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Abstract

Continuing research in [13] and [14] on well-posedness of the opti-
mal time control problem with a constant convex dynamics (in a Hilbert
space), we adapt one of the regularity conditions obtained there to a
slightly more general problem, where nonaffine additive term appears.
We prove existence and uniqueness of a minimizer in this problem as well
as continuous differentiability of the value function (it can be seen as the
viscosity solution to a Hamilton-Jacobi equation) near the boundary.

Key words: optimal time control problem, viscosity solution, eikonal
equation, duality mapping, proximal normals, proximal regularity, Hölder
continuity

1 Introduction

Let us start with the first order partial differential equation in finite dimensions

Γ (x, u (x) ,∇u (x)) = 0 (1)

where Γ : Ω × R × R
n → R is a continuous function, nonlinear with respect

to (w.r.t.) the third variable; Ω ⊂ R
n is an open bounded region. Due to

applications in optimal control and dynamical systems (1) is traditionally called
(stationary) Hamilton-Jacobi equation. There are various notions of solutions
to this equation. For instance, a function u : Ω → R of class C

(
Ω
)
∩ C1 (Ω)
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satisfying (1) for all x ∈ Ω is said to be classical solution, while a Lipschitz
continuous function u : Ω → R such that ( 1) holds for almost each (a.e.) x ∈ Ω
is usually called generalized (or almost everywhere) solution. Speaking about
solutions of (1) we always have in mind some prescribed boundary condition

u (x) = θ (x) , x ∈ ∂Ω, (2)

where θ : Ω → R is a (continuous) given function. Since in practice a clas-
sical solution to the boundary value problem (1)-(2) often fails to exist while
generalized solution may not be unique, another physically reasonable concept
(so named viscosity solution) was introduced by M. Crandall and P.-L. Lions in
1983 (see [6]) whereas similar constructions under different names were known
earlier (see, e.g., [16], [12], [15]). This concept was mainly based on the idea of
”vanishing viscosity” in the sense that (under appropriate conditions) each vis-
cosity solution is the uniform limit as ε → 0+ of the sequence of solutions uε (·)
to the respective boundary value problems for the nonlinear elliptic equations

Γ (x, u,∇u)− ε∆u = 0 (3)

where ∆ =
n∑

i=1

∂2

∂x2

i

is the Laplace operator (notice that (3) has a unique classical

solution for each ε > 0 small enough due to Theorem 3.2 [15]).
The exact definition of viscosity solution can be given either in terms of the

suitable test functions (similarly as the notion of the generalized solutions of
linear PDE in the sense of distrubutions), or by involving a Fréchet generaliza-
tion of the gradient of a function at the point of nondifferentiability. It turned
out that for each suitable boundary data θ (·) a (continuous) viscosity solution
to the problem (1)-(2) exists, is unique and stable w.r.t. both θ (·) and Γ (·).
Furthermore, it is consistent with other types of solutions. In particular, each
viscosity solution belonging to C1 (Ω) is classical one. For the main results of
Theory of Viscosity Solutions, very developed and powerful field of the modern
mathematics, we refer to [1]−[2] and to the bibliography therein. For a concise
survey of viscosity solutions in finite dimensions see also the excellent tutorial
lessons by A. Bressan [3].

Afterwards, the concept and the main results concerning viscosity solutions
were generalized to Banach spaces with the Radon-Nikodym property (see [7],
[8]), in particular, to Hilbert spaces. Notice that although the definition based
on the Fréchet sub- and superdifferentials remains the same, the interpretation
of viscosity solutions via ”vanishing viscosity” is no longer valid in infinite di-
mensions. The motivation, however, comes now from the Theory of Differential
Games.

In our paper we deal only with the case when the hamiltonian Γ in ( 1) does
not depend of x neither u, and is convex w.r.t. the third variable. Already
S. N. Kružkov studied in [15] such Hamilton-Jacobi equations arizing from the
geometric optics. For instance, when n = 3 and Γ(x, u, ξ) = |ξ| − a, with a
constant a > 0, one has so called eikonal equation describing the propagation of a
light wave from a point source placed at the origin in homogeneous medium with
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refraction index 1/a. If, instead, this medium is anisotropic and has constant
coefficients of refraction of light rays parallel to the coordinate axes (say ci)
then the propagation of light can be described by the (more general) elliptic
equation

n∑

i=1

c2iu
2
xi

− 1 = 0. (4)

