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Týr: Blob Storage Systems Meet
Built-In Transactions

Abstract—Concurrent Big Data applications often require
high-performance storage, as well as ACID (Atomicity, Consis-
tency, Isolation, Durability) transaction support. Although blobs
(binary large objects) are an increasingly popular model for
addressing the storage needs of such applications, state-of-the-
art blob storage systems typically offer no transaction semantics.
This demands users to coordinate access to data carefully in order
to avoid race conditions, inconsistent writes, overwrites and other
problems that cause erratic behavior. We argue there is a gap
between existing storage solutions and application requirements,
which limits the design of transaction-oriented applications. We
introduce Týr, the first blob storage system to provide built-
in, multiblob transactions, while retaining sequential consistency
and high throughput under heavy access concurrency. Týr offers
fine-grained random write access to data and in-place atomic
operations. Large-scale experiments on Microsoft Azure with a
production application from CERN LHC show Týr throughput
outperforming state-of-the-art solutions by more than 75%.

I. INTRODUCTION

Binary Large Objects (or Blobs) are an increasingly popular
model for addressing the storage needs of data-intensive ap-
plications. Their low-level, fine-grained binary access methods
provide the user with a complete control over the data layout.
This enables a level of application-specific optimizations,
which other structured storage systems such as key-value
stores or relational databases simply cannot provide. Such
optimisations are leveraged in a variety of contexts: Microsoft
Azure [1], for instance, uses blobs for storing virtual hard
disks images, while in RADOS [2] they stand as a base
layer for higher-level storage systems such as Distributed File
Systems or Object Stores. The unstructured nature of blobs
also makes them ideal candidates to store large numbers of
small related objects efficiently by grouping them in a single
storage container, thereby avoiding the cost of storing metadata
for each individual object. Moreover, the complex hierarchical
structures of POSIX-like file systems [3] are often not needed.

Transactions [4] are a key requirement for many operations
related to data-intensive applications (e.g. checkpoint/restart,
data indexing, snapshotting, etc.). Transactions provide a sim-
ple model to cope with data access concurrency and to coordi-
nate writes to multiple data objects at once. This is crucially
important for a number of applications such as monitoring,
data analytics and indexing services. For instance, a service

storing and indexing a stream of events can use transactions
to ensure that indexes are kept synchronized with the storage
(Atomicity, Consistency), do not get corrupted (Durability),
and that updates can be performed in parallel while enabling
indexes to be queried concurrently (Isolation). Such guarantees
are commonly refereed to as ACID (Atomicity, Consistency,
Isolation, Durability). In the context of distributed transac-
tional systems, consistency is usually provided as Sequential
Consistency, i.e. guaranteeing that the result of any execution
on multiple processors is the same as if the operations of all
the processors were executed in some sequential order, and
that the operations of each individual processor appear in this
sequence in the order specified by its own program [5].

We can think of three levels where to implement trans-
actions: within applications, at middleware level or in the
storage system. Explicit synchronization at the application
level significantly increases the complexity of application
development. Also, should the application fail in the middle
of a series of related updates, the storage system can be left
in an inconsistent state. Handling transactions at middleware
level significantly eases application development by enabling
transactional semantics over a non-transactional storage back-
end. Unfortunately, it often remains incompatible with the
high performance requirements of data-intensive applications.
Actually, middleware synchronization protocols come on top
of those of the underlying storage layer, resulting in an
increased network load and therefore in a higher latency of
storage operations. In contrast, handling transactions at the
storage layer enables their processing to be an integral part of
the storage operations, consequently keeping the overhead of
transactional operations as low as possible. This is namely the
approach we advocate in this paper.

However, providing transactional guarantees for blob op-
erations while meeting high performance requirements is far
from trivial. State-of-the-art blob storage systems are typi-
cally meeting these requirements at the expense of weaker
consistency guarantees. Those systems do not provide the
multiobject transactional semantics that have been offered
for decades by relational database systems [6], and that are
proposed by a new generation of key-value stores [7], [8].
Strengthening those consistency guarantees while preserving
the original performance of those systems is very difficult.



Although high-performance algorithms have been proposed
for efficient transaction processing on distributed file systems,
key-value stores or databases, they are not easily adaptable to
blobs. Indeed, such algorithms usually operate on relatively
small objects: at the object level for databases or key-value
stores, or at the metadata level on specialized nodes for
distributed file systems. However, separating the metadata
from the data comes at a cost: increased storage operations
latency due to metadata lookup and bookkeeping. Although it
may be relevant for complex hierarchical structures such as file
systems, we believe this is not relevant for flat namespaces,
such as blob storage.

Therefore, we claim it is necessary to co-design the blob
storage systems and their transaction support. The major
contribution of this paper is to propose a novel blob storage ar-
chitecture called Týr, which features built-in high-performance
support for multiblob transactions under heavy access con-
currency while providing sequential consistency guarantees.
To achieve these properties, it relies on an innovative decen-
tralized version management scheme that builds on top of
the transaction protocol. This scheme is designed to keep a
low write overhead, while enabling data to be read from their
actual location (i.e. without prior exchanges with some remote
metadata server). We implemented a prototype of Týr, that
we deployed on the Microsoft Azure cloud [1] on up to 256
nodes. We evaluated our approach through an experimental
study performed using a real-life scenario, as storage backend
for the MonALISA [9] monitoring system of the ALICE
experiment [10]. Týr’s throughput is shown to outperform
state-of-the-art solutions such as Azure Storage [11], RADOS,
and BlobSeer [12], while providing transactional semantics
and stronger consistency guarantees.

