
HAL Id: hal-01349019
https://hal.inria.fr/hal-01349019

Submitted on 26 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Verification of Temporal Properties of Neuronal
Archetypes Using Synchronous Models

Elisabetta de Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, Franck
Grammont

To cite this version:
Elisabetta de Maria, Alexandre Muzy, Daniel Gaffé, Annie Ressouche, Franck Grammont. Verification
of Temporal Properties of Neuronal Archetypes Using Synchronous Models. [Research Report] RR-
8937, UCA, Inria; UCA, I3S; UCA, LEAT; UCA, LJAD. 2016, pp.21. �hal-01349019�

https://hal.inria.fr/hal-01349019
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
89

37
--

FR
+E

N
G

RESEARCH
REPORT
N° 8937
August 2016

Project-Team Stars

Verification of Temporal
Properties of Neuronal
Archetypes Using
Synchronous Models
Elisabetta de Maria , Alexandre Muzy , Daniel Gaffé , Annie
Ressouche , Franck Grammont

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Verification of Temporal Properties of
Neuronal Archetypes Using Synchronous

Models

Elisabetta de Maria ∗, Alexandre Muzy †, Daniel Gaffé ‡, Annie
Ressouche §, Franck Grammont¶

Project-Team Stars

Research Report n° 8937 — August 2016 — 18 pages

Abstract: There exists many ways to connect two, three or more neurons together to form
different graphs. We call archetypes only the graphs whose properties can be associated with spe-
cific classes of biologically relevant structures and behaviors. These archetypes are supposed to be
the basis of typical instances of neuronal information processing. To model different representative
archetypes and express their temporal properties, we use a synchronous programming language
dedicated to reactive systems (Lustre). The properties are then automatically validated thanks to
several model checkers supporting data types. The respective results are compared and depend on
their underlying abstraction methods.

Key-words: Neuronal archetypes, reactive systems, synchronous languages, temporal proper-
ties, model checking

∗ Université Côte d’Azur, CNRS, I3S, France, email: edemaria@i3s.unice.fr
† Université Côte d’Azur, CNRS, I3S, France, email: muzy@i3s.unice.fr
‡ Université Côte d’Azur, CNRS, LEAT, France, email: Daniel.Gaffe@unice.fr
§ Université Côte d’Azur, Inria, France, email: annie.ressouche@inria.fr
¶ Université Côte d’Azur, CNRS, LJAD, France, email: grammont@unice.fr

Vérification de propriétés temporelles d’archétypes de
neurones à l’aide de modèles synchrones

Résumé : Il existe maintes façons de connecter deux, trois neurones ou d’avantages ensem-
ble pour former des graphes différents. Nous appellerons archétypes uniquement ceux dont les
propriétés peuvent être associées à des classes spécifiques de structures et comportements signi-
ficatifs biologiquement. Nous supposerons que ces archétypes sont les bases d’instances typiques
du traitement de l’information neuronale. Pour modéliser différents archétypes représentatifs et
exprimer leurs propriétés temporelles, nous utiliserons un langage de programmation synchrone
dédié aux systèmes réactifs (Lustre). Ensuite, les propriétés seront validées automatiquement
grâce à plusieurs model checkers qui supportent les types de données. Les résultats respectifs
seront comparés et dépenderont des méthodes d’abstraction sous-jacentes.

Mots-clés : Archétypes neuronaux, systèmes réactifs, langages synchrones, propriétés tem-
porelles, model checking

CONTENTS 3

Contents
1 Introduction 3

2 Synchronous Reactive Neuron Model 5

3 A quick introduction to Lustre 7

4 Encoding Neuronal Archetypes in Lustre 9

5 Encoding and Verifying Temporal Properties of Archetypes in Lustre 11
5.1 Simple Series (see Fig. 1(a)) . 11
5.2 Series with Multiple Outputs (see Fig. 1(b)) . 13
5.3 Parallel Composition (see Fig. 1(c)) . 14
5.4 Negative Loop (see Fig. 1(d)) . 14
5.5 Inhibition of a Behavior (see Fig. 1(e)) . 15
5.6 Contralateral Inhibition (see Fig. 1(f)) . 15
5.7 Comparison of the Model Checkers . 17

