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Robustness Analysis of Stochastic Programs

with Joint Probabilistic Constraints

Jitka Dupačová

Charles University in Prague, Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Sokolovská 83, 18675 Prague, Czech Republic

Abstract. Due to their frequently observed lack of convexity and/or
smoothness, stochastic programs with joint probabilistic constraints have
been considered as a hard type of constrained optimization problems,
which are rather demanding both from the computational and robustness
point of view. Dependence of the set of solutions on the probability
distribution rules out the straightforward construction of the convexity-
based global contamination bounds for the optimal value; at least local
results for probabilistic programs of a special structure will be derived.
Several alternative approaches to output analysis will be mentioned.

Keywords: Joint probabilistic constraints, contamination technique, out-
put analysis

1 Introduction

Consider the following abstract formulation of a stochastic program

min
x∈X (P )

G0(x, P ) (1)

where P is the probability distribution of a random vector ω with range Ω ⊂ IRM

and both the criterion G0 and the set of feasible solutions X (P ) ⊂ IRN may
depend on P. We assume that in (1)

X (P ) := {x ∈ X : Gj(x, P ) ≤ 0, j = 1, . . . , J} (2)

where Gj(x, P ) ≤ 0 are joint probabilistic constraints such as

P (ω : g(x, ω) ≤ 0) ≥ 1 − ε (3)

with g : IRN ×Ω → IRK , K > 1; Individual probabilistic constraints correspond
to K = 1. Probability level ε ∈ (0, 1) in (3) is fixed, prescribed by regulations or
chosen by the decision maker.

Probabilistic constraints are sufficiently flexible and model well the intuitive
requirements of system reliability or hedging against risk. Depending on the
problem, multiple probabilistic constraints can be used. However, the set X (P )
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is typically nonconvex, sometimes even disconnected, and functions Gj(•, P )
need not be smooth. This is the reason why probabilistic programs have been
recognized as hard optimization problems that are very demanding from the
computational point of view. For a given probability distribution P, (1) with
joint probabilistic constraints (3) is a nonlinear program and in principle, known
algorithms can be adapted provided that checking feasibility is manageable and
the set of feasible solutions is convex. In so doing, one has to cope with the fact
that derivatives are expressed as surface or volume integrals, cf. Chapter 5 of
[31] for an introductory survey and references.

The seminal results on convexity of problems with joint probabilistic con-
straints were proved by Prékopa, cf. [20], under assumptions concerning both
the function g and the probability distribution P.

Definition 1 (α-concave functions). A nonnegative function f(x) defined

on a convex set C ⊂ IRN is α-concave with α ∈ [−∞,∞] if for all x, y ∈ C and

λ ∈ [0, 1] the inequality

f(λx + (1 − λ)y) ≥ mα(f(x), f(y), λ)

holds true. The function mα : IR+ × IR+ × [0, 1] → IR is defined as follows:

mα(a, b, λ) = 0 if ab = 0

and for a > 0, b > 0, 0 ≤ λ ≤ 1

mα(a, b, λ) =















aλb1−λ if α = 0, i.e. f log-concave

max[a, b] if α = ∞, i.e. f quasi-convex

min[a, b] if α = −∞, i.e. f quasi-concave

(λaα + (1 − λ)bα)1/α otherwise.

If f(x) is an α-concave function then it is locally Lipschitz continuous, di-
rectionally differentiable and Clarke regular, i.e. directional derivatives f ′(x, d)
exist and

f ′(x, d) = lim
y→x,t→0

f(y + td) − f(y)

t
∀d ∈ IR.

One of the most general results about convexity of X (P ) is the following
extension of Prékopa’s original theorem.

Theorem 1 (Theorem 4.39 in [31]). Let the functions gk : IRN × IRM →
IR ∀k be quasi-convex. Let ω ∈ IRM be a random vector that has an α-concave

probability distribution, then the function P (ω : gk(x, ω) ≤ 0∀k) is α-concave on

the set

D := {x ∈ IRN : ∃y ∈ IRM s.t. gk(x, y) ≤ 0∀k}.

