Z. Artstein and S. V. Rakovi´crakovi´c, Feedback and invariance under uncertainty via set-iterates, Automatica, vol.44, issue.2, pp.520-525, 2008.
DOI : 10.1016/j.automatica.2007.06.013

R. Baier, C. Büskens, I. A. Chahma, and M. Gerdts, Approximation of reachable sets by direct solution methods for optimal control problems, Optimization Methods and Software, vol.54, issue.3, pp.433-452, 2007.
DOI : 10.1016/0167-6911(89)90073-X

R. Baier and M. Gerdts, A Computational Method for Non-convex Reachable Sets Using Optimal Control, Proceedings of the European Control Conference (ECC), pp.97-102, 2009.

R. Baier and F. Lempio, Computing Aumanns Integral (eds) Modeling Techniques for Uncertain Systems, Proc. of a Conferences Progress in Systems and Control Theory, pp.71-92, 1992.

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Transactions on Automatic Control, vol.24, issue.2, pp.346-349, 1979.
DOI : 10.1109/TAC.1979.1102011

V. Bushenkov, O. Chernykh, G. Kamenev, and A. Lotov, Multi-dimensional Images Given by Mappings: Construction and Visualization, Pattern Recognition and Image Analysis, vol.5, issue.1, pp.35-56, 1995.

F. L. Chernousko, D. Rokityanskii, and . Ya, Ellipsoidal Bounds on Reachable Sets of Dynamical Systems with Matrices Subjected to Uncertain Perturbations1, Journal of Optimization Theory and Applications, vol.36, issue.1, pp.1-19, 2000.
DOI : 10.1023/A:1004687620019

I. A. Digailova and A. B. Kurzhanski, On the Joint Estimation of the Model and State of an Under-Determined System from the Results of Observations, Dokl. Math, vol.65, issue.3, pp.459-464, 2002.

A. L. Dontchev and E. M. Farkhi, Eine Fehlerabsch??tzung f??r diskretisierte Differentialeinschlie??ungen, Computing, vol.21, issue.4, pp.349-358, 1989.
DOI : 10.1007/BF02241223

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides. (Russian ), Nauka, 1985.

T. F. Filippova, Trajectory Tubes of Nonlinear Differential Inclusions and State Estimation Problems, J. Concr. Appl. Math, vol.8, issue.3, pp.454-469, 2010.

T. F. Filippova and D. V. Lisin, On the Estimation of Trajectory Tubes of Differential Inclusions, Proc. Steklov Inst. Math, pp.28-37, 2000.

M. I. Gusev, Estimates of reachable sets of multidimensional control systems with nonlinear interconnections, Proc. Steklov Inst. Math, pp.134-146, 2010.
DOI : 10.1134/S008154381006012X

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis, 2001.
DOI : 10.1007/978-1-4471-0249-6

URL : https://hal.archives-ouvertes.fr/hal-00845131

E. K. Kornoushenko, Interval Coordinatewise Estimates for the Set of Accessible States of a Linear Stationary System. I?IV, Autom. Remote Control, vol.41, issue.44, pp.598-606, 1980.

E. K. Kostousova, External and Internal Estimation of Attainability Domains by Means of Parallelotopes. (Russian), Vychisl. Tekhnol, vol.3, issue.2, pp.11-20, 1998.

E. K. Kostousova, Control synthesis via parallelotopes: optimzation and parallel compuations, Optimization Methods and Software, vol.41, issue.6, pp.267-310, 2001.
DOI : 10.1080/10556780108805805

E. K. Kostousova, Outer polyhedral estimates for attainability sets of systems with bilinear uncertainty, Journal of Applied Mathematics and Mechanics, vol.66, issue.4, pp.547-558, 2002.
DOI : 10.1016/S0021-8928(02)00073-4

E. K. Kostousova, On polyhedral estimates for reachable sets of discrete-time systems with bilinear uncertainty, Automation and Remote Control, vol.72, issue.9, pp.1841-1851, 2011.
DOI : 10.1134/S0005117911090062

E. K. Kostousova, On Polyhedral Estimates for Trajectory Tubes of Dynamical Discrete-Time Systems with Multiplicative Uncertainty, Differential Equations and Applications. 8th AIMS Conference, pp.864-873, 2011.

E. K. Kostousova, On Polyhedral Estimates for Reachable Sets of Differential Systems with a Bilinear Uncertainty. (Russian; to apperar), Trudy Instituta Matematiki i Mekhaniki UrO RAN, vol.18, issue.4, 2012.

E. K. Kostousova and A. B. Kurzhanski, Guaranteed Estimates of Accuracy of Computations in Problems of Control and Estimation. (Russian), Vychisl. Tekhnol, vol.2, issue.1, pp.19-27, 1997.

M. Krastanov and N. Kirov, Dynamic Interactive System for Analysis of Linear Differential Inclusions (eds) Modeling Techniques for Uncertain Systems, Proc. of a Conferences Progress in Systems and Control Theory, pp.123-130, 1992.

V. M. Kuntsevich and A. B. Kurzhanski, Attainability Domains for Linear and Some Classes of Nonlinear Discrete Systems and Their Control, Journal of Automation and Information Sciences, vol.42, issue.1, pp.1-18, 2010.
DOI : 10.1615/JAutomatInfScien.v42.i1.10

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, 1997.
DOI : 10.1007/978-1-4612-0277-6

A. B. Kurzhanski and P. Varaiya, On Ellipsoidal Techniques for Reachability Analysis. Part I: External Approximations, Optimization Methods and Software, vol.15, issue.2, pp.177-206, 2002.
DOI : 10.1007/3-540-48983-5_10

A. B. Kurzhanski and P. Varaiya, On Ellipsoidal Techniques for Reachability Analysis. Part II: Internal Approximations Box-valued Constraints, Optimization Methods and Software, vol.1790, issue.2, pp.207-237, 2002.
DOI : 10.1016/0041-5553(75)90167-6

S. A. Nazin and B. T. Polyak, Interval parameter estimation under model uncertainty, Mathematical and Computer Modelling of Dynamical Systems, vol.66, issue.2, pp.225-237, 2005.
DOI : 10.1137/0732027

B. T. Polyak, S. A. Nazin, C. Durieu, and E. Walter, Ellipsoidal parameter or state estimation under model uncertainty, Automatica, vol.40, issue.7, pp.1171-1179, 2004.
DOI : 10.1016/j.automatica.2004.02.014

A. M. Taras-'yev, A. A. Uspenskiy, and V. N. Ushakov, Approximation Schemas and Finite-Difference Operators for Constructing Generalized Solutions of Hamilton- Jacobi Equations, J. Comput. Systems Sci. Internat, vol.33, issue.6, pp.127-139, 1995.

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems & Control Letters, vol.13, issue.3, pp.263-269, 1989.
DOI : 10.1016/0167-6911(89)90073-X

P. R. Wolenski, The Exponential Formula for the Reachable Set of a Lipschitz Differential Inclusion, SIAM Journal on Control and Optimization, vol.28, issue.5, pp.1148-1161, 1990.
DOI : 10.1137/0328062