6 Discussion and Future Work 17

1 Introduction
Since a few years, the investigation of neuronal micro-circuits has become an emerging question
in Neuroscience, notably in the perspective of their integration with neurocomputing approaches
[14]. We call archetypes specific graphs of a few neurons with biologically relevant structures and
behaviors. These archetypes correspond to elementary and fundamental elements of neuronal
information processing. Several archetypes can be coupled to constitute the elementary bricks
of bigger neuronal circuits in charge of specific functions. For instance, locomotive motion and
other rhythmic behaviors are controlled by well-known specific neuronal circuits called Central
Generator Pattern (CPG) [15]. These CPG have the capacity to generate oscillatory activities,
at various regimes, thanks to some specific properties at the neuronal and circuit levels.

The goal of this work is to formally study the behavior of different representative archetypes.
At this aim, we model the archetypes using a synchronous language for the description of reactive
systems (Lustre). Each archetype (and corresponding assumed behavior in terms of neuronal
information processing) is validated thanks to model checkers.

Different approaches have been proposed in the literature to model neural networks (Artificial
Neural Networks [4], Spiking Neural Networks [12], etc.). In this paper we focus on Boolean
Spiking Neural Networks where the neurons electrical properties are described via an integrate-
and-fire model [6]. Notice that discrete modeling is well suited because neuronal activity, as with
any recorded physical event, is only known through discrete recording (the recording sampling
rate is usually set at a significantly higher resolution than the one of the recorded system, so that
there is no loss of information). We describe neural networks as weighted directed graphs whose
nodes represent neurons and whose edges stand for synaptic connections. At each time unit, all
the neurons compute their membrane potential accounting not only for the current input signals
but also for the ones received along a given temporal window. Each neuron can emit a spike
according to the overtaking of a given threshold. Such a modeling is more sophisticated than the
one proposed by McCulloch and Pitts in [16], where the behavior of a neural network is expressed

1 INTRODUCTION 4

in terms of propositional logic and the present activity of each neuron does not depend on past
events.

Spiking neural networks can be considered as reactive systems: their inputs are physiological
signals coming from input synapses, and their outputs represent the signals emitted in reaction.
This class of systems fits well with the synchronous approach based on the notion of a logical
time: time is considered as a sequence of logical discrete instants. An instant is a point in
time where external input events can be observed, along with the internal events that are a
consequence of the latter. The synchronous paradigm can be implemented using synchronous
programming languages. In this approach we can model an activity according to a logical time
framing: the activity is characterized by a set of events expected at each logical instant and
by their expected consequences. A synchronous system evolves only at these instants and is
"frozen" otherwise (nothing changes between instants). At each logical instant, all events are
instantaneously broadcasted, if necessary, to all parts of the system whose instantaneous reaction
to these events contributes to the global system state. Synchronous programming languages being
initially dedicated to digital circuits, this neural implementation could be easily mapped into a
physical one.

Each instant is triggered by input events (the core information completed with the inter-
nal state computed from instantaneous broadcast performed during the instant frame). As a
consequence, inputs and resulting outputs all occur simultaneously. This (ideal) synchrony hy-
pothesis is the main characteristics of the synchronous paradigm [8]. Another major feature is
also that it supports concurrency through a deterministic parallel composition. The synchronous
paradigm is now well established relying on a rigorous semantics and on tools for simulation and
verification.

Several synchronous languages respect this synchronous paradigm. All these languages have
a similar expressivity. However, we choose here Lustre [8] synchronous language to express
neuron behaviors more easily. Lustre defines operator networks interconnected with data flows
and it is particularly well suited to express neuron networks. Lustre respects the synchrony
hypothesis which divides time into discrete instants. It is a data flow language offering two main
advantages: (1) it is functional with no complex side effects, making it well adapted to formal
verification and safe program transformation; also, reuse is made easier, which is an interesting
feature for reliable programming concerns; (2) it is a parallel model, where any sequencing
and synchronization depends on data dependencies. Moreover, the Lustre formalism is close to
temporal logic and this allows the language to be used for both writing programs and expressing
properties as observers. Hence, Lustre offers an original verification means to prove that, as
long as the environment behaves properly (i.e., satisfies some assumption), the program satisfies
a given property. If we consider only safety properties, both the assumption and the property
can be expressed by some programs, called synchronous observers [9]. An observer of a safety
property is a program, taking as inputs the inputs/outputs of the program under verification,
and deciding (e.g., by emitting an alarm signal) at each instant whether the property is violated.
Running in parallel with the program, an observer of the desired property and an observer of
the assumption made about the environment have just to check that either the alarm signal is
never emitted (property satisfied) or the alarm signal is emitted (property violated). This can
be done by a simple traversal of the reachable states of the compound program.