This paper is structured as follows. In Section II, we
illustrate the requirements of Týr using as example the ALICE
experiment. Section III provides a brief overview of the state-
of-the-art techniques on which Týr is based. Section IV details
the design of Týr, implemented in a prototype described in
Section V. Section VI presents the results of our experimental
evaluation, followed in Section VII by a discussion of some
aspects of Týr not directly covered by this paper. We review
related work in Section VIII. Finally, Section IX concludes
this paper and outlines future work on Týr.

II. MOTIVATING SCENARIO

Let us first consider the needs of a real, production appli-
cation. ALICE (A Large Ion Collider Experiment) [10] is one
of the four LHC (Large Hadron Collider) experiments run at
CERN (European Organization for Nuclear Research) [13].
ALICE collects data at a rate of up to 4 Petabytes per run
and produces more than 109 data files per year. Tens of
thousands of CPUs are required to process and analyze them.
The CPU and storage capacities are distributed over more than
80 datacenters around the world.

We focus on the management of the monitoring informa-
tion collected in real-time about all ALICE resources. More
than 350 MonALISA services are running at sites around

the world, collecting information about ALICE computing
facilities, local- and wide-area network traffic, and the state
and progress of the many thousands of concurrently running
jobs. This yields more than 1.1 million measurements pushed
to MonALISA, each with an update frequency of one second.
In order to be presented to the end-user, the raw data is
aggregated to produce about 35,000 system-overview metrics,
and grouped under different time granularity levels.

Managing monitoring data: what could be improved.
The current implementation of ALICE is based on a Post-
greSQL database [14]. Aggregation is performed by a back-
ground worker task at regular intervals. With the constant
increase in volume of the collected metrics, this storage
architecture becomes inefficient. Time-series databases such
as OpenTSDB [15] or KairosDB [16] were considered to
replace the current architecture. However, storing each event
individually, along with the related metadata such as tags,
leads to a significant overhead. In the context of MonALISA,
the queries are known at the time measurements are stored
by the system. This opens the way to a highly-customized
data layout that would at the same time dramatically increase
throughput, reduce metadata overhead, and ultimately lower
both the computing and storage requirements for the cluster.

The need for transactions. The blob-based storage layout
for the MonALISA system is as follows. All measurements
(timestamp,measurement) are appended to a per-generator
blob. Measurements are then averaged over a one-minute
window with different granularity levels (machine, cluster, site,
region, and job). This layout is explained in Figure 1. Updating
an aggregate is a three-step operation: read old value, update
it with the new data, and write the new value (read-update-
write). In order to guarantee the correctness of such operations,
all writes must be atomic. This atomicity also enables hot
snapshotting of the data. As an optimization for aggregate
computation, we would like the read-update-write operations
to be performed in-place, i.e. as a single operation with a single
round trip between the client and the server.

Starting from this use-case, we summarize the key require-
ments of a storage system supporting high-performance data
management for data-intensive large-scale applications such
as MonALISA: (i) Built-in multiblob transaction support.
Applications heavily relying on data indexing as well as
live computation of aggregates require a transactional storage
system able to synchronize read and write operations that
span multiple blobs as well as to guarantee the consistency
of the data; (ii) Fine-grained random writes. The system
should support fine-grained access to blobs, and allow writes
at arbitrary offsets, with a byte-level granularity; (iii) In-place
atomic updates. In order to support efficient computation of
aggregates and to improve the performance of read-update-
write operations, the system should offer in-place atomic
updates of the data, such as add or subtract; and (iv) High-
throughput under heavy concurrency. MonALISA events
are generated concurrently at high rate, and are accessed
simultaneously by a potentially large number of clients. This



g1 g2 g3 g4 g5Generators

e1 e2 e3 e4 e5Per-generator blobs

e1 e2 e3 e4 e5Generator aggregates

c1 c2Cluster aggregates

allGlobal aggregate

Cluster 1 Cluster 2

Fig. 1. Simplified MonALISA data storage layout, showing five generators
on two different clusters, and only three levels of aggregation (generator,
cluster, and all). Solid arrows indicate events written and dotted arrows
represent event aggregation. Each rectangle indicates a different blob.

calls for a storage layer able to support parallel data processing
to a high degree, concurrently and on large number of nodes.

Týr addresses all these requirements, allowing it to serve
efficiently the MonALISA system. However, the generic na-
ture of such requirements do not limit Týr to this specific
application, or even to data indexing and analytics. Týr enables
fine-grained random writes on arbitrarily large binary objects,
which makes it suitable for any application leveraging blob
storage (e.g. Azure Storage, Ceph [17]).

III. BACKGROUND

The base architecture model of Týr is that of a replicated
and decentralized key-value store similar to Dynamo [18]
or Cassandra [19]. This design provides homogeneous data
distribution and read / write parallelism. We use a lightweight
chain transaction protocol to provide ACID capabilities to
the system. In this section, we briefly describe the design
principles of Týr, which are largely based on current state-
of-the-art practices.

A. Data striping and replication

Data striping is used to balance reads and writes over a large
number of nodes. Blobs are split into multiple chunks of a size
defined for the whole system. With a chunk size s, the first
chunk c1 of a blob will contain the bytes in the range [0, s),
the second chunk c2, possibly stored on another node, will
contain the bytes in the range [s, 2s), and the chunk cn will
contain the bytes in the range [(n− 1) ∗ s, n ∗ s). The chunk
size is a system parameter: a typical value is 64 MB. Each
chunk is replicated on multiple servers: the default replication
factor is 3.

