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Abstract. In optimal control problems with infinite time horizon, aris-

ing in models of economic growth, there are essential difficulties in an-

alytical and even in numerical construction of solutions of Hamiltonian

systems. The problem is in stiff properties of differential equations of the

maximum principle and in non-stable character of equilibrium points con-

nected with corresponding transversality conditions. However, if a steady

state exists and meets several conditions of regularity then it is possible to

construct a nonlinear stabilizer for the Hamiltonian system. This stabi-

lizer inherits properties of the maximum principle, generates a nonlinear

system with excluded adjoint variables and leads its trajectories to the

steady state. Basing on the qualitative theory of differential equations, it

is possible to prove that trajectories generated by the nonlinear stabilizer

are close to solutions of the original Hamiltonian system, at least locally,

in a neighborhood of the steady state. This analysis allows to create stable

algorithms for construction of optimal solutions.

Keywords: optimal control, nonlinear control system, nonlinear stabi-
lizer, economic systems.

Introduction

This paper deals with optimal control problems with infinite time horizon basing
on economical growth models which is relied on classical constructions of growth
theory (see [10], [11]). Also it includes ideas of a SEDIM model [9] describing
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the role of different economic factors such as the demographic ones in a coun-
try’s economic development. Another technique in the background (see [2], [5])
considers capital and useful work as the key drivers of economic growth and uses
optimal control theory to design past and future growth trajectories.

The research of optimal control problems uses as basis the Pontryagin’s max-
imum principle [8] for the problem with infinite time horizon (see [1], [3], [5]).
We investigate properties of the maximized Hamiltonian function and provide
analysis of existence of steady states in domains of specific control regimes and
focus attention on the domain corresponding to the transient control regimes of
investment. We consider linearized Hamiltonian system in this domain. Special
attention is given to the Jacobi matrix which has two negative and two positive
eigenvalues that is the steady state has the saddle character. According to the
results of the qualitative theory of differential equations [4] the trajectory of
the nonlinear Hamiltonian dynamics converges to the steady state tangentially
to the plane generated by eigenvectors corresponding to negative eigenvalues of
the Jacobi matrix. This analysis provides the important information about the
growth rates of optimal synthetic trajectories.

A novelty of the proposed solution is based on the idea of creating of non-
linear stabilizers built on the feedback principle (see [6], [7]) which lead the
system from any current position to a steady state. The constructed nonlinear
stabilizer generates the dynamic system closed in phase variables and having the
property of local stability. Also we construct solutions of the Hamiltonian sys-
tem and the stabilized Hamiltonian system in a steady state neighborhood and
compare behavior of these trajectories. Simulated optimal trajectories of nonlin-
ear Hamiltonian systems are obtained numerically by the implicit Runge–Kutta
method.

1 Two-sectors economical growth model and optimal

control problem

The model. The model is based on analysis of the Gross Domestic Product
(GDP) dynamics which is denoted by symbol Y . It is supposed that changes of
GDP depend on three production factors: capital stock K, labor L (or it can
be named as human capital) and useful work U . The production function F de-
scribes the relation between these factors and GDP (Y ), that is Y = F [K,L,U ].
It is assumed that the production function F has the property of homogeneity
of degree one, i.e.

F [αK,αL, αU ] = αF [K,L,U ] ∀α > 0.

This model includes also a parameter P (t) denoting the number of workers in a
country at time t. According to the Sanderson model [9] we assume that labor L
is proportional to the number of workers P with coefficient E. This coefficient has
the sense of labor efficiency of one worker. Hence, we have the following equality:
L(t) = E(t)P (t). Due to the homogeneous property of the production function
we introduce relative variables: k = K/P, l = E = L/P, u = U/P, y = Y/P.
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It is supposed that the total number of workers P has exponential growth
trend

Ṗ (t) = ρP (t), ρ > 0. (1)

Here ρ is a positive predefined constant denoting the relative growth rate. It
should be mentioned that the considered dynamics for the labor force is quite
adequate for the US statistical data in the period from 1900 to 2005. Parameter
ρ is small enough and equal to (approx.) 10−2.