There exists several model checkers for Lustre that are well suited to our purpose: Lesar [10],
Nbac [11], Luke [1], Rantanplan [5] and kind2 [7]. Verification with Lesar is performed on
an abstract (finite) model of the program. Concretely, for purely logical systems the proof is
complete, whereas in general (in particular when numerical values are involved) the proof can
be only partial. Indeed, properties related to values depend on the abstraction performed by
the tool. In our experiment, some properties can be validated with Lesar, but some others need

2 SYNCHRONOUS REACTIVE NEURON MODEL 5

powerful abstraction techniques. Hence, we use Lustre tools such as Nbac, Luke, Rantanplan
and kind2. To perform abstractions, Lesar and NBac use convex polyhedra [13] representation of
integers and reals. On the other hand, Luke is also another k-induction model checker, however it
is based on propositional logic. Finally, Rantanplan and kind2 rely on SMT (Satisfiabitily Modulo
Theories) based k-induction. kind2 has been specifically developed to prove safety properties of
Lustre models, it combines several resolution engines and it turns out that it is the most powerful
model checker used in this paper. This overall approach is used here to verify temporal properties
of archetypes using model-checking techniques.

The paper is organized as follows. In Sect. 3 we present the computational model we adopt and
in Sect. 4 we briefly introduce Lustre. In Sect. 4 we introduce the basic archetypes (series, series
with multiple outputs, parallel composition, negative loop, inhibition of a behavior, contralateral
inhibition) and we show how they can be modeled using Lustre. More precisely, we illustrate
how the behavior of a single neuron can be encoded in a Lustre node and how two or more
neurons can be connected to form a circuit. In Sect. 5 we express in Lustre important temporal
properties concerning the described archetypes and we verify the satisfaction of these properties
using the above-mentioned model checkers. Finally, Sect. 6 is devoted to a final discussion on
the obtained results and on the future work.

2 Synchronous Reactive Neuron Model
We refer here to synchronous reactive systems as systems reacting under the synchronous as-
sumption, i.e., as computing their states and sending instantaneously their output events when
receiving input events. Synchronous reactive systems can be conceived as an abstraction of digital
circuits. Therefore, to fit electronic/computational discreteness and finiteness, some assumptions
according to the synchronous paradigm will be introduced.

We describe here first the structure of a neuron network as a graph. The dynamics of usual
leaky integrate-and-fire spiking networks is presented later.

Definition 1. A network of synchronous reactive neurons is a weighted directed graph (G,w),
where G = (N,A) is a directed graph with N = {1, 2, . . . , n} the set of neuron indexes and
A = {(i, j) | i, j ∈ N} the set of ordered pairs of neuron indexes (synapses), and w : A → Q is
the synapse weight function.

In a leaky integrate-and-fire neuron, the membrane potential of the neuron integrates the
values of the action potentials received from its input neurons.