The required joint quasi-convexity of gk(x, ω) is the main limitation for ex-
ploitation of this result. Theorem 1 is applicable e.g. for gk(x, ω) = −gk(x) +
ωk ∀k, i.e. for separable joint probabilistic constraints. We refer to [21], [22] and
to Chapter 5 of [31] for details. Another favorable class are linear probabilistic
constraints with Gaussian coefficients, see e.g. [22], [32].
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To solve complex probabilistic programs one tries to simplify or reformulate
the model, to approximate the probability distribution, etc. These approxima-
tions and simplifications ask for development of suitable validation techniques
and for stability and robustness tests. See e.g. [15] for qualitative stability results
under perturbations of all input data, including the probability distribution P,
the set X and the probability level α.

Moreover, the probability distribution P itself need not be known completely.
Nevertheless, the wish is to find a solution of (1) which is efficient and reliable
enough to support sensible decisions. This gives a motivation for stability or
robustness analysis of (1) with respect to perturbations of P. Dependence of the
set of feasible solutions on P complicates the stability considerations substan-
tially. We denote X ∗(P ) the set of optimal solutions, ϕ(P ) the optimal value of
the objective function in (1) and we shall assume that ϕ(P ) is finite.

General stability results for (2) were proved by Römisch without any con-
vexity assumptions; cf. Theorems 5 and 9 in [25]. Then the main stumbling
block for their application is the requirement of the metric regularity property

which is related with continuity of the set X (P ) when some perturbations of
P are considered; see e.g. [1] for the general theory and [16] for specific results
for probabilistic constraints. When, in addition, the set of optimal solutions is
nonempty and bounded, the perturbed probability distribution, say Q, is close
to the true one and the objective function is locally Lipschitz continuous one
gets a local Lipschitz property of the optimal value

|ϕ(P ) − ϕ(Q)| ≤ Ld(P,Q)

and upper semicontinuity of the set of optimal solutions. A proper selection
of the probability distance d is crucial. These results were detailed mainly for
separable linear probabilistic programs and α-concave probability distributions,
see e.g. [16], [25], [26].

Similarly as in [11] we shall focus on quantitative stability properties of the
optimal value with respect to perturbations of P. In Section 2 we shall apply
relatively simple ideas of output analysis based on the contamination technique
initiated in [4], [29] whose applications for stochastic programs with a fixed
set of feasible decisions were elaborated e.g. in [8], [12]. The considered special
type of perturbations reduces the stability analysis of (2) to that for parametric
programs with one-dimensional real parameter. At the same time, it gets on with
needs for what-if-analysis or stress testing.

For stochastic programs whose set of feasible decisions does not depend on
P and the objective function G0(x, P ) is linear or concave in P one obtains then
global bounds for the optimal value function. Local contamination bounds for
the optimal value function in (2) were derived in [11] under convexity of the
set X and of functions Gj(•, P )∀j. We shall discuss possible extensions of these
results to problems with probabilistic constraints for which one cannot rely on
convexity properties. In Section 3 some alternative recent approaches will be
indicated.
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2 Robustness Analysis via Contamination

Contamination means to model the perturbations of P by its contamination by
another fixed probability distribution Q, i.e. to use Pt := (1− t)P + tQ, t ∈ [0, 1]
in stochastic program (1) – (2) at the place of P. Then the set of feasible solutions
of (2) for the contaminated probability distribution Pt equals

X (Pt) = X ∩ {x : Gj(x, Pt) ≤ 0, j = 1, . . . , J}. (4)