The dynamics of the capital stock K(t) is determined by the Solow model
in which changes of capital depend on investment level S(t) with the depreciate
rate δ, i.e.

K̇(t) = S(t)− δK(t). (2)

Investments in capital constitute a part of GDP (Y ). Hence, it can be written
as follows: S(t) = s(t)Y (t), where function s(t) may take any value in the range
from zero to the positive constant as which is less than one, i.e. 0 6 s(t) 6 as < 1.

Changes in labor are described by the equation:

L̇(t) = bR(t), (3)

where function R(t) denotes investments in growth of the labor efficiency. In-
vestments R(t) is also a share of GDP (Y ), i.e. R(t) = r(t)Y (t). It is assumed
that function r(t) takes any values from zero to the predefined constant ar which
is less than one. The positive parameter b stands for the marginal effectiveness
of investment in human capital. It is supposed that the relative useful work (per
one worker) u(t) = U(t)/P (t) is constant with an average value ũ, ∀t ≥ t0.
Due to this assumption the production function F [k, l, u] can be rewritten as
follows: F [k, l, u] = F [k, l, ũ] = f(k, l).

Based on equations (1), (2) and (3), one can evaluate dynamics of relative
variables k and l.

Let functions C(t) and c(t) describe the total consumption level in a coun-
try and the consumption level per one worker, respectively. It is assumed that
the closed economical system is considered in which GDP (Y ) is spent on con-
sumption (C) and investments in capital stock (S) and human capital (R):
Y (t) = C(t)+S(t)+R(t), or in relative variables: y(t) = c(t)+ (s(t)+ r(t))y(t).
Hence one can easily calculate consumption per one worker

c(t) = (1− s(t)− r(t))y(t) ≈ (1− s(t))(1− r(t))y(t). (4)

Optimal control problem. Let us consider investments s and r as con-
trol variables. It is supposed that the utility function of the growth process is
described by an integral consumption index discounted on the infinite horizon.
We use the consumption index of the logarithmic type, rather common for the
theory of endogenous growth (see [12]). Let us note that the utility of such type
is closely related to the notion of entropy in thermodynamics, mechanics and

dynamic systems J =
+∞∫
t0

e−λt ln c(t) dt. Here, parameter λ is the discounting

factor.
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It should be mentioned that the following equality d ln c(t) =
dc(t)

c(t)
deter-

mines relative growth of the consumption c(t) (4) per one worker. In fact, the
introduced utility function presents the summary growth of the relative con-
sumption adjusted to the value of money depreciation.

Problem 1. The optimal control problem presumes maximization of the utility
function

J =

+∞∫

t0

e−λt (ln (1− s(t)) + ln (1− r(t)) + ln f(k(t), l(t))) dt

over trajectory (k(·), l(·), s(·), r(·)) of the system

{
k̇(t) = s(t)f(k(t), l(t))− (δ + ρ)k(t)

l̇(t) = br(t)f(k(t), l(t))− ρl(t)

with control parameters (s(·), r(·)) subject to constraints

0 ≤ s(t) ≤ as < 1, 0 ≤ r(t) ≤ ar < 1, 0 ≤ as + ar < 1, (5)

and phase variables (k(·), l(·)) satisfying initial conditions k(t0) = k0, l(t0) = l0.

The production function y = f(k, l) meets the following conditions
PF1. For all positive values of phase variables k and l function f(k, l) is positive
with its partial derivatives, i.e. f(k, l) > 0, fk > 0, fl > 0.
PF2. For all positive values of phase variables k and l function f(k, l) is a
strictly concave function in phase variables, i.e. fkk < 0, fkkfll − f2kl > 0.
Here we use the following notations for the first and second order derivatives of
the production function f = f(k, l)

fk =
∂f(k, l)

∂k
, fl =

∂f(k, l)

∂l
, fkl =

∂2f(k, l)

∂k∂l
, fkk =

∂2f(k, l)

∂k2
, fll =

∂2f(k, l)

∂l2
.

Let us note that the problem 1 can be solved within the optimal control theory
for problems with infinite horizon (see [1], [5]).