If, besides that, the medium moves with a constant velocity −→v then the equation
contains already a linear additive term and admits the form

n∑

i=1

c2iu
2
xi

+
2

c
〈−→v ,∇u〉 − 1 = 0, (5)

where c means the speed of the light in a vacuum.
In general, denoting by F the closed convex hull of the set of zeros

{ξ ∈ R
n : Γ (ξ) = 0}

and assuming F to be bounded with intF 6= ∅ (the hamiltonians in (4) and (5)
satisfy these conditions), the equation (1) can be reduced to

ρF (∇u (x))− 1 = 0, (6)

where ρF (·) is the Minkowski functional (gauge function) associated to F ,

ρF (ξ) := inf {λ > 0 : ξ ∈ λF} .

More precisely, it was proved in [4] that under appropriate conditions involving
a kind of geometric compatibility of F , θ (·) and the domain Ω the (unique)
viscosity solution û (·), û |∂Ω = θ, of (6) is the viscosity solution of the problem
(1)-(2) (belonging to the space W 1,∞ (Ω)) and vice versa. Furthermore, this
viscosity solution can be given by the formula

û (x) = inf
y∈C

{ρF 0 (x− y) + θ (y)} (7)

whenever θ : Rn → R is a Lipschitz continuous function such that

∇θ (x) ∈ intF for a.e. x ∈ R
n. (8)

Here C := R
n\Ω and F 0 is the polar set for F .

Let now H be a Hilbert space with the norm ‖·‖ and the inner product 〈·, ·〉.
Then the convolution (7) remains the unique viscosity solution to the equation
(6) with the boundary data u (x) = θ (x), x ∈ C, whenever the slope condition

θ (x)− θ (y) < ρF 0 (x− y) ∀x, y ∈ C (9)

holds. Notice that the inequality (9) follows from (8) in finite dimensions while
in an arbitrary Hilbert space it can be deduced from the inclusion ∂cθ (x) ⊂ F ,
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x ∈ H. Here ∂c is the Clarke generalized gradient of a Lipschitz continuous
function.

So, we are interested in regularity properties of the function (7), which was
well studied when θ ≡ 0 (see [10], [13], [14]). In the latter case let us notice the
following:

1) existence and regularity of the (Fréchet) gradient∇û (x) depends on unique-
ness (in infinite dimensions also on existence) of a minimizer in (7);

2) it is not possible that∇û (x) exists everywhere out of C unless some special
situations;

3) the function û (x) can be interpreted as the minimal time for achieving
the closed set C from x ∈ H\C by trajectories of the differential inclusion
ẋ (t) ∈ −F 0.

Taking into account 1) and 2) it is natural to study the regularity only in
an (open) neighbourhood of C (target set due to 3). If F = B is the closed
unit ball centred in the origin then û (·) is nothing else than the distance from
C, and the minimizers in (7) are the usual metric projections onto C. In this
case the (necessary and sufficient) condition guaranteeing both well-posedness
of the problem and the (Lipschitz) continuity of the gradient ∇û (x) near C is
so named ϕ -convexity (or proximal smoothness) of the set C well studied up
to now (see survey [9] and the bibliography therein).

As concerns an arbitrary gauge F (and θ ≡ 0) then in [13], [14] two different
hypotheses are given, under which both a unique minimizer in (7) (that is a point
on the boundary ∂C attained from x for the minimal time) and the gradient
∇û (x) are (Hölder) continuous in a neighbourhood of C. It turns out that one
of these hypotheses (based on certain ballance between external normals to the
sets C and F ) can be adapted to the case of a Lipschitz continuous perturbation
θ (·).

We start in Section 2 with the basic definitions and an auxiliary statement.
Then, in Section 3, we study the mathematical programming problem (7) from
the viewpoint of the existence, uniqueness and the (Lipschitz) regularity of min-
imizers near the set C. The geometric condition ensuring such well-posedness is
emphasized here. Finally, in Section 4 we examine the (Fréchet) differentiability
of the value function û (·) and justify the (Hölder) continuity of its gradient also
under the assumption that either F 0 or the restriction θ |C is smooth.