B. Distributed Hash Table based data distribution

Chunks are distributed across the cluster using consistent
hashing [20], based on a distributed hash table, or DHT. Given
a hash function h(x), the output range [hmin, hmax] of the
function is treated as a circular space (hmin sticking around

to hmax). Every node is assigned a different random value
within this range, which represents its position on the ring.
For any given chunk n of a blob k, a position on the ring
is calculated by hashing the concatenation of k and n using
h(k : n). The primary node holding the data for a chunk is
the first one encountered while walking the ring passed this
position. Additional replicas are stored on servers determined
by continuing walking the ring until a number of nodes equal
to the replication factor are found.

C. Warp transaction protocol

Týr uses the Warp optimistic transaction protocol, whose
correctness has been proven in [7]. Warp was introduced
for the HyperDex [21] key-value store, providing lightweight
ACID transactions for a decentralized system. In order to
commit a transaction, the client constructs a chain of servers
which will be affected by it. These nodes are all the ones
storing the written data chunks, and one node holding the
data for each chunk read during the transaction (if any). This
set of servers is sorted in a predictable order, such as a
bitwise ordering on the IP/Port pair. The ordering ensures that
conflicting transactions pass through their shared set of servers
in the exact same order. The client addresses the request to
the coordinator. This node will validate the chain and ensure
that it is up-to-date according to the latest ring status. If not,
that node will construct a new chain and forward the request
to the coordinator of the new chain.

Warp uses a linear transactions commit protocol to guaran-
tee that all transactions are either successful and serializable,
or abort with no effect. This protocol consists of one forward
pass to optimistically validate the values read by the client
and ensure that they remained unchanged by concurrent trans-
actions, followed by a backward pass to propagate the result
of the transaction – either success or failure – and actually
commit the changes to memory. Dependency information is
embedded by the nodes in the chain during both forward
and backward passes to enforce a serializable order across all
transactions. A background garbage collection process limits
this number of dependencies by removing those that have
completed both passes.

The coordinator node does not necessarily own a copy of
all the chunks being read by every transaction, which are
distributed across the cluster. As such, one node responsible
for a chunk being read in any given transaction must validate
it by ensuring that this transaction does not conflict nor
invalidates previously validated transactions, for which the
backward pass is not complete. Every node in the commit
chain ensures that the transactions do not read values written
by, or write values read by previously validated transactions.
Nodes also check each value against the latest one stored in
their local memory to verify that the data was not changed
by a previously committed transaction. The validation step
fails if transactions fail either of these tests. A transaction
is aborted by sending an abort message backwards through
the chain members that previously validated the transaction.
These members remove the transaction from their local state,



thus enabling other transactions to validate instead. Servers
validate each transaction exactly once, during the forward pass
through the chain. As soon as the forward pass is completed,
the transaction may commit on all servers. The last server of
the chain commits the transaction immediately after validating
it, and sends the commit message backwards to the chain.

Enforcing a serializable order across all transactions re-
quires that the transaction commit order does not create any
dependency cycles. To this end, a local dependency graph
across transactions is maintained at each node, with the
vertices being transactions and each directed edge specifying
a conflicting pair of transactions. A conflicting pair is a pair
of transactions where one transaction writes at least one data
chunk read or written by the other. Whenever a transaction val-
idates or commits after another one at a node, this information
is added to the transaction message sent through the chain:
the second transaction will be recorded as a dependency of
the first. This determines the directionality of the edges in the
dependency graph. A transaction is only persisted in memory
after all of its dependencies have committed, and is delayed
at the node until this condition is met.

Finally, Warp gracefully handles server faults while process-
ing transactions by dynamically re-arranging commit chains as
failures are detected in the cluster.

IV. TÝR: DESIGN OF A TRANSACTIONAL BLOB STORE

A. Interface of Týr

Týr provides a low-level binary API, granting users access
to the data stored in blobs down to byte-level granularity.
Multiblob ACID transactions enable users to commit multiple
reads and writes as a single atomic operation, guaranteed to
either succeed or fail as a complete unit. In-place atomic
updates allow some read-update-write operations such as add
or subtract to be processed directly on the server. In order
to demonstrate the usage of Týr with a concrete example, we
illustrate it in the context of the motivating scenario described
in Section II.

Algorithm 1 details the process of writing a new measure-
ment to the storage system. Everything happens in the context
of a single local transaction, opened by calling the BEGIN
function. Inside the transaction, every write is locally recorded
by the client; no information is sent to the storage system until
the transaction is committed using the COMMIT function. The
WRITE function (not explicitly present in this example) writes
a binary value at a given offset in a blob. APPEND appends a
binary value to a blob. APPLY applies an operation in-place –
in our example, an arithmetic addition. Algorithm 2 reads an
aggregate value. Because this operation only needs a single
READ call, it does not need to be executed inside the context
of a transaction. A transaction containing only read calls or
only write calls is guaranteed to succeed on a healthy cluster,
i.e. if the number of server failures does not exceed the system
limits discussed in Section VII.

