D. Aregba-driollet and R. Natalini, Discrete Kinetic Schemes for Multidimensional Systems of Conservation Laws, SIAM Journal on Numerical Analysis, vol.37, issue.6, pp.1973-2004, 2000.
DOI : 10.1137/S0036142998343075

URL : https://hal.archives-ouvertes.fr/hal-00959531

D. Areba-driollet and R. Natalini, Convergence of relaxation schemes for conservation laws, Applicable Analysis, vol.30, issue.1-2, pp.163-193, 1996.
DOI : 10.1080/00036819608840453

U. Ascher, S. Ruuth, and R. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Applied Numerical Mathematics, vol.25, issue.2-3, pp.25-151, 1997.
DOI : 10.1016/S0168-9274(97)00056-1

M. K. Banda and M. Herty, Adjoint IMEX-based schemes for control problems governed by hyperbolic conservation laws, Computational Optimization and Applications, vol.3, issue.7???8, 2010.
DOI : 10.1007/s10589-010-9362-2

M. K. Banda and M. Sea¨?dsea¨?d, Higher-order relaxation schemes for hyperbolic systems of conservation laws, Journal of Numerical Mathematics, vol.13, issue.3, pp.171-196, 2005.
DOI : 10.1515/156939505774286102

S. Bianchini, On the shift differentiability of the flow generated by a hyperbolic system of conservation laws, Discrete Contin, Dynam. Systems, vol.6, pp.329-350, 2000.

J. F. Bonnans and J. Laurent-varin, Computation of order conditions for symplectic partitioned Runge-Kutta schemes with application to optimal control, Numerische Mathematik, vol.103, issue.1, pp.1-10, 2006.
DOI : 10.1007/s00211-005-0661-y

URL : https://hal.archives-ouvertes.fr/inria-00070605

S. Boscarino, L. Pareschi, and G. Russo, Implicit-Explicit Runge--Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit, SIAM Journal on Scientific Computing, vol.35, issue.1, 2011.
DOI : 10.1137/110842855

A. Bressan and G. Guerra, Shift-differentiability of the flow generated by a conservation law, Discrete Contin, Dynam. Systems, vol.3, pp.35-58, 1997.

A. Bressan and M. Lewicka, Shift differentials of maps in BV spaces, in Nonlinear theory of generalized functions, CRC Res. Notes Math, vol.401, pp.47-61, 1997.

A. Bressan and A. Marson, A variational calculus for discontinuous solutions to conservation laws, Communications Partial Differential Equations, vol.20, pp.1491-1552, 1995.

A. Bressan and W. Shen, Optimality conditions for solutions to hyperbolic balance laws, Contemp. Math, vol.426, pp.129-152, 2007.
DOI : 10.1090/conm/426/08187

G. Dimarco and L. Pareschi, Asymptotic-Preserving IMEX Runge-Kutta methods for nonlinear kinetic equations, preprint, 2011.

S. Gottlieb, C. W. Shu, and E. Tadmor, Strong stability preserving high-order time discretization methods. SIAM rev, pp.89-112, 2001.

A. L. Dontchev and W. W. , Hager The Euler approximation in state constrained optimal control Math, Comp, vol.70, pp.173-203, 2001.

W. W. Hager, Runge-Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik, vol.87, issue.2, pp.247-282, 2000.
DOI : 10.1007/s002110000178

E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations, Part I , Nonstiff Problems, 1993.

M. Herty and V. Schleper, Time discretizations for numerical optimization of hyperbolic problems, Applied Mathematics and Computation, 2011.

M. Herty, L. Pareschi, and S. , Steffensen Implicit?Explicit Runge-Kutta schemes for numerical discretization of optimal control problems, 2012.

M. Giles and S. , Convergence of Linearized and Adjoint Approximations for Discontinuous Solutions of Conservation Laws. Part 2: Adjoint Approximations and Extensions, SIAM Journal on Numerical Analysis, vol.48, issue.3, pp.905-921, 2010.
DOI : 10.1137/09078078X

S. Jin and Z. P. , The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, vol.54, issue.3, pp.235-276, 1995.
DOI : 10.1002/cpa.3160480303

C. A. Kennedy and M. H. , Additive Runge???Kutta schemes for convection???diffusion???reaction equations, Applied Numerical Mathematics, vol.44, issue.1-2, pp.139-181, 2003.
DOI : 10.1016/S0168-9274(02)00138-1

J. Lang, J. Verwer-natalini, R. Terracina, and A. , Convergence of a relaxation approximation to a boundary value problem for conservation laws, Comm. Partial Differential Equations, vol.26, pp.7-8, 2001.

L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput, vol.25, pp.129-155, 2005.

L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations Recent Trends in Numerical Analysis, pp.269-289, 2000.

S. Ulbrich, Optimal Control of Nonlinear Hyperbolic Conservation Laws with Source Terms, 2001.

S. Ulbrich, On the superlinear local convergence of a filer-sqp method, 2002.

S. Ulbrich, Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws, Systems & Control Letters, vol.48, issue.3-4, pp.313-328, 2003.
DOI : 10.1016/S0167-6911(02)00275-X

A. Walther, Automatic differentiation of explicit Runge-Kutta methods for optimal control, Computational Optimization and Applications, vol.87, issue.1, pp.83-108, 2007.
DOI : 10.1007/s10589-006-0397-3

C. Castro, F. Palacios, and E. Zuazua, AN ALTERNATING DESCENT METHOD FOR THE OPTIMAL CONTROL OF THE INVISCID BURGERS EQUATION IN THE PRESENCE OF SHOCKS, Mathematical Models and Methods in Applied Sciences, vol.18, issue.03, pp.369-416, 2008.
DOI : 10.1142/S0218202508002723