2 Model analysis

Model analysis is based on the Pontryagin maximum principle [8] for problems
with infinite time horizon [1].
Hamiltonian function. We investigate properties of the Hamiltonian func-
tion H̃ = H̃(t; k, l; s, r; ψ̃1, ψ̃2) which is defined by the equality:

H̃(t; k, l; s, r; ψ̃1, ψ̃2) = e−λt(ln (1− s) + ln (1− r) + ln f(k, l)) +

+ ψ̃1(sf(k, l)− (δ + ρ)k) + ψ̃2(brf(k, l)− ρl). (6)

Let us formulate the main property of the Hamiltonian function (6).
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Proposition 1. The Hamiltonian function H̃(t; k, l; s, r; ψ̃1, ψ̃2) is concave in
control variables s and r.

It is convenient to introduce new variables for excluding the exponential time
term: ψ1 = ψ̃1e

λt, ψ2 = ψ̃2e
λt and Ĥ = H̃eλt. Substituting new variables to

the Hamiltonian function (6) we get the expression:

Ĥ(k, l; s, r;ψ1, ψ2) = ln (1− s) + ln (1− r) + ln f(k, l) +

+ ψ1(sf(k, l)− (δ + ρ)k) + ψ2(brf(k, l)− ρl). (7)

Since control variables s and r satisfy to restrictions (5), the optimal control has
the following structure:

s0 =





0, (k, l, ψ1) ∈ ∆1
s = {(k, l, ψ1) : ψ1f(k, l) 6 1} ;

1−
1

ψ1f(k, l)
, (k, l, ψ1) ∈ ∆2

s =

{
(k, l, ψ1) : 1 6 ψ1f(k, l) 6

1

1− as

}
;

as, (k, l, ψ1) ∈ ∆3
s =

{
(k, l, ψ1) : ψ1f(k, l) >

1

1− as

}
;

r0 =





0, (k, l, ψ2) ∈ ∆1
r = {(k, l, ψ2) : bψ2f(k, l) 6 1} ;

1−
1

bψ2f(k, l)
, (k, l, ψ2) ∈ ∆2

r =

{
(k, l, ψ2) : 1 6 bψ2f(k, l) 6

1

1− ar

}
;

ar, (k, l, ψ2) ∈ ∆3
r =

{
(k, l, ψ2) : bψ2f(k, l) >

1

1− ar

}
.

(8)

Substituting values of optimal control to the Hamiltonian function Ĥ(·) in (7)

we obtain the maximized Hamiltonian: H(k, l;ψ1, ψ2) = Ĥ(k, l; s0, r0;ψ1, ψ2).
There exist nine domains Dij = ∆i

s ∩ ∆j
r (i, j = 1, 2, 3) of definition of the

maximized Hamiltonian function. These domains are determined by the struc-
ture of optimal controls. Let us discuss important properties of the maximized
Hamiltonian function.

Proposition 2. The maximized Hamiltonian function H(k, l;ψ1, ψ2) is a smooth
function in variables k, l and ψ1, ψ2 in domains Dij (i, j = 1, 3) and on bound-
aries between these domains.

Proposition 3. The maximized Hamiltonian is a strictly concave function in
phase variables k, l for all positive values of conjugate variables ψ1 and ψ2, if
the following matrix is negatively defined:

∂f(k, l) =




−f fk fl
fk fkk fkl
fl flk fll


 , ∀ (k, l, ψ1, ψ2) ∈ D22, ψ1 > 0, ψ2 > 0.

Necessary and sufficient conditions of optimality. Let us mention
that for the control problem 1 all conditions of the existence theorem (see [1],
[3]) are fulfilled. Moreover, one can formulate necessary [1] and sufficient [5]
conditions of optimality for problems with infinite horizon in the form of the
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Pontryagin maximum principle. It should be noted that properties 2 and 3 en-
sure sufficiency of necessary optimality conditions [5].

