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Note on Level Set Functions

Piotr Fulmanski and Alicja Miniak-Gorecka

Faculty of Mathematics and Computer Science, University of £.6dz
Banacha 22, 90-238 L6dz, Poland
fulmanp@math.uni.lodz.pl,alicja_miniak@wp.pl

Abstract. In this note a concept of e-level set function is introduced,
i.e. a function which approximates a level set function satisfying the
Hamilton-Jacobi inequality. We prove that each Lipschitz continuous so-
lution of the Hamilton-Jacobi inequality is an e-level set function. Next,
a numerical approximation of the level set function is presented, i.e.
method for the construction of an e-level set function.

Keywords: level set function, numerical approximation, shape opti-
mization

1 Introduction

The goal of shape optimization is to deform and modify the admissible shapes
in order to comply with a given cost function that needs to be optimized.

Let D C R" be a given bounded domain and (2, C D, be a sets from a
family of admissible shapes ©, indexed by ¢ from some set of indexes. Assume
that a certain functional J(-) reaches its minimum value on the set §2; for a z7*"
function.

Consider the following shape optimization problem: find a set (2,,; € ©, for
which there exists a function 7" such that the following formula holds

JQapt (xgytn) < JQf, (x;rnn) ‘Qt € 63

that is
T(Qopr) = jnt J(52).

Problem formulated this way is difficult to solve — the crucial part is the con-
struction of the family @ so a known mathematical methods could be used.
While solving this problem we were inspired by the approach we found in paper
[1], where minimization over a family of sets is turned into a minimization over
functions. Following this idea e.g. the level set function could be used to connect
sets with functions — it allows us to manipulate boundary of the given shape
through the level set function. A very brief sketch of this approach (transforma-
tion from optimization over domains into optimization over functions) is given
in section 2.1. Notice that whenever a computation is mentioned, it means that,
due to numerical computations limits, we are able to find only an approximate
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solution to a given problem. This is why, in practice, when solving shape opti-
mization problem with the help of level set functions, only an approximation of
it could be used and this is the main aim of this paper: to present a numerical
approximation of the level set function, i.e. we want to present a method for the
construction of an e-level set function.

2 Level set method

Let {2 be an open and connected subset of D for which there exists a continuous
function ¥(x) : D — R such that 2 = {& € D : ¥(x) < 0}. In consequence,
the boundary I" of 2 is a set of all points € D, such that ¥(z) = 0. Let
¢: (t,x) €[0,1] x D — R be any function of class C*, such that

$(0,2) =¥(z), ze€D.

If 2 is a subject to changes in time we can describe {2 and its boundary I" at
time ¢ (denoted as 2 and I3}) as

2:(¢) ={x € D: ¢(t,z) <0}

and
Ii(¢) ={z € D: ¢(t,x) = 0}.

Let  : [0,1] x I'(0) — D be a continuous function, which for every point
xzo € I'(0) assigns its location at time ¢, ¢ € [0,1], i.e. z(t,x0) = x € I'(¢).
Function z(-,x0) represents the location of the point z at successive time steps
t, determining a trajectory starting from the point g € I. For fixed starting
point xg, a trajectory represents the movement of this point. Taking all points
xg € Iy into account we have the movement of a given boundary of 2. This is
why we call a trajectory starting at xo a deformation of the point xy. We call
the family of trajectories for all points xzg € Iy the deformation of the initial
domain (2.

Let V,,(z(t,x0)), t € [0,1], zo € Io(¢) be a Lipschitz mapping assigning to
every point x(y, zo) its speed of movement in a normal direction to the boundary
I;(¢). A well known level set formula (e.g. [4]) according to which the changes
of the function ¢(t,-) affect the boundary I takes the following form

%(t,x(t, 20)) + [Vo(t, (1, 0))| Va((t; 20)) = 0 (1)

Thus ¢ has to satisfy the following equation of Hamilton-Jacobi type

0 10 + IVl ) Val) =0, () € (0,1) x D

with initial condition
6(0,2) = W(x), @€ D. (2)
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2.1 Problem reformulation

Denote by
F = {W : e C(R2)and ¥ =0 on 02y, 2y C 2, Bﬂw—smoo‘ch}

Put 2:(¢1) = (v € 2| ¢ < 0). The family © of sets over which our shape
optimization problem is considered can be defined as

0= {Qt(¢t) 1te [07 1]a (bt = ¢(tv ')7 d) € Lips([ov 1]7 QJ/)}

where ¢ satisfies (1) in 2y, ¥ € F, with boundary condition (2) on 002y, ¥ € F.
Define a new family

b= {¢t : ¢t = ¢(t7')7 Qt(¢t) € @7 te [07 1]}

Now we can reformulate the shape optimization problem to the following problem

J(Qopt) = d)ltl’éfq5 J(¢t)

