Strong Shape Derivative for the Wave Equation with Neumann Boundary Condition

Abstract : The paper provides shape derivative analysis for the wave equation with mixed boundary conditions on a moving domain Ωs in the case of non smooth neumann boundary datum. The key ideas in the paper are (i) bypassing the classical sensitivity analysis of the state by using parameter differentiability of a functional expressed in the form of Min-Max of a convex-concave Lagrangian with saddle point, and (ii) using a new regularity result on the solution of the wave problem (where the Dirichlet condition on the fixed part of the boundary is essential) to analyze the strong derivative.
Type de document :
Communication dans un congrès
Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.445-460, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_45〉
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01347567
Contributeur : Hal Ifip <>
Soumis le : jeudi 21 juillet 2016 - 11:25:36
Dernière modification le : vendredi 29 décembre 2017 - 15:22:02

Fichier

978-3-642-36062-6_45_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jean-Paul Zolésio, Lorena Bociu. Strong Shape Derivative for the Wave Equation with Neumann Boundary Condition. Dietmar Hömberg; Fredi Tröltzsch. 25th System Modeling and Optimization (CSMO), Sep 2011, Berlin, Germany. Springer, IFIP Advances in Information and Communication Technology, AICT-391, pp.445-460, 2013, System Modeling and Optimization. 〈10.1007/978-3-642-36062-6_45〉. 〈hal-01347567〉

Partager

Métriques

Consultations de la notice

72

Téléchargements de fichiers

37