Qualitative analysis. Firstly, we construct the Hamiltonian system and
investigate the existence of steady states. Due to the structure of the optimal
control (s0(t), r0(t)) in (8) the Hamiltonian system has different form in each
domain Dij (i, j = 1, 3). The special attention is given to domain D22 with the
transient control regime, where both controls are not constant.

In the domain D22 = ∆2
s ∩ ∆2

r the Hamiltonian system has the following
form:





k̇ = f(k, l)− (δ + ρ)k −
k

z1
= H1,

l̇ = bf(k, l)− ρl −
l

z2
= H2,

ż1 =

(
λ− fk(k, l) +

f(k, l)

k

)
z1 − b

k

l
fk(k, l)z2 +

k

f(k, l)
fk(k, l)− 1 = H3,

ż2 = −
l

k
fl(k, l)z1 +

(
λ− bfl(k, l) + b

f(k, l)

l

)
z2 +

l

f(k, l)
fl(k, l)− 1 = H4,

(9)
where new adjoint variables z1 and z2 are defined as follows: z1 = kψ1 and
z2 = lψ2 and symbols Hi denotes functions Hi = Hi(k, l, z1, z2), i = 1, 4.

Let us suppose that the Hamiltonian system has a steady state P ∗ with
coordinates P ∗ = (k∗, l∗, z∗1 , z

∗

2). In this case conjugate coordinates z∗1 and z∗2 of
the steady state can be found from the first two equations of the Hamiltonian
system, namely

z∗1 =
k∗

f(k∗, l∗)− (δ + ρ)k∗
, z∗2 =

l∗

bf(k∗, l∗)− ρl∗
. (10)

Further, we construct the linearized Hamiltonian system in a neighborhood of
the steady state. Let symbol A = {αij}

4
i,j=1 denotes the matrix of the linearized

Hamiltonian system, where

αi1 =
∂Hi(P

∗)

∂k
, αi2 =

∂Hi(P
∗)

∂l
, αi3 =

∂Hi(P
∗)

∂z1
, αi4 =

∂Hi(P
∗)

∂z2
, i = 1, 4.

3 Nonlinear stabilizer

A nonlinear stabilizer is constructed under the following assumptions
A1. It is assumed that matrix A has two real negative λ1 and λ2 and two real
positive λ3 and λ4 eigenvalues.

This assumption means that the steady state P ∗ = (k∗, l∗, z∗1 , z
∗

2) has the
saddle character.

Let the symbols hi = {hij}
4
j=1, i = 1, 4 denote eigenvectors corresponding

to eigenvalues λi, i = 1, 4, respectively.
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A2. It is supposed that first two coordinates of eigenvectors h1 and h2 corre-
sponding to negative eigenvalues λ1 and λ2 meet the restriction h11h22 ̸= h12h21.

Construction of nonlinear stabilizer. Idea of construction of the non-
linear stabilizer is based on results of the qualitative theory of differential equa-
tions (see [4]). Namely, the trajectory of the nonlinear Hamiltonian dynamics
converges to the steady state tangentially to the plane generated by eigenvec-
tors corresponding to negative eigenvalues of the Jacobi matrix. Let us describe
the algorithm of construction of the nonlinear stabilizer.
1. To build the plane π generated by two eigenvectors h1 and h2 corresponding
to two negative eigenvalues λ1 and λ2, so that the steady state P ∗ belongs to
this plane π.
2. To extract conjugate variables z1 and z2 from equations of the plane.
3. To substitute the obtained relations of extraction instead of conjugate vari-
ables into control functions s0(t) and r0(t) corresponding to domain D22.

As a result, the algorithm provides construction of control ŝ(t) and r̂(t) which
is called nonlinear stabilizer. Let us consider each step in details.

Plane construction. Any vector v located in the plane π can be expressed
through eigenvectors h1 and h2 in the following way: v = ν1h1+ν2h2. Hence, the
plane π generated by two eigenvectors h1 and h2 and containing the equilibrium
point P ∗ can be written as follows:

k − k∗ = ν1h11 + ν2h21, l − l∗ = ν1h12 + ν2h22,
z1 − z∗1 = ν1h13 + ν2h23, z2 − z∗2 = ν1h14 + ν2h24.