2.2 € - level set function

However, from the practical point of view only an approximate solution to (1)
is considered, i.e. a solution ¢.(+,-), which instead of an equality satisfies an
inequality

0.
e <
=0t

(t,2(t,20)) + [V (t, 2(t, 20))| Va(2(t, 20)) < 0. 3)

Therefore, instead of a level set function we have its approximation. We call a
function (¢,z) — ¢.(t, ), defined in [0,1] x §2, an e— level set function if

—& < ¢ (t,x(t,mg)) <0, (t,x0)€0,1] x 012, (4)
U(z) < ¢:(0,2) <W(z)+e/2, =€ (5)

It is also well known that there exists a Lipschitz continuous e— level set function
and that it satisfies the Hamilton - Jacobi inequality

9¢e
ot

and initial condition (5). We have the following theorem, which is very important
from the numerical point of view.

_ES

(t7$) + |V¢e(t7x)| Vn(ta Z‘) <0 (6)

Theorem 1. Fach element of the set W,
W, = {w(t,m) 18 Lipschitz: — % <w(0,2) <0, z € dN;
0
—g < Gpw(t.a) + [Vu(t,2)| Va(t,2) <0, aa. (ta) € 0, 1] x Q}

is an e— level set function, i.e. it satisfies (4)-(5).
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Proof. We use the ideas of a proof from [2]. Let to, 0 < ¢y < 1 and § > 0, be such
that the interval [d,to — J] is nonempty; let xg, xo € 92, be an arbitrary initial
value and let the z(t),t € [0,y — ] start at z¢. Of, course, by assumptions the
values of z(t) are then bounded on [J, ¢y — J], i.e. there is some compact set @
such that z(t) € Q, t € [,to — d]. Let B-(R™) be a ball in R™ (with Euclidean
norm) with radius 7 € R and center at 0. Denote Q; = Q + B;(R"). Take
w € W, and « € R such that 0 < a < /4 and define

wi(t,x) = wt,z) + alt —1), (t,z) € [0,1] x £2.
Then, for a.a. (t,x) € [0, 1] x £2, w; satisfies

0

o — 5 < ﬁwl(t x) + |Vwi(t, 2)| Va(t, z)} < a.
Let us choose 0 < By < min{1,6} and define a function (¢,2) — w5°(t, ) on
[0,t0 — d] x @ by the convolution wﬁo (t,x) = (w1 * pg, ) (t,x) where

pio(t, ) = ,Llpl( ; ]

/ p1(t,z)dtdr = 1, supp p; C Bi(R™).
Rn+1
We claim that there exists 8’ > 0 such that for § < 8’ and (¢,z) € [J,t0— ] X Q,
1 € 0 3
= = 7
2T S 2 @
Indeed, since wy (¢, x) is Lipschitz continuous, there exists M, such that |%w1| <
M and

([Ff (t.2)] Valt ) = (Fwn ()| Vals ) % p9) (1:2)|

B(t,a) + W%@xﬂva@

< / [Vwi(t — s,z —y)||[Va(t,z) = Vi (t — s, 2 — y,u)| pa(s, y)dsdy
Bg(R™1)
<M sup [Vi(t,x) — Vo (t — s,z — ).
(t,z)€[,t0—8]xQ
(s:y)€Bp(R™1)

The right-hand side of the inequality presented above tends to zero as § — 0
and that on [J, tg — d] X @, there is B2 > 0 such that for 8 < s,

[Fwlt,2)| Vat,2) = (Fw1 () Vals ) s) (1,2)]| <

Let us put on [d,tg — d] X Q,

| Q

9
Flt,a) = 2w (t.2) + |Vuf ()| Vit 2)

= (G + VsVl ) s ) 10
+ [Vd (40| Valt.2) = (V01 ) Vi) # 5) ().
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Considering the above estimations, we can find 0 < ' < min{Sy, 1, 52} such
that for 3 < 4,

3
< (a=*pg)(t,z)+ % = 5% for (t,x) € [0,t0 — ] X Q.
It is clear that w}(-,-) is C™([8,to — 6] x Q) and the function (t,z) — F(t, ), is
continuous on [4,ty — d] X Q. After integrating the inequalities (7) in [d, ¢y — d]
and considering the definition of V,,,

As a consequence of (8), the following are obtained:
1 3 to—9 d B 3
a— - —25) < i < Za(ty — 2
(2a 2) (to — 26) < (/6 il (t,x(t))dt) < Jalto - 2)

(;a - ;) (to — 20) < wl(to — 8, 2(to — 0)) )

and

—w (8,2(0)) <

| W

Ck(to — 2(5)

By the property of convolution, we see that w2’8 — wy uniformly on [0, t) — 0] X Q
and thus (9) leads to

(i‘“ - ;) (to — 20) < wi(to — b,z (to — )

3
—w1 (6, () < §a(t0 — 26).
Taking the limit with o — 0, we obtain

£
2

Since § was chosen arbitrarily and

(to — 20) < w(tyg — d,z(to — 0)) — w(d,z(5)) <0

_% S ’U}(O,.’IJO) S 07

we infer further that
—e < w(to, z(to) <0.