Definition 2. A usual leaky integrate-and-fire model is a structure LIFi = (Ii, Yi, Si, Ti,∆i,Λi),
where Ii = B is the input alphabet ; Yi = B is the output alphabet ; Si = R is the set of states
defined as the set of values of membrane potential ; Ti = R+

0 ∪ {+∞} is the time base; ∆i :
Imi × Si × Ti → Si is the transition function defined as

p′i = ∆i(xi1 , . . . , xim , pi, ti) =

{
Σj∈Pred(i)wjixj if pi ≥ τi

ri(ti)pi + Σj∈Pred(i)wjixj otherwise

where Pred(i) is the set of m predecessors of neuron i ∈ N , xj is the input of neuron i ∈ N
received from neuron j ∈ Pred(i), wji = w(j, i) ∈ Q is the synapse weight from neuron j ∈ N
to neuron i ∈ N , ri(ti) is the remaining potential coefficient (a decreasing function in time,
usually ri(ti) = exp(−αti), with α a positive constant), and τi ∈ R+

0 is the firing threshold, and

Λi : Si → Yi is the output function defined as Λi(pi) = yi =

{
1 if pi ≥ τi
0 otherwise

.

2 SYNCHRONOUS REACTIVE NEURON MODEL 6

For each synapse (j, i) ∈ A between a neuron j ∈ N and a neuron i ∈ N , yi ∈ B is the
output spike value emitted by neuron i, and xj ∈ B is the input spike value of neuron i received
from neuron j. If the membrane potential pi is above the threshold τı̈, at the next transition
the output spike value is set to yi = 1 and the membrane potential is reset to pi = 0. When
the remaining potential coefficient ri is a constant equal to 1, there is no leak, all the potential
received at last transition remains in the neuron soma. When ri = 0, all the potential received
at last transition is lost (the model is then equivalent to McCulloch & Pitts’ model [16]).

The usual leaky integrate-and-fire model presented in Definition 2 is not compatible with
our synchronous reactive system assumption: both state and time sets are possibly infinite (cf.
ri(ti) = exp(−αti), the exponentially decreasing function defined for ti ∈ [0,+∞]). We will
show now how to approximate and limit potential values to fit the synchronous reactive system
assumption.

The membrane potential can be defined as an integral of previous input values received by
the neuron. This integral can be approximated by a sum and a power law leading to p(t) =
Σ+∞
e=0Σmj=1r

exj(t − e)1, where e ∈ R+
0 ∪ {+∞} represents the time elapsed until the current

time t. The membrane potential integrates both current input values and what remains from
previous inputs. As remaining input potentials decrease with time following a power law, inputs
received a long time ago can nevertheless be neglected. Only remaining input potentials greater
than a threshold error ε can be considered, i.e., re ≥ ε. Thus only elapsed times e ≤ ln(ε)

ln(r)

can be taken into account, where σ = ln(ε)
ln(r) is the integration time window, i.e., the period over

which the neuron integrates past input values. For example, an error ε = 1% and a remaining
coefficient r = 50% correspond to an integration window σ = 6.64. This means that, sliding the
integration window of a width equal to σ, at each time t, no input older that e = 6.64 will be
considered, leading to an error of ε = 1% in the membrane potential. The time-dependence of
the membrane potential is not anymore infinite but bounded to [t− σ, t]. State changes need now
to be finite. If we discretize each time step with t, e ∈ N0 (leading to σ = dσe = d6.64e = 7 for
the previous example), the membrane potential p(t) consists of a sum Σmj=1xj(t) + rΣmj=1xj(t−
1) + r2Σmj=1xj(t− 2) + r3Σmj=1xj(t− 3) + . . . + rσΣmj=1xj(t−σ), i.e., p(t) = Σσe=0r

eΣmj=1xj(t− e).
Thanks to the previous time boundness and discreteness, each time t can be considered as

a particular transition. The computation of the membrane potential now depends on a finite
memory of maximum size m× (σ + 1), with m,σ ∈ N0.

A last simplification of the usual leaky integrate-and-fire model presented in Definition 2
concerns the real values of the membrane potential. Indeed, real numbers are approximated by
computers as floating-point values. However, rational numbers are needed to get efficient results
from model checkers. In our case, notice that this assumption well fits with remaining coefficients
(that can easily be approximated by Taylor series or simple percentages).

Accounting for all the previous assumptions on usual leaky integrate-and-fire neurons, the
following definition can be provided for their mapping to synchronous reactive systems (finite
state automata are proved to be equivalent to synchronous programs as Lustre or Esterel [3]).