Algorithm 1 Measurement update process. Functions in bold
are part of the Týr API.

connection← CONNECT() . Connect to the server

. Save a value val at time t generated by gen in cluster
procedure SAVEMEASUREMENT(val, time, gen, cluster)

BEGIN(connection) . Open a transaction context
. Append new measurement to the per-generator blob
let data be the concatenation of time and val
APPEND(gen, data) . Append data to gen blob

. Update aggregates
UPDATEAGGREGATE(”a ” + gen, val, time)
UPDATEAGGREGATE(”a ” + cluster, val, time)
UPDATEAGGREGATE(”a all”, val, time)
COMMIT() . Atomically commit changes

end procedure

procedure UPDATEAGGREGATE(blob, val, time)
let offset be the offset at which to write in blob
. Add 1 in place to the measurement count.
APPLY(blob, offset, ADD, 1)
. Add the measurement to the total.
APPLY(blob, offset+ SIZEOF(int), ADD, val)

end procedure

Algorithm 2 Measurement read process. Functions in bold are
part of the Týr API.

connection← CONNECT() . Connect to the server

procedure READAGGREGATE(blob, time)
let offset be the offset at which to write in blob
data← READ(blob, offset, 2 ∗ SIZEOF(int))

end procedure

B. Týr’s high-level version management

In order to achieve high write performance under concurrent
workloads, Týr uses multiversion concurrency control (or
MVCC) [22]. This ensures that the current version of a blob
can be read consistently while a new one is being created
without locking. Version management is done implicitly in
Týr. Version identifiers are internal to Týr and are not exposed
to the client.

Any given transaction is assigned a globally unique iden-
tifier at the client. During the transaction commit phase, a
new version of each chunk being written to is generated on
all the nodes the chunk is stored on. The new chunk version
identifier is the transaction identifier. The version of all other
chunks remains unchanged, as illustrated by Figure 2. In
this example, the blob version v6 is composed of the chunk
versions (v4, v3, v6). The blob version identifier is the same
as the most recent version identifier of its chunks.
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Fig. 2. Týr versioning model. When a version v2 of the blob is written,
which only affects chunk c2, only the version of both the blob and c2 is
changed. The version id for both c1 and c3 remains unchanged.
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Fig. 3. Version management example. The version v1 of this blob only
affected the chunk c1, v2 affected both c1 and c2. In this example, v6 is
composed of the chunk versions (v4, v3, v6). This versioning information is
stored on the blob’s metadata nodes.

For any given write operation, only the nodes holding
affected data chunks will receive information regarding this
new version. Consequently, the latest version of a blob is
composed of a set of chunks with possibly different version
identifiers, as illustrated by Figure 3. To be able to read a
consistent version of any given blob, information regarding
every successive versions of the chunks composing this blob
is stored on the same nodes holding replicas of the first data
chunk of the blob. These nodes are called version managers for
the blob. Co-locating the first chunk of a blob and its version
managers enables faster writes to the beginning of blobs. This
version information placement enables the client to address
requests directly to a version manager. It also avoids using
any centralized version manager or metadata registry.

C. Týr’s read protocol

1) Direct read: With chunk placement based on a
distributed hash-table, clients are able to locate efficiently the
nodes holding the replicas of any given data chunk. Reading
the latest version of a chunk is thus straightforward: the client
sends a request directly to one of these nodes. The server
responds with the latest version of that chunk.

2) Consistent read: Direct reads are not applicable in a
number of cases involving reading multiple chunks of a blob.
When reading a portion of a blob which overlaps multiple
chunks, it is necessary to obtain the version identifiers of each
of those chunks forming a consistent version of the blob as
explained in Section IV-B. Inside a transaction, successive read
operations on any given blob must be performed on the same
consistent blob version, even if the portions of the blob to be
read lie on different chunks.

Client Version manager Chunks

c1 c2 c3

r([c1, c2])

r(c1, v1)

r(c2, v2)

(c1)

(c2)
([c1, c2], [v1, .., vn])

r(c3, v3)

(c3)

First read

Second read

Fig. 4. Týr read protocol inside a transaction. The client sends a read query
for chunks c1 and c2 to the version manager, which relays the query to the
servers holding the chunks with the correct information, and responds to the
client with the chunk data and a snapshot of the chunk versions. Subsequent
read on c3 is addressed directly to the server holding the chunk data using
the received chunk version information.

a) In the context of a transaction: The first read opera-
tion on a blob is sent to one of its version managers, which
constructs a list of the chunk version identifiers composing
the latest version of the blob. For each chunk being read, the
version manager randomly selects one replica and forwards
the read request to the node holding it, along with the
associated chunk version in the list. These nodes respond
to the version manager with the requested version of the
data. Upon reception of the replies from each node by the
version manager, it responds to the client with the received
data. This message is piggybacked with the list of chunk
version identifiers constructed for this request. These version
identifiers are cached by the client in the transaction. Any
subsequent read operation on the same blob within the same
transaction can then be processed as a direct read: the client
addresses the request directly to the nodes holding the chunks
to be read, attaching the associated version identifier. The
whole process is illustrated by Figure 4. This protocol enables
the client to read a consistent version of the blob even in
presence of concurrent writes to the chunks being accessed.

b) Outside of a transaction: A read operation overlap-
ping multiple chunks is processed like the first read inside a
transaction: it has to go through the version manager of the
blob. Unlike a transactional read, chunk version information is
not sent back to the client. Subsequent reads on the same blob
may be performed on a newer version of the blob in presence
of concurrent writes.

D. Handling ACID operations: Týr’s write protocol

The Warp protocol briefly introduced in Section III-C has
not been designed for blob storage systems. Adapting it for
Týr and coupling it with multiversion concurrency control is
not a trivial task.