(11)

Due to assumption A2 coefficients ν1 and ν2 can be found from the first two
equations (11).

Extraction of conjugate variables. Conjugate variables z1 and z2 can be
extracted from the equations (11) of the plane π. As a result, we obtain

z1 = z1(k, l) = z∗1 + γ11(k − k∗) + γ12(l − l∗), (12)

z2 = z2(k, l) = z∗2 + γ21(k − k∗) + γ22(l − l∗),

where γ11 = −

∣∣∣∣
h12 h13
h22 h23

∣∣∣∣
∣∣∣∣
h11 h12
h21 h22

∣∣∣∣
, γ12 =

∣∣∣∣
h11 h13
h21 h23

∣∣∣∣
∣∣∣∣
h11 h12
h21 h22

∣∣∣∣
, γ21 = −

∣∣∣∣
h12 h14
h22 h24

∣∣∣∣
∣∣∣∣
h11 h12
h21 h22

∣∣∣∣
, γ22 =

∣∣∣∣
h11 h14
h21 h24

∣∣∣∣
∣∣∣∣
h11 h12
h21 h22

∣∣∣∣
.

It should be mentioned that the following equalities take place

z1(k
∗, l∗) = z∗1 , z2(k

∗, l∗) = z∗2 . (13)

Nonlinear stabilizer. The only thing left is to substitute expressions (12)
into relations (8) for optimal controls in the domain D22. Finally, we get the
following structure of the nonlinear stabilizer:

ŝ(k, l) = 1−
k

z1(k, l)f(k, l)
, r̂(k, l) = 1−

l

bz2(k, l)f(k, l)
. (14)
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Substituting expressions for conjugate variables (12) to the first two equations
of the Hamiltonian system (9) we get the stabilized Hamiltonian system:

k̇ = f(k, l)− (δ + ρ)k −
k

z1(k, l)
, l̇ = bf(k, l)− ρl −

l

z2(k, l)
. (15)

Properties of the nonlinear stabilizer. Let us indicate main properties of
the constructed nonlinear stabilizer.

Proposition 4. The nonlinear stabilizer (14) generates the nonlinear system
(15) having the steady state with coordinates (k∗, l∗) which are the same as the
first two coordinates at the steady state of the original Hamiltonian system (9).

Proof of this propositions is based on the property (13) of the representation of
adjoint variables z1 = z1(k, l), z2 = z(k, l) in the plane π and relations (10) for
conjugate coordinates z∗1 , z

∗

2 of the steady state.
Let us consider the linearized Hamiltonian system with Jacobi matrix A

projected on subspace π. We substitute representation z1 = z1(k, l) and z2 =
z2(k, l) (12) of conjugate variables into the first two equations of the linearized
dynamics and collect similar terms

k̇ = a11(k − k∗) + a12(l − l∗), l̇ = a21(k − k∗) + a22(l − l∗), (16)

where aij = αij + α13γ1j + α14γ2j , i, j = 1, 2.

Proposition 5. The matrix of the linearized stabilized system is the same as the
matrix A = {aij}

2
i,j=1 of the linearized Hamiltonian system projected on plane

π.

In order to prove this proposition it is necessary to linearized stabilized Hamil-
tonian system (15) at the steady state (k∗, l∗) neighborhood.

Let the symbol A denote the matrix of the linearized stabilized system (16).
The next important question deals with eigenvalues of the stabilized Hamiltonian
system (15).

Proposition 6. The linearized stabilized Hamiltonian system (15) has two real
negative eigenvalues coinciding with eigenvalues λ1 and λ2 and the following
eigenvectors

h1 = (h11, h12), h2 = (h21, h22). (17)

Proof. Basing on property 5 one can assert that the linearized stabilized Hamil-
tonian system coincides with the linearized Hamiltonian system (16) projected
on plane π. For the Jacobi matrix A evaluated at the steady state P ∗ the fol-
lowing equalities are fulfilled A hi = λi hi, i = 1, 4. Moreover eigenvectors
h1, h2 are located at the plane π. Thus, for coordinates of these vectors are valid
relations hi3 = γ11hi1 + γ12hi2, hi4 = γ21hi1 + γ22hi2, i = 1, 2. Using these
facts let us check the following equalities I hi = λihi, i = 1, 2.