2 Preliminaries

Given a convex closed bounded set F ⊂ H with 0 ∈ intF we consider the so
called duality mapping JF : ∂F 0 → ∂F , which associates to each ξ∗ ∈ ∂F 0 the
set of (normalized) linear functionals that support F 0 at ξ∗,

JF (ξ∗) := {ξ ∈ ∂F : 〈ξ, ξ∗〉 = 1} .
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In other words, JF (ξ∗) = NF 0 (ξ∗) ∩ ∂F where NF 0 (ξ∗) is the normal cone to
the polar F 0 at ξ∗. It can be interpreted also as the subdifferential ∂ρF 0 (ξ∗) in
the sense of Convex Analysis. For each dual pair (ξ, ξ∗), i.e., such that ξ ∈ ∂F ,
ξ∗ ∈ ∂F 0 and 〈ξ, ξ∗〉 = 1 let us define the modulus of rotundity (see [13])

ĈF (r, ξ, ξ∗) := inf {〈ξ − η, ξ∗〉 : η ∈ F, ‖ξ − η‖ ≥ r} , r > 0.

If the set F is strictly convex (rotund) at ξ w.r.t. ξ∗, i.e., ĈF (r, ξ, ξ∗) > 0
∀r > 0, then ξ is an exposed point of F and, in particular, ξ is the unique
element of JF (ξ∗). So, in this case ξ is well defined whenever ξ∗ is fixed.
Furthermore, given a set U ⊂ ∂F 0 we say that F is uniformly rotund w.r.t. U
if

inf
{
ĈF (r, ξ, ξ∗) : ξ ∈ JF (ξ∗) , ξ∗ ∈ U

}
> 0 ∀r > 0.

By [14, Proposition 2.1] this property is equivalent to the uniform continuity of
JF (·) in the following sense

sup
η∈JF (η∗)

‖JF (ξ∗)− η‖ → 0 as ‖ξ∗ − η∗‖ → 0, ξ∗ ∈ U , η∗ ∈ ∂F 0 (10)

(we clearly identify JF (ξ∗) with its element whenever it is a singleton). Uniform
rotundity implies also the existence and the uniform continuity on U of the
Fréchet gradient ∇ρF 0 (ξ∗).

Besides the concepts of Convex Analysis above we will use the following
notations. For a lower semicontinuous function ϕ : H → R ∪ {+∞} we denote
by ∂pϕ (x), ∂lϕ (x), ∂−ϕ (x) and ∂cϕ (x) the proximal, limiting (Mordukhovich),
Fréchet and Clarke subdifferential, respectively, at a point x, ϕ (x) < +∞. All
the definitions and the basic facts of the calculus for non convex sets can be
found, e.g., in [5]. Here we observe only that the inclusions

∂pϕ (x) ⊂ ∂−ϕ (x) ⊂ ∂lϕ (x) ⊂ ∂cϕ (x) (11)

always hold, while one of the reverse inclusions takes place whenever ϕ (·) is
regular at x in some sense. For instance, ϕ (·) is said to be proximal (Clarke)
regular at x if ∂pϕ (x) = ∂lϕ (x) (respectively, ∂−ϕ (x) = ∂cϕ (x)).

If C ⊂ H is a nonempty closed set then the notion of some kind of normal

cone to C at a point x ∈ C can be given as the respective subdifferential
of the indicator function IC (·) equal to 0 on C and to +∞ elsewhere. In
particular, the proximal normal cone N

p
C (x) := ∂pIC (x). Further on we denote

by ∂∗C := {x ∈ ∂C : Np
C (x) 6= {0}} the effective boundary, which is dense in

∂C.
Returning to the minimization problem (7) let us formulate first an approx-

imation result, which is crucial for what follows. It can be proved similarly as
Lemma 5.1 [13] by using the Ekeland’s variational principle as well as the fuzzy
sum rule for the proximal subdifferentials (see [5, Theorem 1.8.3]).

Lemma 1 Let C ⊂ H be a nonempty closed set, and θ : H → R ∪ {+∞} be a

lower semicontinuous function, lipschitzean on C. If x ∈ H\C and {xn} ⊂ C is
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a minimizing sequence for the function y 7→ ρF 0 (x− y)+θ (y) on C, then there

exist another minimizing sequence {x′
n} ⊂ C and sequences {x′′

n}, {vn} and {ξn}
such that vn ∈ ∂p (θ |C ) (x′

n), ξn ∈ ∂ρF 0 (x− x′′
n) and ‖x′

n − xn‖+‖x′′
n − xn‖ →

0, ‖vn − ξn‖ → 0 as n → ∞. Here θ |C := θ + IC .