The version managers of a blob have complete information
about the successive versions of the blob. Thus, the version



managers of any given blob have to be made aware of any
write to this blob. We achieve this by systematically including
the version managers in the Warp commit chain, in addition to
the nodes holding the chunk data. The version managers of all
the blobs being written to in a given transaction are ordered
using the same algorithm used for the rest of the chain, and are
inserted at the beginning of the chain. This ensures that, during
the backward pass of the transaction commit protocol, the
transaction will have successfully committed on every chunk
storage node before it is marked as committed on the version
manager nodes.

Correctness: A transaction t1 conflicts with another trans-
action t2 only if it reads a chunk written to by t2, if it writes
to a chunk being read to by t2, or if it writes to a common set
of chunks. The chain commit protocol enables the first two
cases to be detected during the forward pass, regardless of the
chain ordering. Placing the ordered list of version managers at
the beginning of the chain does not break the correctness of
the chain commit algorithm: if t1 and t2 write to a common
set of blob chunks, the version managers for these blobs will
be included in both commit chains, sorted in the same order,
and will be inserted at the beginning of each. Consequently,
two conflicting transactions will keep the same chain relative
order, as required by the commit protocol.

E. Version garbage collector

1) Garbage collector overview: Týr uses multiversion con-
currency control as part of its base architecture in order
to handle lock-free read / write concurrency. Týr also uses
versioning to support the read protocol, specifically to achieve
write isolation and ensure that a consistent version of any
blob can be read even in the presence of concurrent writes.
A background process called version garbage collector is
responsible for continuously removing unused chunk versions
on every node of the cluster. A chunk version is defined as
unused if it is not part of the latest blob version, and if no
version of the blob it belongs to is currently being read as part
of a transaction.

The question now is how to determine the unused chunk
versions. The transaction protocol defines a serializable order
between transactions. It is then trivial for every node to know
which is the last version of any given chunk it holds, by
keeping ordering information between versions. Determining
whether a chunk version is part of a blob version being read
inside a transaction is however not trivial. Intuitively, one way
to address this challenge is to make the version managers
of the blob responsible for ordering chunk version deletion.
This is possible because the read protocol ensures that a read
operation on any given node inside a transaction will always
hit a version manager of this blob. Hence, at least one version
manager node is aware of any running transaction performing
a read operation in the cluster. Finally, the version managers
are aware of the termination of a transaction as they are part
of the commit chain.

2) Detecting and deleting unused chunk versions: The key
information allowing to decide which chunk versions to delete

is stored by the version managers. We pose as a principle
that a node will never delete any chunk version unless it
has been cleared to do so by every version manager of the
blob the chunk belongs to. Version managers keep a list of
every running transaction for which they served as relay for
the first read operation on a blob. Upon receiving a read
operation from a client, a version manager increases a usage
counter on the latest version of the blob (i.e. the blob version
used to construct the chunk version list as per the consistent
read protocol detailed in Section IV-C2). This usage counter
is decremented after the transaction is committed, or after a
defined read timeout for which the default is 5 minutes. Such
timeout is necessary in order not to maintain blob versions
indefinitely in case of a client failure. The list of currently used
chunk versions of any blob is communicated to all the nodes
holding the chunks for this blob by means of the transactional
commit protocol: for any given transaction, for every blob
being written to by the transaction, each version manager
piggybacks to the forward and backward pass messages the list
of chunk versions currently in use. This guarantees that every
node which is part of the chain will get this chunk version
usage information as part of the protocol, either during the
forward or the backward pass.

For any given blob, the version garbage collector of any
node is free to delete any chunk version that (1) is not the
latest, (2) is older than the latest transaction for which version
usage information for that blob has been received from the
version managers, and (3) was not part of the chunk versions
in use as part of the latest version usage information received
for this blob. The version garbage collector may also safely
delete any chunk version older than the read timeout which
has not been superseded by a newer version.

3) Optimizing the message size: In order to limit the
commit message overhead, the currently used chunk versions
are piggybacked by the version managers to the transaction
messages as bloom filters [23]. A bloom filter is a space-
efficient probabilistic data structure that is used to test whether
an element is member of a set. The version garbage collector
can efficiently check whether a blob version is in the set of
currently running transactions. Bloom filters are guaranteed
never to cause false negatives, ensuring that no currently used
chunk will be deleted. However, bloom filters can return false
positives, which may cause a chunk version to be incorrectly
considered as being used. These chunk versions will be
eventually deleted during a subsequent transaction involving
this blob, or once the read timeout was exceeded. The false
positive probability of a bloom filter depends on its size, and
is a system parameter. The default is a 0.1% error probability.
With this configuration, 100 concurrent running transactions
on each 3 version managers of a blob would cause a commit
message overhead of less than 0.6 Kilobytes.

V. TÝR’S PROTOTYPE IMPLEMENTATION

All the features of Týr relevant for this paper have been fully
implemented. This prototype implementation includes the Týr
server, an asynchronous C client library, as well as partial C++



and Java bindings. The server itself is approximately 22,000
lines of GNU C code. This section describes key aspects of
the implementation.

Týr is internally structured around multiple, lightweight
and specialized event-driven loops, backed by the LibUV
library [24]. When a request is received, it is forwarded
to one of the relevant event loops for further asynchronous
processing. No request queueing is done in order to avoid
communication delays, and thus reduce the overall latency of
the server. On-disk data and metadata storage uses Google’s
LevelDB key-value store [25], a state-of-the-art log-structured
merge tree [26] based library optimized for high-throughput.