A hi =

(
a11 a12
a21 a22

)(
hi1
hi2

)
=
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=

(
α11hi1 + α12hi2 + α13(γ11hi1 + γ12hi2) + α14(γ21hi1 + γ22hi2)
α21hi1 + α22hi2 + α23(γ11hi1 + γ12hi2) + α24(γ21hi1 + γ22hi2)

)
=

=

(
α11hi1 + α12hi2 + α13hi3 + α14hi4
α21hi1 + α22hi2 + α23hi3 + α24hi4

)
=

(
λihi1
λihi2

)
= λihi, i = 1, 2.

⊓⊔

The following theorem collects all obtained results.

Theorem 1. Under assumptions A1 and A2 for the Hamiltonian system (9)
constructed in domain D22 and linearized in a neighborhood of the steady state
P ∗ the nonlinear stabilizer (14) exists and generates the nonlinear dynamical
system (15) which is closed with respect to the phase variables k, l and has the
following properties
1. the steady state of the closed system (15) has coordinates (k∗, l∗) coinciding
with the phase coordinates k and l of the steady state P ∗ of the original Hamil-
tonian system (9);
2. the system (15) is stabilized at the steady state P ∗;
3. the eigenvectors h1 and h2 of the linearized closed system (16) generated by
the nonlinear stabilizer are evaluated by formulas (17).

The proof of the theorem follows directly from properties of the nonlinear sta-
bilizer.

Remark 1. The constructed nonlinear stabilizer generates the nonlinear system
which is closed with respect to phase variables. The solution of the obtained
stabilized system approximates optimal trajectories of the original Hamiltonian
system in a neighborhood of the steady state, since a trajectory of the nonlinear
Hamiltonian system that tends to the equilibrium point is tangent to the plane
formed by two eigenvectors corresponding to negative eigenvalues. One can use
this fact to estimate the growth rates of optimal trajectories The growth rates
are determined by values of negative eigenvalues.

Numerical simulations. The calculations are carried out on the basis of
the data on the US economy in the period of 1900 to 2005. The data values are
normalized with respect to the data values of 1900. The production function of
the Cobb–Douglas type is used: f(k, l) = µ kα lβ . The calibration procedure for
the model parameters provides the following values: µ = 2.19942, α = 0.31, β =
0.09, λ = 0.03, δ = 0.2, ρ = 0.013, b = 0.31, as = 0.3, ar = 0.2, k0 = 1, l0 = 1.
The Hamiltonian system has the equilibrium point P ∗ with coordinates k∗ =
5.75, l∗ = 5.2, z∗1 = 1.8188, and z∗2 = 2.9684. The control parameters at the
equilibrium point take the values s∗ = 27.95 and r∗ = 3.79. All four eigen-
values of the matrix A calculated at the equilibrium point P ∗ = (k∗, l∗, z∗1 , z

∗

2)
are real numbers; two of them are positive, and the other two are negative:
λ1 = − 0.268, λ2 = − 0.094, λ3 = 0.124, λ4 = 0.298.

Trajectories of the system (15) generated by the nonlinear stabilizer (14) and
the original Hamilton system (9) are calculated numerically by the Runge–Kutta
method. Figure 1.(a) demonstrates phase trajectories k(l) as a solutions of the
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stabilized (15) and Hamiltonian (9) dynamics. One can see that these trajectories
almost coincide with each other especially at the vicinity of the steady state.
Optimal trajectories of the capital stock k(t) and labor efficiency l(t) and its
stabilized solutions are depicted at figures 1.(b) and 1.(c) respectively. In the
steady state neighborhood optimal trajectories are very close to its stabilized
solutions.

(c)
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Fig. 1: Stabilized and optimal graphs (a) of phase trajectories, k(l); (b) of the

capital stock, k(t); (c) of the labor efficiency, l(t).
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