An Object-Oriented Binary Change Detection Method Using Nearest Neighbor Classification

Abstract : Threshold selection is a critical step in using binary change detection methods. The threshold determines the accuracy of change detection results but is highly subjective and scene-dependent, depending on the familiarity with the study area and the analyst’s skill. Nearest neighbor classification is a non-parametric classifier, which was applied to remove the threshold. In order to find the most suitable feature to detect construction and farmland changes, a variety of single and multiple variables were explored. They were regional similarity (RSIM), brightness difference images (BDIs), multi-band difference images (MDIs), multi-band ratio difference images (MRDIs), a combination of RSIM and BDIs (RSIMBD), a combination of RSIM and a optimum band difference and a optimum band ratio difference (RSIMDR), MDIs and MRDIs multiple variable groups. All were tested for two study sites of the bi-temporal SPOT 5 imagery, the results indicated that RSIM, RSIMDR, RSIMBD were significantly better than other single and multiple variables.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 6th Computer and Computing Technologies in Agriculture (CCTA), Oct 2012, Zhangjiajie, China. Springer, IFIP Advances in Information and Communication Technology, AICT-393 (Part II), pp.394-406, 2013, Computer and Computing Technologies in Agriculture VI. 〈10.1007/978-3-642-36137-1_46〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01348256
Contributeur : Hal Ifip <>
Soumis le : vendredi 22 juillet 2016 - 15:56:33
Dernière modification le : vendredi 22 juillet 2016 - 16:04:38
Document(s) archivé(s) le : dimanche 23 octobre 2016 - 13:26:56

Fichier

978-3-642-36137-1_46_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Jie Liang, Jianyu Yang, Chao Zhang, Jiabo Sun, Dehai Zhu, et al.. An Object-Oriented Binary Change Detection Method Using Nearest Neighbor Classification. Daoliang Li; Yingyi Chen. 6th Computer and Computing Technologies in Agriculture (CCTA), Oct 2012, Zhangjiajie, China. Springer, IFIP Advances in Information and Communication Technology, AICT-393 (Part II), pp.394-406, 2013, Computer and Computing Technologies in Agriculture VI. 〈10.1007/978-3-642-36137-1_46〉. 〈hal-01348256〉

Partager

Métriques

Consultations de la notice

142

Téléchargements de fichiers

93