Notice that if the points x′
n are such that ∂p (θ |C ) (x′

n) = ∂pθ (x′
n)+N

p
C (x′

n)
and ∂pθ (x′

n) ⊂ γF for some 0 < γ < 1, then without loss of generality we can
assume that x′

n ∈ ∂∗C and vn ∈ ∂F .

3 Existence, uniqueness and regularity of mini-

mizers

Our standing hypothesis in what follows will be a slightly strengthened condition
than (9):

(H) there exists 0 < γ < 1
‖F‖‖F 0‖ such that

θ (x)− θ (y) ≤ γρF 0 (x− y) ∀x, y ∈ C,

where ‖F‖ := sup {‖ξ‖ : ξ ∈ F}.

Hence θ (·) is lipschitzean on C with the constant γ ‖F‖.
Given now an arbitrary point x0 ∈ ∂C let us emphasize the main local

assumptions, under which the well-posedness results hold:

(H1) the mapping x 7→ JF 0 (∂p (θ |C ) (x) ∩ ∂F ) is single-valued and lips-

chitzean (with a constant L = L (x0) > 0) on the set

Cδ (x0) := {x ∈ ∂∗C : ‖x− x0‖ ≤ δ} , δ > 0;

(H2) in the δ-neighbourhood of x0 the sum rule

∂p (θ |C ) (x) = ∂pθ (x) +N
p
C (x)

takes place;

(H3) F 0 is uniformly rotund w.r.t. the set

Uδ (x0) := ∂F ∩
⋃

x∈Cδ(x0)

∂p (θ |C ) (x) . (12)

For each x ∈ H we denote by πF,θ
C (x) the (possibly empty) set of all mini-

mizers of the function y 7→ ρF 0 (x− y) + θ (y) on C.

6



Theorem 1 Under the hypotheses (H1) − (H3) there exists a neighbourhood

U (x0) such that the mapping x 7→ πF,θ
C (x) is single-valued and continuous on

U (x0).

Proof. Let us give a sketch of the proof. Taking without loss of generality δ > 0
such that δγ ‖F‖ <

(
1− γ ‖F‖

∥∥F 0
∥∥) /L, let us set

U (x0) :=

{
x ∈ H : ‖x− x0‖ <

(
1− γ ‖F‖

∥∥F 0
∥∥) δ

2 ‖F‖ ‖F 0‖
,

û (x) < û (x0) +
1− γ ‖F‖

∥∥F 0
∥∥

L
− δγ ‖F‖

}
. (13)

Fix x ∈ U (x0) \C and a minimizing sequence {xn} ⊂ C of y 7→ ρF 0 (x− y) +
θ (y). Let us choose {x′

n} ⊂ C, {x′′
n} ⊂ H, vn ∈ ∂p (θ |C ) (x′

n) and ξn ∈
∂ρF 0 (x− x′′

n) as in Lemma 1. Our goal is to prove that {x′
n} (hence {xn} as

well) is a Cauchy sequence.
To this end we show, first, that ‖x′

n − x0‖ ≤ δ. It follows then from (H2)
and from the remark after Lemma 1 that x′

n ∈ Cδ (x0) and vn ∈ ∂F for all n
large enough. Considering a (nonincreasing) sequence νn → 0+ such that

‖x′
n − xn‖+ ‖x′′

n − xn‖ ≤ νn; (14)

ρF 0 (x− x′
n) + θ (x′

n) ≤ û (x) + νn; (15)

‖vn − ξn‖ ≤ νn,

n = 1, 2, ... (see Lemma 1). Then using the hypothesis (H3) together with the
property (10) (applied to the gauge F 0) gives that

βn := sup
‖ξ−η‖≤νn

sup {‖JF 0 (ξ)− JF 0 (η)‖ : ξ ∈ ∂F , η ∈ Uδ (x0)} → 0 as n → ∞.

Taking into account that vn ∈ Uδ (x0) (see (12)) and ξn ∈ ∂F we obtain
‖JF 0 (ξn)− JF 0 (vn)‖ ≤ βn, and, consequently, by (H1)

‖JF 0 (ξn)− JF 0 (ξm)‖ ≤ 2βn + L ‖x′
n − x′

m‖ (16)

for all m ≥ n ≥ 1.
On the other hand, by the elementary properties of the convex subdifferen-

tials and duality mappings we find that (x− x′′
n) /ρF 0 (x− x′′

n) = JF 0 (ξn), and
hence

‖x′′
n − x′′

m‖ = ‖ρF 0 (x− x′′
n) JF 0 (ξn)− ρF 0 (x− x′′

m) JF 0 (ξm)‖ ≤

≤ ρF 0 (x− x′′
n) ‖JF 0 (ξn)− JF 0 (ξm)‖+

+ |ρF 0 (x− x′′
n)− ρF 0 (x− x′′

m)|
∥∥F 0

∥∥ . (17)

