretization process illustrated in Section 3. The storage servers then project
attribute I, insert markers and twins, and encrypt the resulting relations. The
execution of the join then proceeds according to the semi-join strategy described
in Section 2. Due to the discretization process, the relation J , resulting from the
recombination performed by the client and the integrity check and clean up
phase, may include spurious tuples. In fact, the maximum distance between two
(non discretized) values in D that map to the same discrete value in D is 3o
(e.g., 6 in L and 19 in R are both mapped to 10). The client will then filter spu-
rious tuples from J to obtain the approximate join result J. For instance, with
reference to relations CUSTOMER and PRODUCT in Figure 2(a), consider a query
that aims to return, for each customer, the products that have a price within a
range of 5 with respect to what the customer is willing to spend (which is rep-
resented by attribute Availability). Figure 3 illustrates the evaluation of such
an approximate join query with similarity condition |Availability—Price|<5,
adopting the discretized domain in Figure 2(c). Relation .J includes one spuri-
ous tuple combining Carol (with value 18 mapped to 20) with p; (with value



Name| Avail |Id |Price
Alice 11 |p2| 8
Alice 11 |ps| 14
Bob 48 |pa| 46
Carol 18 |ps| 14

J filter spurious tuples

pi| 46
pi| 27
p3| 14

Mo i
8

Alice 11 {10 10
Carol 18 |20 20 ps| 14 |10
Bob 48 |50 50 pi| 27 |20

) ps| 14 |20
check integrity/clean up pa| 46 |50
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~ ~ Al ~
L LI LI* ! LI RI: RI* R
Name[Avail| ! Id[Price[ 1
Alice 11 [10 twins £ | twins Spi| 27 |20
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. . | — I I — P1 > .
[, discrefize | o0 18 |20 1 p2l 8 |0 discretize R
Name[Avail| |David | 62 |60 i p2| 8 |10 Id|Price
Alice | 11 ! ps| 14 |10 pi| 27
Bob | 48 | ps| 14120 p2| 8
Carol | 18 ! pa| 46 140 ps| 14
David | 62 I pa| 46 |50 pa| 46
I
|
d

STORAGE SERVER S, . STORAGE SERVER S,

Fig. 3. An example of execution of an approximate join

27 mapped to 20 and 30) even if the difference between their values is 9 (hence
greater than 5). We note that spurious tuples can be filtered from the result only
when the join result has been completely reconstructed. However, this filtering
can be combined with the evaluation of possible selection conditions involving
attributes in both relations (i.e., condition Cy,.) that only the client can evaluate.

The adoption of encryption on the fly, markers, and twins guarantees the
correctness and completeness of the equi-join result [2]. More precisely, the prob-
ability g that the omission of d tuples by the computational server go undetected
is equal to @y, - p¢, where @, = (1 — d/F)™ is the probability that no marker
is omitted and p; = ((1 — d/F)? + (d/F)*)! is the probability of either omit-
ting or preserving every pair of twins without detection by the client, with F
the number of tuples in the join result (including m markers and ¢ twins). We



note that, as discussed in [2], a limited number of markers and twins provide
strong protection guarantees (e.g., 50 markers and 5% twins reduce to 0.007 the
probability that an omission of 50 tuples goes undetected, independently from
the number of tuples in the join result). To demonstrate the correctness of our
approach, we only need to prove that the discretization process does not discard
tuples that satisfy the approximate join condition from the equi-join result, as
stated by the following theorem. (The proof has been omitted from the paper
for space constraints.)

Theorem 1 (Completeness). Let L and R be two relations, L and R be their
discretized version (Definition 2). Relation J resulting from the equi-join between
L and R includes all the tuples in the result of the approzimate join between L
and R with similarity condition |L.I — R.I|<ca.

If the computational server behaves correctly, the equi-join result includes all
the tuples of the approximate join formulated by the client and some additional
spurious tuples, which can be easily identified and removed. The discretization
process does not compromise data confidentiality. In fact, the computational
server only receives the encrypted values of the discretized join attribute. Fur-
thermore, the frequency distribution of discretized join values is not revealed to
the computational server, because it operates on relations including the discrete
join attribute only where the duplicate values have been removed by projection.

