Tyr: Blob Storage Meets Built-In Transactions

Abstract : Concurrent Big Data applications often require high-performance storage, as well as ACID (Atomicity, Consistency , Isolation, Durability) transaction support. Although blobs (binary large objects) are an increasingly popular model for addressing the storage needs of such applications, state-of-the-art blob storage systems typically offer no transaction semantics. This demands users to coordinate access to data carefully in order to avoid race conditions, inconsistent writes, overwrites and other problems that cause erratic behavior. We argue there is a gap between existing storage solutions and application requirements, which limits the design of transaction-oriented applications. We introduce Tyr , the first blob storage system to provide built-in, multiblob transactions, while retaining sequential consistency and high throughput under heavy access concurrency. Tyr offers fine-grained random write access to data and in-place atomic operations. Large-scale experiments on Microsoft Azure with a production application from CERN LHC show Tyr throughput outperforming state-of-the-art solutions by more than 75%.
Type de document :
Communication dans un congrès
IEEE ACM SC16 - The International Conference for High Performance Computing, Networking, Storage and Analysis 2016, Nov 2016, Salt Lake City, United States. 〈http://sc16.supercomputing.org〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01347652
Contributeur : Alexandru Costan <>
Soumis le : jeudi 21 juillet 2016 - 14:30:29
Dernière modification le : mercredi 2 août 2017 - 10:10:12

Fichier

pap169s2-file1.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01347652, version 1

Citation

Pierre Matri, Alexandru Costan, Gabriel Antoniu, Jesús Montes, María S. Pérez. Tyr: Blob Storage Meets Built-In Transactions. IEEE ACM SC16 - The International Conference for High Performance Computing, Networking, Storage and Analysis 2016, Nov 2016, Salt Lake City, United States. 〈http://sc16.supercomputing.org〉. 〈hal-01347652〉

Partager

Métriques

Consultations de
la notice

521

Téléchargements du document

278