Since to and w € W, were chosen arbitrarily, the theorem is proved.
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In this section, we proved that each Lipschitz continuous solution of the
Hamilton-Jacobi inequality is an e-level set function. As a direct conclusion of
the theorem we infer the following corollary.

Corollary 1. Let g, > 0, €, — 0. Then each sequence of €, -level set functions
we, € We tends uniformly to the level set function ¢(t,x) on [0,1] x £2.

3 Numerical approximation

In the second part of this paper we want to present a numerical approximation
of the level set function for the equation (1), i.e. we want to present a method
for the construction a e-level set function for the equation (3), which satisfies
(4) and (5). In order to achieve that, an adaptation of the method developed by
J. Pustelnik in his Ph.D. thesis [3] is used.

Let T' C [0,1] x D be a compact set and (¢,2) — w(t, z) be a function defined
on set 7", T C T of class C%(T") such that

—% <w(0,z) <0,z € S

For w(-, -) define now on the set T a new function (¢,z) — F, (¢, z), corresponding
to the left hand side of the formula (1)

ow
ot

Function (t,z) — F,(t,x) is a continuous function on T. Moreover it is also
a Lipschitz function on T let Mpw be a Lipschitz constant for the function
Fy(-,-). Owing to the compactness of T, function Fy,(-,-) reaches its lower and
upper limits denoted respectively as k; and k.

Let > 0 be any fixed real number and {y;7 }jez a sequence of numbers such

that yy = 0 and y,, —y] = for j € Z. Define a new set J

J = {.] €EL: El(t,ac)eT y;] < Fw(t,l‘) < y?H}-

and let Pr = {P;""};c; be a family of sets covering the set 7' where

F,(t,x) = (t,z) + |Vw(t, z)| Vi (2). (10)

p]?%w — {(t,z) eT: yj < Fy(t,z) < ZJ;‘7+1}

As a consequence of the definition of the family Pr and uniform continuity of
the function F,(-,-) on the set T" we have the following proposition

Proposition 1. There exists a real number ¢ > 0, such that for every point
(t,z) € T a ball with radius ¢ centered in (t,x) is covered either by one set
P, j e J or by two sets P, PV, ji,j2 € J and |j1 — ja| = 1.
Let h™™(-,-) be a function defined on T as follows
Rt x) =~y for (t,x) € PP, j e (11)
As a consequence of the above definition we have

vV  —n < Fy(t,x)+h""(tz) <O0. (12)
(t,x)eT
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Lemma 1. Let x,,(-,x0) be a deformation of any point xo. There exists an in-
creasing sequence of m points {t;}i=1,..m, t1 =0 and t,, = 1 such that

Voo | Fu(ti, Tw(ti, w0)) — Fu(t, u(t, 0))] <

i1, m—1. (13
tEts,tit1] 2 ( )

Proof. This is a simple consequence of the absolute continuity of x,,(,-).

Notice, that Lemma 1 holds for any 7 € [0, 1], since for any 7 € [0, 1] there
exists an increasing sequence of m, points {t7}i=1 . m,, where t{] = 0 and
tm, = T, for which the following formula holds

v ‘Fw(thxw(thxo)) _Fw(t7xw(t7x0>)| <

n
tE[ts tit1] 2’

i=1,...,m; — 1.

Moreover, having the aforementioned sequence for 7 = 1, we can easily determine
a sequence for any 7 = {t!};=1, m,- As a consequence of the formula (13) we
have that for any ¢ € {1,...,m, — 1}, if (t;, 2w (t:, z0)) € Pj"’“’ for some j € J,
than for every xy € I the following property holds

naw | prw ) pow
te[t’iatm](t’ 2o (t,20)) € P U PP U P

From the above and Definition (11) for all ¢ € [t;,t;11] we get that
[P (t, Ty (ti, o)) — 1 < BT (E, @0y (6, 30)) < WY (8, w0 (Biy 20)) + 1] . (14)
Particularly for every i € {2,...,m, — 1}
R (b, 2y (b, 20)) — R (21, T (-1, T0)) = n;w(.,zo)a (15)

where 1’ Wi € {—n,0,n}. Integration of (14) results, for any i € {1,...,m,—1},
in the followmg double inequality

