False Discovery Rate Approach to Unsupervised Image Change Detection

Abstract : In this paper we address the problem of unsuper-vised change detection on two or more coregistered images of the same object or scene at several time instants. We propose a novel empirical-Bayesian approach that is based on a false discovery rate formulation for statistical inference on local patch-based samples. This alternative error metric allows to efficiently adjust the family-wise error rate in case of the considered large-scale testing problem. The designed change detector operates in an un-supervised manner under the assumption of the limited amount of changes in the analyzed imagery. The detection is based in the use of various statistical features, which enable the detector to address application-specific detection problems provided an appropriate ad hoc feature choice. In particular, we demonstrate the use of the rank-based statistics: Wilcoxon and Cramér-von Mises for image pairs, and multisample Levene statistic for short image sequences. The experiments with remotely sensed radar, dermatological, and still camera surveillance imagery demonstrate accurate performance and flexibility of the proposed method.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (10), pp.4704-4718. 〈10.1109/TIP.2016.2593340〉
Liste complète des métadonnées

Littérature citée [44 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01347028
Contributeur : Vladimir Krylov <>
Soumis le : mercredi 20 juillet 2016 - 11:04:25
Dernière modification le : jeudi 15 mars 2018 - 09:36:03

Fichier

krylovTIP16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vladimir Krylov, Gabriele Moser, Sebastiano B. Serpico, Josiane Zerubia. False Discovery Rate Approach to Unsupervised Image Change Detection. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2016, 25 (10), pp.4704-4718. 〈10.1109/TIP.2016.2593340〉. 〈hal-01347028〉

Partager

Métriques

Consultations de la notice

113

Téléchargements de fichiers

160