Definition 3. A synchronous reactive neuron implements a leaky integrate and fire model as a
finite state machine (FSM) SRNi = (Ii, Yi, Si,∆i,Λi), where Ii = B is the input alphabet ; Yi = B
is the output alphabet ; Si = Q is the set of membrane potential values; ∆i : I

m×(σi+1)
i → Si is

the transition function defined as pik = ∆i(Xk) = WXk R, where
1For the sake of simplicity, we assume that all the synaptic weights are equal to 1; supposing that neuron i

has m predecessors, we write �m
j=1xj to denote �j∈P red(i)xj ; when there is no ambiguity on the neuron index,

we do not indicate it.

3 A QUICK INTRODUCTION TO LUSTRE 7

• W = [w1, w2, . . . , wm] is the vector of synaptic weights (each column corresponds to an
input j ∈ {1, . . . ,m} and wj ∈ Q),

• Xk =

x10 x11 · · · x1σi

x20 x21 · · · x2σi

...
...

. . .
...

xm0 xm1 · · · xmσi

k

is a matrix of Boolean stored input values (each row

corresponds to an input j ∈ {1, . . . ,m} and each column to an elapsed time ei ∈ {0, . . . ,σi}
with σi ∈ N0),

• R =

1
ri
...
rσi
i

 is the vector of remaining coefficients with ri ∈ Q, and

• τi ∈ Q is the firing threshold.

In particular X0 =

I1 0 · · · 0
I2 0 · · · 0
...

...
. . .

...
Im0 0 · · · 0

 and Xk =

{
shift([0], Ik) if pik�1

≥ τi
shift(Xk−1, Ik) otherwise

where shift is a shifting matrix function: Mm×(σi+1) × V m →Mm×(σi+1)

shift(M,V) =

V1 M10 · · · M1(σi−1)
V2 M20 · · · M2(σi−1)
...

...
. . .

...
Vm Mm0 · · · Mm(σi−1)

.
Lastly, Λi : Si → Yi is the output function, with Λi(pik) =

{
1 if pik�1

≥ τi
0 otherwise.

This formalization allows for the characterization of each neuron through a parameter triplet
(τi, ri, σi) ∈ Q × Q × N0, i.e., the firing threshold τi, the remaining coefficient ri, and the
integration window σi. Notice that, contrarily to Definition 2, a synchronous reactive neuron is
no more directly time-dependent, according to the discrete time representation in synchronous
models.

3 A quick introduction to Lustre
A Lustre program is a system of equations defining variables, which are functions from time to
their domain of values. Since Lustre respects the synchrony hypothesis, time can be projected
onto the set of naturals, making variables infinite sequence of values. Then a program may be
viewed as a net of operators and this makes Lustre a data flow language, in which operators react
instantaneously to their inputs. Lustre is a functional language operating on flows, which are
pairs of possibly infinite sequences of values of a given type and clocks representing sequences of
instants. A program has a cyclic behavior and, at its nth execution cycle, all the involved flows
take their nth values.

The unit in Lustre language is called a node. Lustre nodes compute output variable sequences
of values from input variable ones with equations, expressions and assertions. Variables are typed

3 A QUICK INTRODUCTION TO LUSTRE 8

and those which do not correspond to inputs must only have one definition in the form of an
equation. The equation “X = E” defines the variable X as being identical to the expression E.
Both X and E have the same sequence of values and clock 2. Lustre language has a few elementary
basic types (Boolean, integer, real) and complex external types can be declared. Usual operators
over basic types are available: +, -, ...; and, or, not; if then else. These are called data
operators and only operate on operands sharing the same clock. They operate point wise on
sequences of values of their operands.
For instance, if X = x1, x2, x3, . . . and Y = y1, y2, y3, . . . , then the expression X + Y is the
flow: x1 + y1, x2 + y2, x3 + y3,

Moreover, Lustre has operators to deal with the logical time represented by clocks. The two
main temporal operators are pre and →:

• pre (for previous) acts as a memory : if (e1, e2,, en, . . .) is the flow E, pre(E) is the
flow (nil, e1, e2, ..., en, . . .), nil being an undefined value denoting uninitialized memory.