(R (85, o (tis o)) — ] (Lit1 — ti)

tit1
< / Rty w4 (t, 20))dt < [RTY(ti, 2 (ti, 20)) + 0] (Fig1 — ta)
t

i

and in consequence

Z (A (tiy 2o (Es, o)) (tir — L)) — 7

..... mr—1

/ B (¢, (1, 70) )t (16)
< Y (s w (b o)) (i — )] +

i1, m,—1

Owing to the fact, that by simple calculation the expression

Yo U wa (s wo)) (fia — )]

i€l,...oms—1
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can be substituted by some sum of differences (15), finally formula (16) takes
the following form

Z niw(wo)(T —t;) + R0, 24(0,20))T — 0T

1€2,....m,—1

< /0 B, 2 (1, ) )dt (17)

S Z n;w(',zo)(T - ti) + hmw(ov zn (07 .7;0))7‘ + 7.

i€2,...,m,—1

Notice that inequality (17) is very useful in computation. It allows estimation
of an integral of function A% (-, ) along deformation x,,(-,z¢) as a finite sum of
values from the set {—n, 0,n}. Moreover for any two deformations of two different
points x§ € Iy and 23 € I}, values

D M Ca(T ) 0,20 (0,30)7

1€2,...,ms—1

and
Z ﬂfvw(.,xg)(T - ti) + hﬂ,w(O, l'w(o, 1’%))7‘

1€2,....ms—1

are equal if the following conditions hold
n:iw(~,xé) = n;w(_’xg) for every i € {2,...,m, — 1}, (18)

zp € P iage P je . (19)

In consequence, in the set K of all deformations x(-,z¢), o € Ip an equiv-
alence relation E can be introduced, taking as an equivalent any two defor-
mations z(-, z}) and x(-,23), 2§, 2% € I, fulfills (18) and (19). The cardinality
of a set Kg of all disjoint equivalence class of relation E is finite and limited
from above by value 3™~ ~!. Now define a set X of m, — 1-dimensional vectors
z = (1,...,Tm,—1), where 1 = 0 and z; = nij, i=2,...,m; — 1, while
v, € Xg is any element of j-th equivalence class, i = 1,...,||Kg||. Inequality
(17) can be rewritten as

Z x;w(Ayzo)(T — ;) + h""(0, 24 (0, 20))T — T

IN
S
S
€
%
(=}
=N
\]
|
Sk
_|_
>
3
&
—
L
8
g
=
L
8
o
N
=
\]
_I_
=
R

Thus infinite space of all deformation can be reduced to the finite set.
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Lemma 2. If z is any point from I'y and 7 € [0,1] then we have the following
inequality

— Z xiw(_wo)(T —t;) — h"* (0,24, (0,20))T — 21T
1€2,...,m,—1
<w(rz(1)) — w(0,20)

< - Z x;w(-,zo)(T —t;) = h""(0,24,(0,20))T + 1.

1€2,...,m,—1

Proof. Integration of (12) along any deformation x(-,z¢) on interval [0, 7] gives

—777'—/ h”’“’(t,m)dtﬁ/ F,(t,z)dt < —/ R (¢, x)dt,
0 0 0
and in consequence

—nT —/ R (t, x)dt
0

ow

s/ (8t (t,x(t,xo))+|Vw(t,x(t,xo))|Vn(t,x(t,xo))) dt
0
< —/ A (t, z)dt.
0
Considering equation (17) we have

- Z Tl (o) (T = i) = (0,240, 20))7 — 207

i€2,...,m,—1

(0
< / ( 87;] (t, z(t,0)) + |Vw(t, z(t, zg))| Vn(t,x(t,xo))) dt
0
< - Z xiw('wo)(T —t;) — h""(0,24(0,20))7 + 1T,
and finally because

/oT (E;f (t, 2(t,20)) + [V (t, 2(t, 20))| Vn(t"”(t’m))) “
T d
:/O aw(t,x(t,xo))dt

we have

— Z x;w(-,wo)(T — ;) — (0,240, x0))T — 297

i€2,..;me—1
< w(r,2(7)) — w(0, o)
< - Z SU;w(_‘zo)(T —t;) — h""(0,2,(0,20))T + 17

1€2,...,m,—1
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Theorem 2. Set a real number n > 0, point xg € 952 and 7 € [0,1]. Then

’lU(T, x(T)) - U)(O, xO)

+Y @ ey (T =)+ R(0,24(0, 20)) T — 7

1€2,....,m,—1
is a value of some e-level set function at the point (7,x(7,x0)) for e = 3nT.

Proof. From the Theorem 2 we obtain

=3nT < w(r,z(1)) — w(0, o)
+Y @y (T =)+ h(0,20(0, 20)) T — T

i€2,....ms—1
<0.

From the above we infer that it is enough to take into account a finite number
of points from 92 to get the approximation of the level set function with an error
not greater than 3n.
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