N. Los and G. , THz and for different distances. Scenario Biological Indoor LoS [35, 60] dB, for d = 1 mm [100, 125] dB, for d = 1 m [55, 85] dB, for d = 10 mm [140, 170] dB, for d = 10 m NLoS [30, 75] dB, for d 1 = d 2 = 1 mm [95, 140] dB, for d 1 = d 2 = 1 m [50, 95] dB, Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives, Antennas and Propagation Magazine, pp.24-39104455844, 1109.

T. Kurner and S. Priebe, Towards THz Communications - Status in Research, Standardization and Regulation, Journal of Infrared, Millimeter, and Terahertz Waves, vol.14, issue.2, pp.53-62, 2014.
DOI : 10.1007/s10762-013-0014-3

A. Moldovan, M. Ruder, I. Akyildiz, and W. Gerstacker, LOS and NLOS channel modeling for terahertz wireless communication with scattered rays, 2014 IEEE Globecom Workshops (GC Wkshps), pp.388-392, 2014.
DOI : 10.1109/GLOCOMW.2014.7063462

C. Han, A. Bicen, and I. Akyildiz, Multi-Ray Channel Modeling and Wideband Characterization for Wireless Communications in the Terahertz Band, Wireless Communications, IEEE Transactions on, vol.14, issue.5, pp.2402-2412, 2015.

J. Jornet and I. Akyildiz, Channel Modeling and Capacity Analysis for Electromagnetic Wireless Nanonetworks in the Terahertz Band, IEEE Transactions on Wireless Communications, vol.10, issue.10, pp.3211-3221, 2011.
DOI : 10.1109/TWC.2011.081011.100545

I. Llatser, A. Mestres, S. Abadal, E. Alarcon, H. Lee et al., Cabellos-Aparicio, Time-and Frequency-Domain Analysis of Molecular Absorption

G. Piro, K. Yang, G. Boggia, N. Chopra, L. Grieco et al., Terahertz Communications in Human Tissues at the Nanoscale for Healthcare Applications, IEEE Transactions on Nanotechnology, vol.14, issue.3, pp.404-406, 2015.
DOI : 10.1109/TNANO.2015.2415557

P. Boronin, D. Moltchanov, and Y. Koucheryavy, A molecular noise model for THz channels, 2015 IEEE International Conference on Communications (ICC), pp.1286-1291, 2015.
DOI : 10.1109/ICC.2015.7248500

J. Kokkoniemi, J. Lehtomki, and M. Juntti, A discussion on molecular absorption noise in the terahertz band, Nano Communication Networks, vol.8, 2015.
DOI : 10.1016/j.nancom.2015.11.001

F. Sheikh, M. El-hadidy, and T. Kaiser, Terahertz band: Indoor ray-tracing channel model considering atmospheric attenuation, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp.1782-1783, 2015.
DOI : 10.1109/APS.2015.7305280

R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-ostmann, M. Koch et al., Scattering Analysis for the Modeling of THz Communication Systems, IEEE Transactions on Antennas and Propagation, vol.55, issue.11, pp.3002-3009, 2007.
DOI : 10.1109/TAP.2007.908559

J. Kokkoniemi, J. Lehtomaki, K. Umebayashi, and M. Juntti, Frequency and Time Domain Channel Models for Nanonetworks in Terahertz Band, IEEE Transactions on Antennas and Propagation, vol.63, issue.2, pp.678-691, 2015.
DOI : 10.1109/TAP.2014.2373371

A. Sihvola, Metamaterials in electromagnetics, Metamaterials, vol.1, issue.1, pp.2-11, 2007.
DOI : 10.1016/j.metmat.2007.02.003

G. Kenanakis, E. N. Economou, C. M. Soukoulis, and M. Kafesaki, Controlling THz and far-IR waves with chiral and bianisotropic metamaterials, EPJ Applied Metamaterials, vol.2, 2015019.
DOI : 10.1051/epjam/2015019

K. Lindman, Om en genom ett isotropt system av spiralformiga resonatorer alstrad rotationspolarisation av elektromagnetiska vagorna, Ofversigt af Finska Vetenskaps-Societetens forhandlingar, A, Matematik och naturvetenskaper LVII, issue.3, pp.1914-1915

N. Engheta, Chiral Materials and Chiral Electrodynamics: Background & Basic Physical Principles, Special Workshop on Chiral and Complex Materials Progress in Electromagnetics Research Symposium (PIERS'91)

A. Lakhtakia, Recent contributions to classical electromagnetic theory of chiral media: what next?, Speculations in, Science and Technology, vol.14, issue.1, pp.2-17, 1991.

I. Lindell, A. Sihvola, S. Tretyakov, and A. Viitanen, Electromagnetic waves in chiral and bi-isotropic media, Artech House, 1994.

F. Fang and Y. Cheng, Dual-band Terahertz Chiral Metamaterial with Giant Optical Activity and Negative Refractive Index based on Cross-wire Structure, Progress In Electromagnetics Research M, pp.31-59, 2013.

A. J. Soukoulis and J. F. Taylor, Terahertz chiral metamaterials with giant and dynamically tunable optical activity, Phys. Rev. B, vol.86

J. Kong, Electromagnetic Wave Theory, A Wiley-Interscience publication, 1986.

. Economou, Optically controllable THz chiral metamaterials, Opt. Express, vol.22, issue.10

R. Zhao, T. Koschny, and C. M. Soukoulis, Chiral metamaterials: retrieval of the effective parameters with and without substrate, Optics Express, vol.18, issue.14
DOI : 10.1364/OE.18.014553