For probabilistic programs Gj(x, P ) = 1 − ε − Hj(x, P ) with Hj(x, P ) = P{ω :
ω ∈ Hj(x)} where Hj(x) = {y ∈ IRs : gk(x, y) ≤ 0 for k ∈ Kj} describes the
j-th group of constraints depending on ω and on the decision vector x. Evidently,
Gj(x, Pt) = (1− t)Gj(x, P )+ tGj(x, Q) := Gj(x, t)∀j are linear in t. We assume
that the perturbed objective function G0(x, t) is also linear in t. The perturbed
problem (2) is then the linearly perturbed parametric program

min
x∈X

(1 − t)G0(x, 0) + tG0(x, 1) (5)

subject to
(1 − t)Gj(x, 0) + tGj(x, 1) ≤ 0, j = 1, . . . , J. (6)

We denote X (t), ϕ(t), X ∗(t) the set of feasible solutions, the optimal value and
the set of optimal solutions of (5)–(6). For t = 0, X (0), ϕ(0), X ∗(0) denote the
set of feasible solutions, the optimal value and the set of optimal solutions of the
initial unperturbed problem (1) with probabilistic constraints. We shall assume
that X ∗(0) 6= ∅, i.e., that ϕ(0) is finite.

Contamination technique was developed and applied for X (P ) independent
of P and for expectation type objective G0(x, P ), cf. [8], [12]. Assume that such
stochastic program

min
x∈X

G0(x, P ) (7)

was solved for P and that its optimal value ϕ(P ) is finite. Consider a contami-
nated distribution

Pt := (1 − t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution such that ϕ(Q) is finite. Via con-
tamination, robustness analysis with respect to changes in P gets reduced to
much simpler analysis of parametric program with scalar parameter t.
The objective function in (7) is linear in P so that the perturbed objective
G0(x, t) := G0(x, Pt) = (1− t)G0(x, P ) + tG0(x, Q) is linear in t. For a fixed set
of feasible solutions X (t) ≡ X we get easily (see e.g. Theorem 4.16 of [1])

Theorem 2. Assume that X 6= ∅ and ϕ(t) is finite for all t ∈ [0, 1]. Then ϕ(t)
is a lower semicontinuous concave function on [0, 1].

This result allows us to construct bounds for ϕ(t)

(1 − t)ϕ(0) + tϕ(1) ≤ ϕ(t) ≤ ϕ(0) + tϕ′(0+) ∀t ∈ [0, 1], (8)
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i.e. the sought global contamination bounds for the perturbed optimal value
ϕ(Pt). They quantify change in optimal value due to considered perturbations
of (7).

For parameter dependent sets of feasible solutions the optimal value function
ϕ(t) is concave only under rather strict assumptions such as Gj(x, t), j = 1, . . . , J
jointly concave on X × [0, 1] (cf. Corollary 3.2 of [17].) We shall examine how
to construct computable local upper and lower contamination bounds (8) for
the perturbed optimal value ϕ(t) for stochastic programs (1) with probabilistic
constraints (3). These local bounds can be then exploited in robustness analysis
of probabilistic programs with respect to small contamination of data, inclusion
of additional scenarios, etc. The form of (8) suggests that we should concentrate
on the existence and form of the directional derivatives and on assumptions
under which for small t, the sets of feasible solutions X (t) remain fixed or the
optimal value function ϕ(t) is concave.

There exist formulas for directional derivative ϕ(0+) based on the Lagrange
function L(x, u, t) = G0(x, Pt) +

∑

j ujGj(x, Pt) for the contaminated problem.
The generic formula

ϕ′(0+) = min
x∈X∗(0)

max
u∈U∗(x,0)

∂

∂t
L(x, u, 0)

simplifies thanks to linearity of the Lagrange function with respect to the pa-
rameter t. The derivations proceed in accordance with the assumed properties
of problem (5)–(6); consult section 4.3.2 of [1]. The directional derivative ϕ′(0+)
provides information about the influence of contamination on the optimal value
ϕ(t) for small t. It can be obtained without the second order sufficient condi-
tion, e.g. [14], [28], under assumptions which guarantee existence of a continuous
trajectory x∗(t) for a small contamination t. Besides of uniform compactness
of X (t) for t > 0 and small enough, the approach assumes that the unper-
turbed problem has unique optimal solution x∗(0) for which the Mangasarian-
Fromowitz constraint qualification holds. Multiple Lagrange multipliers, whose
sets are bounded convex polyhedra, are not excluded and multiple optimal so-
lutions may occur for t > 0.

