H. Abels, Diffuse interface models for two-phase flows of viscous incompressible fluids. Max-Planck Institut für Mathematik in den, Naturwissenschaften, issue.6, 2007.

J. F. Blowey and C. M. Elliott, The Cahn???Hilliard gradient theory for phase separation with non-smooth free energy Part I: Mathematical analysis, European Journal of Applied Mathematics, vol.1, issue.03, pp.233-280, 1991.
DOI : 10.1080/03605308908820597

/. Hilliard and . Navier, Stokes model for the simulation of three-phase flows. Transp. Porous Media, pp.463-483, 2010.

J. W. Cahn and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, The Journal of Chemical Physics, vol.28, issue.2, pp.258-267, 1958.
DOI : 10.1063/1.1744102

H. Choi, Suboptimal control of turbulent flow using control theory, Proceedings of the International Symposium on Mathematical Modelling of Turbulent Flows, 1995.

H. Choi, M. Hinze, and K. Kunisch, Instantaneous control of backward-facing step flows, Applied Numerical Mathematics, vol.31, issue.2, pp.133-158, 1999.
DOI : 10.1016/S0168-9274(98)00131-7

D. J. Eyre, Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation, Computational and Mathematical models of microstructural evolution MRS Proceedings, 1998.
DOI : 10.1016/0001-6160(61)90182-1

S. Gross and A. Reusken, Numerical ethods for two-phase incompressible flows, 2011.

L. Grüne and J. Pannek, Nonlinear Model Predictive Control, Communications and Control Engineering, 2011.

M. Hintermüller, M. Hinze, and C. Kahle, An adaptive finite element Moreau- Yosida-based solver for a coupled Cahn-Hilliard/Navier-Stokes system. preprint

M. Hintermüller, M. Hinze, and M. H. Tber, An adaptive finite-element Moreau???Yosida-based solver for a non-smooth Cahn???Hilliard problem, Optimization Methods and Software, vol.43, issue.4-5, pp.4-5777, 2011.
DOI : 10.1007/BF01442543

M. Hinze, Instantaneous Closed Loop Control of the Navier--Stokes System, SIAM Journal on Control and Optimization, vol.44, issue.2, pp.564-583, 2005.
DOI : 10.1137/S036301290241246X

M. Hinze, A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case, Computational Optimization and Applications, vol.30, issue.1, pp.45-61, 2005.
DOI : 10.1007/s10589-005-4559-5

URL : https://hal.archives-ouvertes.fr/hal-01395598

M. Hinze and K. Kunisch, Three control methods for time -dependent Fluid Flow, volume 60 of Flow, Turbulence and Combustion, pp.273-298, 2000.

M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE constraints, 2009.

M. Hinze and S. Volkwein, Analysis of instantaneous control for the Burgers equation, Nonlinear Analysis: Theory, Methods & Applications, vol.50, issue.1, pp.1-26, 2002.
DOI : 10.1016/S0362-546X(01)00750-7

P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Reviews of Modern Physics, vol.49, issue.3, pp.435-479, 1977.
DOI : 10.1103/RevModPhys.49.435

P. Hood and G. Taylor, Navier-Stokes equations using mixed interpolation. Finite Element Methods in Flow Problems, 1974.

D. Kay, V. Styles, and R. Welford, Finite element approximation of a Cahn- Hilliard-Navier-Stokes system. Interfaces and Free Boundaries, pp.15-43, 2008.

V. Nevistic and J. A. Primbs, Finite Receding Horizon Control: A General Framework for Stability and Performance Analysis, 1997.

S. J. Qin and T. A. , A survey of industrial model predictive control technology, Control Engineering Practice, vol.11, issue.7, pp.733-764, 2003.
DOI : 10.1016/S0967-0661(02)00186-7

R. Verfürth, A posteriori error analysis of space-time finite element discretizations of the time-dependent Stokes equations. Calcolo, pp.149-167, 2010.