• → (meaning “followed by”) complements the pre operator and allows to avoid uninitialized
memory: let E = (e1, e2, . . . , en, . . .) and F = (f1, f2, . . . , fn, . . .) be two flows, then E→F
is the expression (e1, f2, . . . , fn, . . .).

Equations help us to define output variables in nodes. Besides, to force variable values,
assertions may complement equations. Assertions consist in Boolean expressions that should be
always true and they allow to make assumptions on the environment. For instance, the assertion:
assert (true → not(x and pre(x))) says that x is not true twice consecutively in its value
sequence.

Syntactically, a node falls into two parts.

1. A declarative part, where typed input variables are specified as well as typed output vari-
ables with the keyword returns:
node counter (init, incr: int; reset : bool) returns (n: int)
This declarative part can also involve local variable declarations with the syntax:
var x, y : bool ;

2. The body part, which is a set of unsorted equations and assertions surrounded by the
keywords let and tel.

Finally, another syntactic consideration concerns arrays. They have been introduced in Lus-
tre as a syntactic facility and they are expanded into several variables at compile time. As a
consequence, the array dimensions must be specified statically. For instance, the node:

node ADD4 (a0,a1,a2,a3: bool; b0,b1,b2,b3: bool)
returns (s0,s1,s2,s3:bool; carry: bool);

var c0, c1, c2, c3:bool;
let

(s0, c0) = ADD1(a0, b0, false);
(s1, c1) = ADD1(a1, b1, c0);
(s2, c2) = ADD1(a2, b2, c1);
(s3, c3) = ADD1(a3, b3, c2);
carry = c3;

tel

where ADD1 is a single adder:

2The equation X = E means that ∀n Xn = En.

4 ENCODING NEURONAL ARCHETYPES IN LUSTRE 9

node ADD1 (a,b,c1: bool) returns(s,c0:bool)
let

s = a xor b xor c1;
c0 = (a and b) or (b and c1) or (c1 and a);

tel

can have a simplified syntax, thanks to array use:

node ADD4 (A,B: bool^4) returns (S: bool^4; carry: bool);
var C: bool^4;
let

(S[0], C[0]) = ADD1(A[0], B[0], false);
(S[1..3], C[1..3] = ADD1(A[1..3], B[1..3], C[0..2]);
carry = C[3];

tel

In this last definition, bool^4 denotes the type “array of 4 Booleans”, indexed from 0 to 3, and the
second equation replaces the three equations of the first version. It is expanded exactly as these three
equations at compile time.

4 Encoding Neuronal Archetypes in Lustre
The basic archetypes we take into account are the following ones (see Fig. 1).

S1 S2 Sn

(a) Simple series

Sn

S

S1

S2

(c) Parallel composition

S1

S2

(e) Inhibition of a behavior

S1

S2

(f) Contralateral inhibition

S1

S2

Sn

(b) Series with multiple outputs

S2

S1

(d) Negative loop

Figure 1: The basic neuronal archetypes.

• Simple series. It is a sequence of neurons where each element of the chain receives as input the
output of the preceding one. The input (resp. output) of the first (resp. last) neuron is the input
(resp. output) of the network. The spike emission of each neuron is constrained by the one of the
preceding neuron.

4 ENCODING NEURONAL ARCHETYPES IN LUSTRE 10

• Series with multiple outputs. It is a series where, at each time unit, we are interested in
knowing the outputs of all the neurons (i.e., all the neurons are considered as output ones).

• Parallel composition. There is a set of neurons receiving as input the output of a given neuron.
All neurons working in parallel are considered as output ones.

• Negative loop. It is a loop consisting of two neurons: the first neuron activates the second one
while the latter inhibits the former one. The inhibited neuron is supposed to oscillate.

• Inhibition of a behavior. There are two neurons, the first one inhibiting the second one. After
a certain delay, the first neuron is supposed to be activated and the second one to be inhibited.

• Contralateral inhibition. There are two or more neurons, each one inhibiting the other ones.
The expected behavior is of the kind "winner takes all", that is, starting from a given time only
one neuron becomes (and stays) activated and all the other ones are inhibited.

In the following we provide a Lustre implementation of neurons and archetypes. A Boolean neuron
with one predecessor (that is, one input neuron), can be modeled as the Lustre node described in
Program 1.