The intra-cluster and client-server request/response mes-
sages are serialized with Google’s FlatBuffers [27] library.
It allows message serialization and deserialization without
parsing, unpacking, or any memory allocation. These messages
are transmitted using the UDT protocol [28]. UDT is a reliable
UDP-based application level data transport protocol. UDT uses
UDP to transfer bulk data with its own reliability control and
congestion control mechanisms. This enables transferring data
at a much higher speed than TCP.

VI. EVALUATION

We evaluated our design in five steps. We first studied the
transactional write performance of a Týr cluster with a heavily-
concurrent usage pattern. Second, we tested the raw read
performance of the system. We then gauged the reader/writer
isolation in Týr. Fourth, we measured the performance stability
of Týr over a long period. Last, we proved the horizontal
scalability of Týr.

Experimental setup. We deployed Týr on the Microsoft
Azure Compute [1] platform on up to 256 nodes. For all ex-
periments, we used D2 v2 general-purpose instances, located
in the East US region (Virginia). Each virtual machine has
access to 2 CPU cores, 7 GB RAM and 60 GB SSD storage.
The host server is based on 2.4 GHz Intel Xeon E5-2673 v3
[29] processors and is equipped with 10 Gigabit ethernet.

Evaluated systems. To the best of our knowledge, no
distributed storage systems with a comparable low-level data
model and built-in transactions are available today. Throughout
these experiments, we compared Týr with RADOS [2], a
distributed blob storage system developed as part as Ceph [17].
RADOS is based on a decentralized architecture and does
not make use of Multiversion Concurrency Control. We also
compared Týr with BlobSeer [12], an open-source, in-memory
distributed storage system which shares the same data model
and a similar API. BlobSeer has been designed to support
a high-throughput for highly-concurrent accesses to shared
distributed blobs. Unlike Týr, BlobSeer distributes the meta-
data over the cluster by means of a distributed tree. Finally,
we compared Týr with Microsoft Azure Storage blobs, a fully-
managed blob storage system provided as part of the Microsoft
Azure cloud platform. This system comes in three flavors:
append blobs, block blobs and page blobs. Append blobs are
optimized for append operations, block blobs are optimized for
large uploads, and page blobs are optimized for random reads
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Fig. 5. Write performance of Týr, RADOS, BlobSeer and Azure Storage,
varying the number of concurrent clients, with 95% confidence interval.

and writes [11]. For our experiments, we used RADOS 0.94.4
(Hammer), BlobSeer 1.2.1, and the version of Azure Storage
Blobs available at the time these experiments were run.

Dataset and workload. In order to run these experiments,
we used a dump of real data obtained from the MonALISA
system [9]. This data set is composed of ∼ 4.5 million
individual measurement events, each one being associated to
a specific monitored site. We used multiple clients to replay
these events, each holding a different portion of the data.
Clients are configured to loop over the data set to generate
more events when the size of the data is not sufficient. The
data was stored in each system following the layout described
in Section II. The read operations were performed by querying
ranges of data, simulating a realistic usage of the MonALISA
interface. In order to further increase read concurrency, the
data was queried following a power-law distribution.

Experimental configuration. Because of the lack of
native transaction support in Týr competitors, we used
ZooKeeper 3.4.8 [30] (ZK), an industry-standard, high-
performance distributed synchronization service, which is part
of the Hadoop [31] stack. Zookeeper allows us to synchronize
writes to the data stores with a set of distributed locks. We
discuss the choice of ZooKeeper in Section VII-A. ZooKeeper
locks are handled at the lowest-possible granularity: one lock
is used for each aggregate offset (8-byte granularity), except
for Azure in which we had to use coarse-grained locks (512-
byte granularity). This is because Azure page blobs, which we
used for storing the aggregates, requires writes to be aligned on
a non-configurable 512-byte page size [11]. We have used page
blobs because of their random write capabilities. Furthermore,
append blobs are not suited for operating on small data objects
such as MonALISA events: they are limited to 50.000 appends.

A. Transactional write performance

High transactional write performance is the key requirement
that guided the design of Týr. To benchmark the different
systems in this context, we measured the transactional write
performance of Týr, RADOS, BlobSeer with the MonALISA
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workload. We also measured the performance of the same
workload on the Azure Storage platform. Týr uses atomic
operations. However, being the only system to support such
semantics, we also tested the Týr behavior with regular read-
update-write (RUW) operations as a baseline. Týr transactions
are required to synchronize the storage of the events and
their indexing in the context of a concurrent setup. We used
ZooKeeper to synchronize writes on the other systems. All
systems were deployed on a 32-node cluster, except for Azure
Storage which does not offer the possibility to tune the number
of machines in the cluster.

The results, depicted in Figure 5, show that the Týr peak
throughput outperforms its competitors by 78% while sup-
porting higher concurrency levels. Atomic updates allowed
Týr to further increase performance by saving the cost of
read operations for simple updates. The significant drop of
performance in the case of RADOS, Azure Storage and
BlobSeer at higher concurrency levels is due to the in-
creasing lock contention. This issue appears most frequently
on the global aggregate blob, which is written to for each
event indexed. In contrast, our measurements show that Týr’s
performance drop is due to CPU resource exhaustion. Under
lower concurrency, however, we can see that the transaction
protocol incurs a slight processing overhead, resulting in a
comparable performance for Týr and RADOS when the update
concurrency is low. BlobSeer is penalized by its tree-based
metadata management which incurs a non-negligible overhead
compared to Týr and RADOS. Overall, Azure shows a lower
performance and higher variability than all systems. At higher
concurrency levels however, Azure performs better than both
RADOS and BlobSeer. This could be explained by a higher
number of nodes in the Azure Storage cluster, although the
lack of visibility over its internals doesn’t allow to draw any
conclusive explanation. We can observe the added value of
in-place atomic operations in the context of this experiment,

which enables Týr to increase its performance by 33% by
avoiding the cost of read operations for simple updates.