Classical stability results for nonlinear parametric programs with a parameter

dependent set of feasible solutions such as (6), including directional differentia-
bility of the optimal value function, were first obtained by applying the Implicit
Function Theorem to the first-order optimality conditions under assumptions
that imply existence and uniqueness of the optimal solution and of the corre-
sponding Lagrange multipliers for the unperturbed problem, see e.g. [13]. For
the Lagrange function

L(x, u, t) = G0(x, t) +
∑

j
ujGj(x, t),

with differentiable functions Gj(•, t) and for X = IRN the optimal solution and
the vector of the corresponding Lagrange multipliers for (6) have to satisfy the
first-order optimality condition

∇xL(x, u, t) = ∇xG0(x, t) +
∑

j
uj∇xGj(x, t) = 0.
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Besides of the linear independence and the strict complementarity conditions
valid at the optimal solution x∗(0) of the unperturbed problem and at the cor-
responding vector of Lagrange multipliers u∗(0), the derivation exploits also
existence and nonsingularity of the Hessian matrix of the Lagrange function
on the tangent space to the active constraints at x∗(0), u∗(0); see e.g. [1], [13].
Then there exists t0 > 0 and a smooth trajectory [x∗(t), u∗(t)] emanating from
[x∗(0), u∗(0)] which satisfies the first-order optimality conditions for 0 ≤ t ≤ t0 :

Gj(x
∗(t), t) ≤ 0, u∗

j (t) ≥ 0, Gj(x
∗(t), t)u∗

j (t) = 0, j = 1, 2, . . . , J,

∇xG0(x
∗(t), t) +

∑

j
u∗

j (t)∇xGj(x
∗(t), P ) = 0

and the directional derivative

ϕ′(0+) = L(x∗(0), u∗(0), 1) − L(x∗(0), u∗(0), 0).

This approach was applied in [5] for probabilistic programs under the second
order sufficient condition. Having in mind the nonsmooth character of proba-
bilistic constraints we wish to get bounds for the optimal value function ϕ(t)
under relaxed differentiability requirements. We shall see that thanks to the as-
sumed structure of perturbations
• lower bound for ϕ(t) can be derived for G(x, P ) linear (or concave) with re-
spect to P without any smoothness or convexity assumptions with respect to x,
• further assumptions are needed for derivation of an upper bound.

The lower bound for the optimal value function was derived in [11] for the as-
sumed structure of perturbations without any smoothness or convexity assump-
tions with respect to x. Let us consider first only one probability constraint and
an objective G0 independent of P , i.e. the unperturbed problem is

min
x∈X

G0(x) subject to G(x, P ) := 1 − ε − P (ω : g(x, ω) ≤ 0) ≤ 0. (9)

Theorem 3 ([11]). Let X ⊂ IRN be a nonempty convex set, G(x, t) be a linear

function of t ∈ [0, 1] and ϕ(t) be finite for all t ∈ [0, 1]. Then the optimal value

function

ϕ(t) := min
x∈X

G0(x) subject to G(x, t) ≤ 0

is quasi-concave on [0, 1] with the lower bound

ϕ(t) ≥ min{ϕ(1), ϕ(0)}. (10)

When also the objective function depends on the probability distribution, i.e. on
the contamination parameter t, the problem is

min
x∈X

G0(x, t) subject to G(x, t) ≤ 0. (11)
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For G0(x, P ) linear in P , a lower bound can be obtained by application of the
bound (10) separately to G0(x, P ) and G0(x, Q):