5 Experimental results

To evaluate the performance of the proposed approach, its effectiveness, and
the amount of spurious tuples introduced by the discretization process, we im-
plemented a Java prototype enforcing our protection techniques. We tested the
prototype using a machine with Intel Core i5-2400, 3.10GHz CPU and 8.00GB
RAM. We randomly generated between 1,000 and 5,000 tuples in the two rela-
tions. The join attribute values have been generated following a Zipf probability
distribution with ¢ between 0 and 1 (lower values of ¢ correspond to more occur-
rences of fewer values), and with a domain including between 1,000 and 2,500
different values. We fixed the number of markers to 100 and the number of twins
to 25% of the tuples in the original relations, which is much more than the val-
ues we expect to be used in real-world scenarios. The experimental results are
computed as the average of five runs.

Spurious tuples. Figure 4 compares the percentage of spurious tuples obtained
with parameter ¢ of the Zipf function equal to 0.1, 0.5, and 1, varying the value
of threshold «, and with relations of 1,000 tuples (Figure 4(a)) and 5,000 tuples
(Figure 4(b)). The number of spurious tuples is not influenced by the number
of tuples in the original relations but grows with a. In fact, a higher threshold
implies a higher number of matching tuples in the approximate join result, but
also a larger grain of discretization. The number of false positive matches then
grows since the values mapped to the same discrete value becomes larger. Also
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Fig. 4. Percentage of spurious tuples in the equi-join result varying threshold « and
the Zipf parameter ¢, with relations including 1,000 (a) and 5,000 (b) tuples

the distribution of the frequency of the join attribute values influences the per-
centage of spurious tuples. Figure 4 shows that the percentage of spurious tuples
is always below 5% when ( is 0.1, and below 15% when ( is 0.5. The percentage
grows when ( is 1 and, for high values of a, reaches 45%.

Response time. A second set of experiments was aimed at analyzing the re-
sponse time of an approximate join query. We focused on the overhead caused by
the discretization and filtering processes, which are specific of the translation of
an approximate join into an equi-join. We considered configurations character-
ized by relations of different sizes, generated in such a way that the distribution
of the join attribute values follow a Zipf distribution with parameter ¢ = 0.5.

Figure 5(a) illustrates the time required for the discretization process, which
takes place at the storage servers, varying threshold «. The figure compares
the values obtained considering relations of three different sizes. As expected,
the discretization time grows with the size of the relations. In fact, the storage
server needs to associate one (or two) discrete value(s) with each tuple in its
relation. The discretization time is instead not affected by the value of « since
the computation of the discrete values does not depend on the granularity of
the discretized domain. It is interesting to note that the time necessary for the
discretization process is always very low (less than 10ms).

Figure 5(b) reports the time for the client to filter spurious tuples, varying
threshold v and comparing three configurations obtained with relations of dif-
ferent sizes. Like for the discretization process, the time necessary for filtering
spurious tuples does not depend on «, but it depends on the number of tuples in
the relations, and then also in the join result. In fact, the client needs to check
every tuple in the join result to discard spurious tuples. The overhead caused
by filtering is however limited, remaining below 7s even for relations with 5,000
tuples (less than 0.05s for relations with 1,000 tuples).

The adoption of a semi-join, in contrast to a regular join, strategy for query
evaluation implies an additional overhead for the client due to the recombina-
tion of the join result computed over the join attribute with the semi-tuples



T T T T T T T T T 10 T T T T T T T T T
Num tuple 5,000
Num mg\e 2,500 Num tuple 5,000 ——

8 Num tuple 1,000 = | L Num tuple 2,500 —x-— |
2 P 8 Num tuple 1,000 -

time (ms)
time (s)

x

I * * Nox x

2 ] x N

t o A * XX, e ks K K XK K3
IR X o KN

et e = ¥ ¥

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
threshold a threshold a
(a) (b)

Fig.5. Time taken by the discretization process (a) and by the filtering process (b)
varying « and the number of tuples in the relations

communication —+—
8 Num tuple 5,000 —— computation ----x---
Num tuple 2,500 ----x--
Num tuple 1,000 -

time (s)
time (s)

*
% e, .
B T I Y.

