Nonlinear Stabilizers in Optimal Control Problems with Infinite Time Horizon

Abstract : In optimal control problems with infinite time horizon, arising in models of economic growth, there are essential difficulties in analytical and even in numerical construction of solutions of Hamiltonian systems. The problem is in stiff properties of differential equations of the maximum principle and in non-stable character of equilibrium points connected with corresponding transversality conditions. However, if a steady state exists and meets several conditions of regularity then it is possible to construct a nonlinear stabilizer for the Hamiltonian system. This stabilizer inherits properties of the maximum principle, generates a nonlinear system with excluded adjoint variables and leads its trajectories to the steady state. Basing on the qualitative theory of differential equations, it is possible to prove that trajectories generated by the nonlinear stabilizer are close to solutions of the original Hamiltonian system, at least locally, in a neighborhood of the steady state. This analysis allows to create stable algorithms for construction of optimal solutions.
Type de document :
Communication dans un congrès
Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.286-295, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_29〉
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01347548
Contributeur : Hal Ifip <>
Soumis le : jeudi 21 juillet 2016 - 11:21:23
Dernière modification le : jeudi 21 juillet 2016 - 11:48:12

Fichier

978-3-642-36062-6_29_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Alexander Tarasyev, Anastasia Usova. Nonlinear Stabilizers in Optimal Control Problems with Infinite Time Horizon. Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.286-295, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_29〉. 〈hal-01347548〉

Partager

Métriques

Consultations de la notice

59

Téléchargements de fichiers

21