ϕ(t) = min
x∈X (t)

G0(x, t) = min
x∈X (t)

[(1 − t)G0(x, P ) + tG0(x, Q)] ≥

(1 − t) min{ϕ(0), min
X (Q)

G0(x, P )} + t min{ϕ(1), min
X (P )

G0(x, Q)}. (12)

The bound is more complicated but still computable. It requires solution of 4
problems two of which are the non-contaminated programs for probability dis-
tributions P,Q and the other ones use both P and Q alternating in the objective
function and constraints. For multiple constraints and contaminated probability
distributions it would be necessary to prove first the inclusion X (t) ⊂ X (0) ∪
X (1). Then the lower bound (12) for the optimal value ϕ(t) = minx∈X (t) G0(x, t)
follows as in the case of one constraint.

Similarly as in [11], trivial upper bounds for ϕ(t) can be obtained with-
out any differentiability assumption if no constraint is active at x∗(0) or if
for all constraints active at x∗(0), i.e. Gj(x

∗(0), 0) = 0, j ∈ J0, inequalities
Gj(x

∗(0), 1) ≤ 0, j ∈ J0 hold true. Then for t small enough, x∗(0) is a feasible
solution of (6), hence G0(x

∗(0), t) ≥ ϕ(t) for t small enough. Using linearity of
G0 with respect to t we obtain the upper bound

ϕ(t) ≤ ϕ(0) + t(G0(x
∗(0), 1) − ϕ(0));

compare with (8). An upper bound for ϕ(t) can be also constructed whenever
there is at disposal a feasible solution x̂ ∈ X (Pt) which may occur due to the
structure of the solved problem. A direct search for x̂ ∈ X which satisfies con-
straints

Gj(x, 0) ≤ 0∀j and Gj(x, 1) ≤ 0∀j

may be manageable, namely, when Q = δω∗ is a degenerated probability distri-
bution. Using it means to augment X by deterministic constraints gk(x, ω∗) ≤
0, k ∈ Kj , j = 1, . . . , J. For problems with one joint probability constraint one
may solve

min
x∈X

G(x, 1) subject to G(x, 0) ≤ 0.

These ideas, however, do not exploit the parametric form of constraints in the
definition of X (Pt). For problems with one joint probabilistic constraint solution
of parametric program

min
x∈X

[(1 − t)G(x, 0) + tG(x, 1)] (13)

for increasing values of t may lead to the sought solution x̂ ∈ X (Pt) and to the
upper bound ϕ(t) ≤ G0(x̂, t).

ILLUSTRATIVE EXAMPLE. In the jointly constrained probabilistic program

minx1 + x2

subject to (14)

P (ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4) ≥ 1 − ε,

x1 ≥ 0, x2 ≥ 0
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the random components (ω1, ω2) are independent and have uniform distributions
on the intervals [1, 4] and [1/3, 1]. It is a convex program and, thanks to the inde-
pendence assumption, the explicit form of the optimal solution can be obtained
directly: x∗

1(P )
.
= 3.6735, x∗

2(P )
.
= 2.7755 and ϕ(P )

.
= 6.4480 for ε = .05; cf.

[18].
To stress the sample distribution we choose the extremal scenario (ω∗

1 , ω∗
2) =

(1.02, 0.34). The optimal solution x∗
1(P ), x∗

2(P ) is infeasible for t = 1, x∗
1(Q)

.
=

4.4118, x∗
2(Q)

.
= 2.5000 and ϕ(Q)

.
= 6.9118. Hence, for all 0 ≤ t ≤ 1 the lower

bound (10) for ϕ(t) is ϕ(P )
.
= 6.4480.

Solution x̂1 = 4.4725, x̂2 = 2.4994 of the “upper bound problem” (13) ob-
tained for t = 0 is feasible for all contaminated problems (7.0614 ≥ 7, 4.02 > 4).
Then, the value 6.9719 = x̂1 + x̂2 is upper bound for ϕ(t)∀t.