The terms |ρF 0 (x− x′′
n)− ρF 0 (x− x′′

m)| and ρF 0 (x− x′′
n) can be approximately

estimated by ‖x′
n − x′

m‖ and by û (x)− û (x0), respectively (we use for that the
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inequalities (14) and (15)). Hence, taking into account also (16) we deduce from
(17) that

‖x′
n − x′

m‖ ≤ ‖x′′
n − x′′

m‖+ 2νn ≤ µn +

+
[
L (µ′

n + û (x)− û (x0) + δγ ‖F‖) + γ ‖F‖
∥∥F 0

∥∥] ‖x′
n − x′

m‖

for all m ≥ n ≥ 1, where {µn} and {µ′
n} are some sequences, converging to

zero. We conclude the proof recalling the definition of the neighbourhood U (x0).

Thus, the limit x̄ := limn→∞ x′
n will be (unique) minimizer from πF,θ

C (x). The
continuous dependence of this singleton on x ∈ U (x0) also follows.

Remark 1. In fact, adapting the proof of Theorem 3.1 [14] we can show that the

mapping x 7→ πF,θ
C (x) is locally lipschitzean on the same neighbourhood (13)

with the Lipschitz constant tending to +∞ as x tends to the boundary ∂U (x0).

4 Differentiability of the viscosity solution

We announce, first, a result on subdifferential regularity of the function (7) at
a fixed point x /∈ C, similar to Proposition 5.1 [14]. We see that the regularity
relies upon well-posedness of the minimizers studied in the previous section.

Theorem 2 Let us fix x ∈ H\C and assume that

• πF,θ
C (y) is a singleton for each y, ‖x− y‖ ≤ δ, δ > 0;

• the restriction θ |C is proximally regular at x̄ := πF,θ
C (x);

• the following ”centred” Hölder property

∥∥∥πF,θ
C (x)− πF,θ

C (y)
∥∥∥ ≤ K ‖x− y‖β ∀y, ‖x− y‖ ≤ δ,

holds with an exponent 1/2 < β ≤ 1 and a constant K = K (x) > 0.

Then the function û (·) is Clarke regular at x. More precisely,

∂cû (x) = ∂−û (x) = ∂ρF 0 (x− x̄) ∩ ∂− (θ |C ) (x̄) 6= ∅. (18)

Recalling Theorem 1 and Remark 1 we immediately obtain from the state-
ment above that under the hypotheses (H1)−(H3) the viscosity solution û (·) is
Clarke regular and (18) holds for all x ∈ U (x0) where the neighbourhood U (x0)
is defined by (13). Thus, for the (Fréchet) continuous differentiability it suffices
to require that Φ(x) := ∂ρF 0 (x− x̄) ∩ ∂− (θ |C ) (x̄) is a singleton continuously
depending on x ∈ U (x0). However, this is difficult to verify directly because
Φ(x) (which is nothing else than the Fréchet gradient ∇û (x)) depends on the
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point x through a priori unknown function πF,θ
C (·). On the other hand, the lat-

ter condition (single-valuedness and continuity of the mapping Φ(·)) splits into
two different hypotheses regarding the smoothness either of both the function
θ(·) and the set C, or of the polar gauge F 0. Moreover, such hypotheses can be
given plainly in terms of boundary points of the sets C and F 0. Notice that C
is said to be with smooth boundary near x0 if Nl

C(x) ∩ ∂B is a singleton (say
{nC(x)}) continuously depending on x ∈ ∂C, ‖x − x0‖ ≤ δ, δ > 0. Also the
smoothness of F 0 can be equivalently substituted by the rotundity assumption
for F .

Thus, we arrive at the following result.

Theorem 3 Given x0 ∈ ∂C and δ > 0 let us assume the hypotheses (H1) −
(H3). Suppose also that at least one of the following two conditions holds:

(i) C has smooth boundary, and θ (·) is of class C1 near x0;

(ii) F is rotund w.r.t. each ξ∗ ∈ JF 0 (∂p (θ |C ) (x)), x ∈ ∂C with ‖x− x0‖ ≤ δ.