B. Read performance

We evaluated the read performance of a 32-node Týr cluster
and compared it with the results obtained with RADOS and
BlobSeer on a similar setup. As a baseline, we measured the
same workload on the Azure Storage platform. We preloaded
in each of these systems the whole MonALISA dataset, for
a total of around 100 Gigabytes of uncompressed data. We
then performed random reads of 800 Byte size each from
both the raw data and the aggregates, following a power-
law distribution to increase read concurrency. This read size
corresponds to a typical 100-minute average of MonALISA
aggregated data. To prevent memory overflows, servers throttle
the number of concurrent requests in the system. We have
configured Týr to have a maximum of 1,000 total concurrent
requests in process.

We plotted the results in Figure 6. The lightweight read
protocol of both Týr and RADOS allows them to exhaust
the CPU resources quickly and to outperform both BlobSeer
and Azure Storage peak throughput by 44%. On the other
hand, BlobSeer requires multiple hops to fetch the data in the
distributed metadata tree. This incurs an additional networking
cost that limits the total performance of the cluster. Under
higher concurrency, we observe a slow drop in throughput for
all the compared systems except for Azure Storage due to the
involved CPU in the cluster getting overloaded. Once again,
linear scalability properties of Azure could be explained by the
higher number of nodes in the cluster, although this can’t be
verified because of the lack of visibility over Azure internals.

Týr and RADOS show a similar performance pattern. Mea-
surements show RADOS outperforming Týr by a margin of
approximately 7%. This performance penalty can partly be
explained by the overhead of the multiversion concurrency
control in Týr, enabling it to support transactional operations.
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RADOS + ZK BlobSeer + ZK
Azure + ZK

Fig. 8. Comparison of aggregated read and write performance stability
over a 24-hour period with a sustained 65% read / 35% write workload, with
95% confidence intervals.

4 32 64 96 128 160 192 224 256
0

8

16

24

32

Number of nodes

A
gg

re
ga

te
d

th
ro

ug
hp

ut
(m

il.
op

s
/

s)

100 clients 500 clients
400 clients 800 clients
1600 clients
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C. Reader/writer isolation

We performed simultaneously reads and writes in a 32-
node cluster, using the same setup and methodology as with
the two previous experiments. To that end, we preloaded half
of the MonALISA dataset in the cluster and measured read
performance while concurrently writing the remaining half of
the data. We ran the experiments using 200 concurrent clients.
With this configuration, all three systems proved to perform
above 85% of their peak performance for both reads and
writes, thus giving comparable results and a fair comparison
between the systems. Among these clients, we varied the ratio
of readers to writers in order to measure the performance
impact of different usage scenarios. For each of these experi-
ments, we were interested in the average throughput per reader.

The results, depicted in Figure 7, illustrate the added value
of multiversion concurrency control, on which both Týr and
BlobSeer are based. For these two systems, we observe a
near-stable average read performance per client despite the
varying number of concurrent writers. In contrast, RADOS,
which outperforms Týr for a 95/5 read-to-write ratio, shows
a clear drop in performance as this ratio decreases. Similarly,
Azure shows a slight drop in performance as the number of
concurrent writers increases.

D. Performance stability

Týr data structures have been carefully designed so that
successive writes to the cluster impact access performance as
little as possible. We validated this behavior over a long period
of time using a 32-node cluster, and 200 concurrent clients.
We used a 65% read / 35% write workload, the most common
workload encountered in MonALISA.

We depict in Figure 8 the aggregated read / write throughput
over an extended period of time. The results confirm that Týr
performance is stable over time. On the other hand, BlobSeer
shows a clear performance degradation over time, which we
attribute to its less efficient metadata management scheme: for
each blob, metadata is organized as a tree that is mapped to

a distributed hash table hosted by a set of metadata nodes.
Accessing the metadata associated with a given blob chunk
requires the traversal of this tree; as the height of this tree
increases, the number of requests necessary to locate the
relevant chunk metadata also increases. This results in a more
important number of round-trips between the client and the
server, and consequently in a degraded performance over time.
Similarly, Azure shows a slight drop in performance over time.
Under the same conditions, both RADOS and Azure Storage
showed a near-stable performance, which allows us to dismiss
ZooKeeper influence in the progressive performance decrease
observed with BlobSeer.

E. Horizontal scalability

Finally, we tested the performance of Týr when increasing
the cluster size up to 256 nodes. This results in an increased
throughput as the load is distributed over a larger number of
nodes. We used the same setup as for the previous experiment,
varying the number of nodes and the number of clients, and
plotting the achieved aggregated throughput among all clients
over a one-minute time window. We have used the same 35%
write / 65% read workload (with atomic updates) as in the
previous experiment. Figure 9 shows the impact of the number
of nodes in the cluster on system performance. We see that
the maximum average throughput of the system scales near-
linearly as new servers are added to the cluster.