Program 1 Basic neuron node.
node neuron105 (X:bool) returns(S:bool);
var
V:int;
threshold:int;
w:int;
rvector: int^5;
mem:int^1*5;
localS: bool;

let
w=10; threshold=105; rvector=[10,5,3,2,1];
mem[0]=if X then w else 0;
mem[1..4]=0^4->if pre(S) then 0^4 else pre(mem[0..3]);
V=mem[0]*rvector[0]+mem[1]*rvector[1]+mem[2]*rvector[2]

+mem[3]*rvector[3]+mem[4]*rvector[4];
localS=(V>=threshold);
S= false -> pre(localS);

tel

In the node neuron105 (where the firing threshold is set to 105), X is the Boolean flow representing
the input signal of the neuron, w is the synaptic weight of the input edge, rvector is the vector containing
the different values the remaining coefficient can take along the integration window (from the biggest to
the smallest one), and the vector mem keeps trace of the received signals (from the current one to the one
received at the time t � �)3. More precisely, at each time unit the first column of vector mem contains
the current input (multiplied by the synaptic weight of the input edge) and, for each i greater than 0,
the value of the column i is defined as follows: (i) it equals 0 at the first time unit (initialization) and
(ii) for all following time units it is reset to 0 in case of spike emission at the preceding time unit and it
takes the previous time unit value of the column i � 1 otherwise. Variable localS is used to introduce
a delay in the spike emission.

3Observe that all the parameters are multiplied by 10 in order to only deal with integer numbers (and thus to
be able to use all the model checkers available to Lustre).

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE11

The generalization to a node with m predecessors is straightforward. Thanks to the modularity of
Lustre, archetypes can be easily encoded starting from basic neurons. As an example, a simple series
composed of three (resp. four) neurons of type neuron105 is described in Program 2 (resp. 3).

Program 2 Simple series of three neurons.
node series3 (X:bool) returns(S:bool);
var
chain:bool^3;

let
chain[0]=neuron105(X);
chain[1..2]=neuron105(chain[0..1]);
S=chain[2];

tel

Program 3 Simple series of four neurons.
node series4 (X:bool) returns(S:bool);
var
chain:bool^3;

let
chain[0]=neuron105(X);
chain[1..3]=neuron105(chain[0..2]);
S=chain[3];

tel

In the nodes series3 and series4, each position of the vector chain refers to a different neuron of
the chain. As far as the first neuron is concerned, it is enough to call the node neuron105 with the input
of the series as input. For the other neurons of the chain, their behavior is modeled by calling neuron105
with the output of the preceding neuron as input. The output of the node is the one of the last neuron
of the series.

5 Encoding and Verifying Temporal Properties of Archetypes
in Lustre

The behavior of each archetype can be validated thanks to the use of model checkers such as Lesar,
Nbac, Luke, Rantanplan, and kind2 (the last four ones have been used to deal with some properties
involving integer constraints Lesar is not able to treat). For each archetype, one or two properties have
been encoded as Lustre nodes and tested on some instances of the archetype. Most of the properties are
tested here for all possible inputs and one or more set(s) of parameters for the given archetype.

5.1 Simple Series (see Fig. 1(a))
Given two series with the same triplets of parameters (�; r; �) 2 Q � Q � N0 and the same synaptic
weights, the first series being shorter than the second one, we want to check whether the first series is
always in advance with respect to the second one. More precisely, the property we test is the following
one:

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE12

Property 1. [Comparison of series with same parameters] Given two series with the same neuron
parameters and different length (i.e., with a different number of neurons), at each step, the number of
spikes emitted by the shorter series is greater or equal than the number of spikes emitted by the longer
one.

The node prop1 (described in Program 4) expresses an observer of Property 1 in Lustre.

Program 4 Observer of Property 1
node prop1(X:bool) returns(S:bool);
var
A1,A2:bool;
C1,C2;

let
A1=seriesA_sp(X);
A2=seriesB_sp(X);
C1=bool2int(A1)->if A1 then pre(C1)+1 else pre(C1);
C2=bool2int(A2)->if A2 then pre(C2)+1 else pre(C2);
S=(C1-C2)>=0;

tel
.