Then û (·) is Fréchet continuously differentiable on the neighbourhood U (x0).
Furthermore, in the first case we have

∇û (x) = ∇θ (x̄) + λnC (x̄) ,

where λ = λ (x̄) > 0 is the unique positive root of the equation

ρF (∇θ (x̄) + λnC (x̄)) = 1,

while in the second

∇û (x) = ∇ρF 0 (x− x̄) .

Here x̄ := πF,θ
C (x), x ∈ U (x0), as before.

Proof. If the condition (i) is fulfilled then taking into account that πF,θ
C (·) is

single-valued and continuous on U (x0), and that

∂l (θ |C ) (x̄) = ∇θ (x̄) +Nl
C (x̄) = {∇θ (x̄) + λnC (x̄) : λ ≥ 0}

whenever x ∈ U (x0), we obtain that the intersection in (18) reduces to the
singleton {∇θ (x̄) + λ (x̄) nC (x̄)} (see also (11)). The continuity of ∇û (·) can
be shown now by the standart implicit function argument.

Under the alternative assumption (ii) it sufices to observe that due to a
necessary condition of optimality (in the proximal form) the (unique) minimizer

x̄ = πF,θ
C (x) must satisfy the relationship

∂p (θ |C ) (x̄) ∩NF 0

(
x− x̄

ρF 0 (x− x̄)

)
∩ ∂F 6= ∅. (19)

Then, it follows from (19) that x−x̄
ρ
F0 (x−x̄) ∈ JF 0 (ξ) for some ξ ∈ ∂p (θ |C ) (x̄).

Therefore, if x ∈ U (x0) then x̄ is closed to x0 as well, and taking ξ∗ = x−x̄
ρ
F0 (x−x̄)
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we deduce from (ii) that ρF 0 (·) is (Fréchet) continuously differentiable at ξ∗.
So, the intersection in (18) reduces to {∇ρF 0 (x− x̄)}, and the continuity w.r.t.
x also follows.

Remark 2. If in addition to the hypothesis (i) in Theorem 3 we assume that
both unit normal vector nC (·) and the gradient ∇θ (·) are Hölder continuous
with an exponent 0 < α ≤ 1 on a δ-neighbourhood of x0 then ∇û (·) will be
also Hölder continuous near x0 with the same exponent (we say that û (·) is of
class C1,α

loc on U (x0)). One can derive the Hölder inequality for ∇û (·) by using
Theorem 3 and the estimates for the Hausdorff distance between the polars for
convex solids (see Lemma 2 [11]).
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16, 189-220 (1999)

[5] Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., Wolenski, P.R.: Nonsmooth
Analysis and Control Theory. Springer, New York (1998)

[6] Crandall, M., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equa-
tions. Trans. Amer. Math. Soc. 277, 1-42 (1983)

[7] Crandall, M., Lions, P.-L.: Hamilton-Jacobi equations in infinite dimen-
sions. I: Uniqueness of viscosity solutions. J. Funct. Anal. 62, 379-396 (1985)

[8] Crandall, M., Lions, P.-L.: Hamilton-Jacobi equations in infinite dimen-
sions. II: Existence of viscosity solutions. J. Funct. Anal. 65, 368-405 (1986)

[9] Colombo, G., Thibault, L.: Prox-regular sets and applications. In D.Y.
Gao, D. Motreano (eds.), Handbook on Nonconvex Analysis. International
Press, to appear

[10] Colombo, G., Wolenski, P.R.: Variational Analysis for a class of minimal
time functions in Hilbert spaces. J. Convex Anal. 11, 335-361 (2004)

[11] Dal Maso, G., Goncharov, V.V., Ornelas, A.: A Lipschitz selection from
the set of minimizers of a nonconvex functional of the gradient. Nonlin.
Anal.: Theory, Meth. and Appl. 37, 707-717 (1999)

10



[12] Douglis, A.: The continuous dependence of generalized solutions of non-
linear partial differential equations upon initial data. Comm. Pure Appl.
Math. 14, 267-284 (1961)

[13] Goncharov, V.V., Pereira, F.F.: Neighbourhood retractions of nonconvex
sets in a Hilbert space via sublinear functionals. J. Convex Anal. 18, 1-36
(2011)

[14] Goncharov, V.V., Pereira, F.F.: Geometric conditions for regularity in a
time-minimum problem with constant dynamics. J. Convex Anal. 19 (2012)
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