%

-

x T
X o s om0 ™ M S o s s IR, DR Fo
Y

x >
0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
threshold o threshold o
(a) (b)

Fig. 6. Time taken by the client to recombine the join result (a) and its computation
and communication components (b), varying a and the number of tuples in the relations

received from the storage servers. Figure 6(a) illustrates the overhead of the re-
combination phase, obtained summing the communication time of sending the
semi-tuples to the client and the computation time for the client to obtain the
final result. As expected, the recombination time grows with the size of the join
result, but it is not affected by the discretization threshold «. Figure 6(b) il-
lustrates the communication and computation components of the recombination
overhead obtained with relations of 1,000 tuples. As expected, the communica-
tion time is higher than the computation time.

Figure 7(a) compares the (total) response time for the computation of an
approximate join of configurations obtained varying the number of tuples in the
original relations. The response time is higher for relations with a higher number
of tuples, and does not depend on «a. Figure 7(b) compares the response times
obtained joining relations with 1,000 tuples each, but generated with different
values for the parameter ¢ of the Zipf distribution. We can observe that the
response time is not affected by this parameter.

To better assess the impact of the discretization process in the computation
of an approximate join result, we analyzed the impact of each component of
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the response time. Figure 8 illustrates the contribution to the total response
time due to each phase of the process. The figure shows that the discretization
time has a very limited impact (0.27% on average), as well as the filtering phase
(nearly 11.20% on average). The time necessary for the recombination is higher
(22.52% on average), but it also includes communication costs. However, the
most time consuming phase is the evaluation of the equi-join (nearly 66.02% on
average of the response time) and is delegated to the computational server. We
can then conclude that also approximate joins can benefit from the presence of
inexpensive external computational servers (especially if threshold « is low).

6 Related work

Previous related work has been devoted to protect the confidentiality of data
outsourced to honest-but-curious servers (e.g., [8,15,16]). Most of these solutions
encrypt data before outsourcing and complement them with indexes designed to
support different kinds of SQL clauses (e.g., [5,8]).

Other works have considered the problem of guaranteeing integrity when the
external server is not trusted. These solutions are based on the adoption of au-
thenticated data structures or on probabilistic approaches. Approaches that rely



on authenticated data structures (e.g., Merkle trees [12] and signature-based
schemas [13]) return, together with the query result, a verification object that
is used by the client to verify the correctness and completeness of the result.
Authenticated data structures provide deterministic guarantees but they are de-
fined over a specific attribute and only queries operating on it can be verified.
Probabilistic approaches can be adopted with any query, but provide probabilis-
tic guarantees only (e.g., [3,17,18]). The approach in [18] inserts into the original
relation a set of fake tuples, generated according to a deterministic function,
before outsourcing the relation. Absence of the expected fake tuples in a query
result signals its incompleteness. The solution in [17] duplicates a subset of the
tuples in the original relation and encrypts them with a different key. Since the
external server cannot recognize duplicated tuples, their absence from the query
result signals a misbehavior. The use of twins and markers for the join integrity
verification has been first introduced in [2,3,4]. Here, we extend these propos-
als to the support of approximate joins. Besides correctness and completeness,
techniques aimed at providing freshness by periodically changing the verification
object have also been proposed (e.g., [19]).

A related, but different, line of work is represented by discretization ap-
proaches. The solutions proposed for producing a discrete version of continu-
ous domains have the goal of making data suitable to machine learning and/or
data mining applications, of supporting proximity tests, or of anonymizing
pseudonyms (e.g., [6,9,11,14]). These solutions are therefore not suited to the
scenario considered in this paper. The goal of works studying the evaluation of
approximate joins is to limit the performance impact due to the evaluation of
conditions based on distance measures (e.g., [1,7]). These solutions cannot then
be adopted in our scenario as they do not not operate over encrypted data and
hence do not translate approximate into equality conditions.

7 Conclusions

We have presented an approach that enables a user to assess the integrity of
the result of an approximate join query, leveraging on the techniques introduced
for equi-join queries. We have proposed a discretization of the join attribute to
translate an approximate join into an equi-join query. Due to the discretization
process, the join result may include additional (spurious) tuples that the client
must remove. Also, the experimental evaluation has confirmed the effectiveness of
our approach and has demonstrated its limited overhead. Our work leaves space
to further investigations, including the consideration of non-Euclidean distance
metrics, possibly also operating in multidimensional scenarios.
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