G. Avalos and R. Triggiani, Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lam?? PDE system of fluid-structure interaction, Discrete and Continuous Dynamical Systems - Series S, vol.2, issue.3, pp.417-447, 2009.
DOI : 10.3934/dcdss.2009.2.417

V. Barbu, Z. Gruji´cgruji´c, I. Lasiecka, and A. Tuffaha, Smoothness of weak solutions to a nonlinear fluid-structure interaction model, Indiana University Mathematics Journal, vol.57, issue.3, pp.1173-207, 2008.
DOI : 10.1512/iumj.2008.57.3284

A. Chambolle, B. Desjardins, M. Esteban, and C. Grandmont, Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate, Journal of Mathematical Fluid Mechanics, vol.7, issue.3, pp.368-404, 2005.
DOI : 10.1007/s00021-004-0121-y

I. Chueshov, A global attractor for a fluid-plate interaction model accounting only for longitudinal deformations of the plate, Mathematical Methods in the Applied Sciences, vol.331, issue.912, pp.1801-1812, 2011.
DOI : 10.1002/mma.1496

I. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Russian); English translation: Acta, 1999.

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of the American Mathematical Society, vol.195, issue.912, 2008.
DOI : 10.1090/memo/0912

I. Chueshov and I. Ryzhkova, A global attractor for a fluid--plate interaction model, Communications on Pure and Applied Analysis, vol.12, issue.4, 2011.
DOI : 10.3934/cpaa.2013.12.1635

I. Chueshov and I. Ryzhkova, Unsteady interaction of a viscous fluid with an elastic shell modeled by full von Karman equations, Journal of Differential Equations, vol.254, issue.4, 2011.
DOI : 10.1016/j.jde.2012.11.006

D. Coutand and S. Shkoller, Motion of an Elastic Solid inside an Incompressible Viscous Fluid, Archive for Rational Mechanics and Analysis, vol.52, issue.1, pp.25-102, 2005.
DOI : 10.1007/s00205-004-0340-7

Q. Du, M. D. Gunzburger, L. S. Hou, and J. Lee, Analysis of a linear fluid?structure interaction problem, Discrete Contin. Dyn. Syst, vol.9, pp.633-650, 2003.

M. Grobbelaar-van-dalsen, Strong stability for a fluid-structure interaction model, Mathematical Methods in the Applied Sciences, vol.30, issue.11, pp.1452-1466, 2009.
DOI : 10.1002/mma.1104

H. Koch and I. Lasiecka, Hadamard Well-posedness of Weak Solutions in Nonlinear Dynamic Elasticity-full von Karman Systems, In: Prog. Nonlinear Differ. Equ. Appl. Basel: Birkhäuser, vol.50, pp.197-216, 2002.
DOI : 10.1007/978-3-0348-8221-7_11

N. Kopachevskii and P. Yu, Small oscillations of a viscous fluid in a vessel bounded by an elastic membrane, Russian J. Math. Phys, vol.5, issue.4, pp.459-472, 1998.

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, 1989.
DOI : 10.1137/1.9781611970821

I. Moise, R. Rosa, and X. Wang, Attractors for non-compact semigroups via energy equations, Nonlinearity, vol.11, issue.5, pp.1369-1393, 1998.
DOI : 10.1088/0951-7715/11/5/012

V. I. Sedenko, On the Uniqueness Theorem for Generalized Solutions of Initial-Boundary Problems for the Marguerre??Vlasov Vibrations of Shallow Shells with Clamped Boundary Conditions, Applied Mathematics and Optimization, vol.39, issue.3, pp.309-326, 1999.
DOI : 10.1007/s002459900108

R. Temam, Infinite-Dimensional Dynamical Dystems in Mechanics and Physics, 1988.

R. Temam, Navier Stokes Equations: Theory and Numerical Analysis, Journal of Applied Mechanics, vol.45, issue.2, 2001.
DOI : 10.1115/1.3424338

I. I. Vorovich, On some direct methods in nonlinear oscillations of shallow shells, Izvestiya AN SSSR, Matematika, vol.21, issue.6, pp.142-150, 1957.