VII. DISCUSSION

A. Experimental methodology

We believe the systems we have chosen are representative
of the state-of-the-art unstructured storage systems for clouds.
Unfortunately, we were not able to compare our approach to
recently-introduced transactional file systems: to the best of
our knowledge, none of them are released as open-source
today. Such systems are presented in Section VIII. Unlike
other systems, Azure Storage does not provide fine-grained
write access to blobs: writes need to be aligned on a 512-byte



page size. Although the added overhead probably handicaps
this system in our tests, Azure Storage is the only unstructured
storage system to offer random-write operations available on
a cloud computing platform today.

This lack of transactional support on the systems we com-
pared Týr to forced us to use an external service for synchro-
nizing write operations. Throughout our experiments, we have
measured the relative impact of this choice. Overall, the results
show that ZooKeeper accounts for less than 5% of the total
request latency for write storage operations. Although faster,
more optimized distributed locks such as Redis [32] may be
available, this is unlikely to have had a significant impact on
the results. We considered using a distributed transactional
middleware to replace locks with a faster alternative. Although
general-purpose transactional middleware such as [33] exist in
the literature, the few open-source systems we could find are
primarily targeted at SQL databases.

B. Týr for small and large blobs

We have designed Týr so it could cope with arbitrarily large
objects. Týr is well-suited for large blobs: chunking allows to
efficiently distribute writes over multiple nodes in the cluster.
However, since the version management servers are unique in a
blob, they could become a bottleneck if an important number
of clients concurrently access a relatively small number of
blobs. Applications should be designed accordingly. Týr can
also cope very efficiently with small objects: its versioning
scheme has been specifically designed to keep the storage
overhead as low as possible, while co-locating the first data
chunk and the version management helps reducing this over-
head even further. Not required by the MonALISA use case,
the evaluation of this aspect has been left for future work.

VIII. RELATED WORK

Blob Storage. As the data volumes handled by modern
large-scale applications is growing, it becomes increasingly
important to minimize as much as possible the metadata
overhead incurred by traditional storage systems such as
relational databases or POSIX file systems. RADOS [2], upon
which Ceph [17] is based, is a highly scalable distributed
storage system from which Týr took great inspiration and
with which it shares a similar data model. RADOS blobs are
mutable, with fine-grained data access. However, unlike Týr,
RADOS does not focus on providing transactional semantics,
or in-place atomic updates. BlobSeer [12] introduces several
optimizations. A versioning-based concurrency control enables
writes in blobs at arbitrary offsets under high concurrency.
The metadata is decentralized and disseminated in the cluster
using a distributed tree. While this effectively helps increasing
the scalability of the cluster, the throughput of the system
may be decreased by the metadata tree traversal in order to
locate the data in the cluster. Týr increases both the read
and write performance even further by eliminating at the
same time the centralised version manager and the distributed
metadata tree. The Warp protocol effectively permits write
coordination without the need for a centralized server. Both

data and metadata can be localized by clients without any
network communication in most cases thanks to their DHT-
based dissemination, additionally enabling single-hop reads.

Distributed File Systems. Specialized file systems specifi-
cally target the needs of data-intensive applications. Ceph [17]
builds upon RADOS in order to provide a distributed file
system interface. Similarly to Týr, its design allows for
high-performance single-hop reads. However, Ceph does not
support built-in support for transactions. CalvinFS [34] uses
hash-partitioned key-value metadata across geo-distributed
datacenters to handle small files, with operations on file
metadata transformed into distributed transactions. However,
in contrast to Týr, this system only allows operations on
single files. Multifile operations require transactions. The
underlying metadata database can handle such operations at
high throughput, but the latency of such operations tends to
be higher than in traditional distributed file systems. The Warp
Transactional Filesystem (WTF) [35] is a transactional file
system based on the HyperDex key-value store for metadata
storage, and uses Warp as its transactional protocol. WTF
handles transaction processing at the metadata level. Its design
focused on providing an API allowing to construct files from
the contents of other files without data copy or relocation.
WTF is based on metadata servers to locate data in the cluster,
and consequently cannot provide single-hop reads. Finally,
WTF does not provide the atomic operations supported by
Týr’s design. Such atomic operations have previously been
proposed on distributed file systems by [36], but this work
unfortunately does not focus on integrating them with a
transactional file system, and did not base its evaluation on
a real file system.

IX. CONCLUSION AND FUTURE WORK

The lack of support for transaction semantics in current
distributed blob stores raises a challenge. Complex, large-scale
distributed applications have no easy tool to manage related
streams and sets of data, and keep them synchronized with
their corresponding indexes. The goal of this paper is to fill
this gap by introducing Týr, a high-performance blob storage
system providing built-in multiblob transactions. It enables
applications to operate on multiple blobs atomically with-
out complex application-level coordination, while providing
sequential consistency under heavy access concurrency. We
evaluate Týr using a real-world use case from the CERN LHC
on the Microsoft Azure cloud: its throughput outperforms that
of state-of-the-art systems by more than 75%. We show that
Týr scales on large clusters of commodity machines to support
millions of concurrent read and write operations per second.

As the storage of large volumes of data typically spans
over multiple data centers, we will extend Týr to support
such deployments. We will also investigate the development
of lightweight interfaces using Týr as their storage back-end,
for both key-value stores and distributed file systems. Finally,
we will evaluate the behavior and performance of Týr when
facing applications and workloads with a large spectrum of
data access patterns.
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