For differentiable functions Gj properties of the set X (t) = X (Pt) for small
t follow from results of [2], [23], [24]. Linear independence condition at x∗(0)
implies that x∗(0) is a nondegenerate point, the vector u∗(0) of Lagrange mul-
tipliers is unique and the problem (5)–(6) can be locally reduced to one with a
fixed set of feasible solutions:

min
z

G0(T (z, t), t) on a set C (15)

where T (z, t) is continuously differentiable and T (0, 0) = x∗(0). However, the
cost for obtaining a fixed set of feasible solutions is that linearity of the objec-
tive function with respect to t gets lost. This can be compared to the situation
described in detail in Example 1 of [3] for stochastic linear program with indi-
vidual probabilistic constraints and random right-hand sides ωk. Using quantiles
of marginal probability distributions, the problem can be cast into the form of
a linear program for which the dual feasible set is fixed, independent of P. How-
ever, the quantiles of the contaminated marginal probability distributions that
appear as parameter dependent coefficients in the dual objective function are
not linear in t.

3 Conclusions and alternative approaches

Whereas there exists a general lower bound, our discussion indicates that there
are limited possibilities to construct local upper contamination bounds for non-
convex probabilistic programs when differentiability cannot be guaranteed.

In paper [3], an indirect approach was suggested: To apply contamination
technique to a penalty reformulation of the probabilistic program. Then the set
of feasible solutions does not depend on P and for the approximate problem,
global bounds (8) follow. We refer to Example 4 of [3] for numerical results
related with the illustrative example (14).

Another way how to get an upper bound for the optimal value of the proba-
bilistic program is to apply the worst-case analysis with respect to a whole set P
of considered probability distributions, cf. [19], [33]. This means to hedge against
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all probability distributions belonging to the chosen ambiguity set and to solve
the following problem:

min
x∈X

max
P∈P

G0(x, P ) (16)

subject to
P (ω : g(x, ω) ≤ 0) ≥ 1 − ε ∀P ∈ P. (17)

The problem (16)–(17) need not be more complicated than the underlying prob-
abilistic program. Its tractability depends on function g(x, ω) and on the choice
of the ambiguity set P. In [19], P is the Prokhorov neighborhood of the true
probability distribution P, whereas in [33], P contains probability distributions
with a given mean, covariance matrix and support. In the last case, (16)–(17)
can be solved via semidefinite optimization techniques. The results depend on
the input information and similarly as in [10], their stability should be studied.
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3. Branda, M., Dupačová, J.: Approximation and contamination bounds for proba-
bilistic programs. Ann. Oper. Res. 193, 3–19 (2012)
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5. Dupačová, J.: Stability in stochastic programming – probabilistic constraints. In:
Arkin, V. I., Shiraev, A., Wets, R.(eds.), Stochastic Optimization. LNCIS vol. 81,
pp. 314–325. Springer, Berlin (1986)
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8. Dupačová, J.: Scenario based stochastic programs: Resistance with respect to sam-
ple. Ann. Oper. Res. 64, 21–38 (1996)
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16. Henrion, R., Römisch, W.: Hölder and Lipschitz stability of solution sets in pro-
grams with probabilistic constraints. Math. Program. 100, 589–611 (2004)

17. Kyparisis, J., Fiacco A.: Generalized convexity and concavity of the optimal value
function in nonlinear programming. Math. Program. 39, 285–304 (1987)

18. Pagoncelli, B. K., Ahmed, S., Shapiro, A.: Sample average approximation method
for chance constrained programming: Theory and applications. J. Optim. Theory
Appl. 142, 399–416 (2009)

19. Pflug, G., Wozabal, D.: Ambiguity in portfolio selection. Quant. Fin. 7, 435–442
(2007)
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