Let seriesA_sp (resp. seriesB_sp) be the Lustre node encoding the first (resp. second) series
(corresponding neurons in the two series have the same parameter triplets). In the node prop1, C1 (resp.
C2) keeps trace of the number of spikes emitted by the first (resp. second) series until the current time
unit. The model checkers Lesar, Nbac, Luke, Rantanplan and kind2 verify whether, whatever is the
value of the input flow variable X (which is common to the two series), the property is true, that is, C1
is greater or equal than C2.

Another interesting property concerning simple series is the following one:

Property 2. [Comparison of series with different parameters] Given two series with different
neuron parameters and different length, they always have the same behavior.

The node prop2 (described in Program 5) encodes such a property in Lustre.

Program 5 Observer of Property 2
node prop2 (X:bool) returns(S:bool);
var
s1,s2:bool;

let
s1=seriesA_dp(X);
s2=seriesB_dp(X);
S=(s1=s2);

tel

At each step, the output of the node is true if the output of the two series seriesA_dp and seriesB_dp
is the same (provided that they receive the same input flow X). Such a property can be exploited in
order to reduce a given neural network (if a given series has exactly the same behavior than a shorter
one, it can be replaced by the second one). As an example, we found a series of 3 neurons showing the
same behavior than a series of length 4 (neurons in the two series have different firing thresholds and
synaptic weights).

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE13

5.2 Series with Multiple Outputs (see Fig. 1(b))
When dealing with a series with multiple outputs, we are interested in checking whether, soon or later,
all the neurons of the sequence are able to emit a spike. It may not be the case if the parameters are not
well chosen (for example, if the threshold of the first neuron is too high). The corresponding property
formalized here is the following one:

Property 3. [Firing ability in a series] Given a series with multiple outputs where the different
neurons can have different parameters, there exists a time unit such that all the neurons have emitted.

The node prop3 (described in Program 6) encodes Property 3.

Program 6 Observer of Property 3
node prop3(X:bool) returns(S:bool);
var A:bool^4;fb
A0,A1,A2,A3,F0,F1,F2,F3:bool;

let
A=seriem(X);
A0=A[0];
A1=A[1];
A2=A[2];
A3=A[3];
F0=after(A0);
F1=after(A1);
F2=after(A2);
F3=after(A3);
S=F0 and F1 and F2 and F3;

tel

Let seriem be a series consisting of 4 neurons and let after be a Lustre node whose output variable
becomes and remains true the step after an input variable becomes true (that is, the step after a certain
event happens). The output of prop3 becomes (and stays) true after all the neurons of the series have
emitted at least one spike. As an example of property violation, we have found a series of length 4
where, even if a flow of 1 (encoded as true in Lustre) is given as input, the last neuron is never able
to emit. Observe that, given a series where all the neurons are able to emit, prop3 only becomes true
when the last neuron of the series emits a spike. In order to force the property to be immediately true,
it is possible to take advantage of the node always_since from Lustre distribution library described in
Program 7.

Program 7 Node always_since (from Lustre distribution library)
node always_since(C,A: bool) returns (X: bool);
let
X=if A then C
else if after(A) then C and pre(X)
else true;

tel

Such a node requires a first Boolean variable to be always true starting from the instant when a second
Boolean variable becomes true. we can introduce a new output variable SS defined as always_since(S,F3).

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE14

5.3 Parallel Composition (see Fig. 1(c))
We are interested in knowing a lower and an upper bound to the number of neurons that can emit
a spike at each time unit. The lower (resp. upper) bound is not necessarily 0 (resp. the number of
parallel neurons). More precisely, the property we test is Property 4 (modeled by the Lustre node prop4
described in Program 8):

Property 4. [Lower/upper firing bounds in a parallel composition]
Given a parallel composition of neurons, all with the same parameters, at each time unit, the number
of emitted spike is in between a given interval.

Program 8 Observer of Property 4
node prop4 (X:bool; n1,n2:int) returns(S:bool);
var
nspike:int;

let
nspike=parallel(X);
S=(nspike<n2) and (nspike>n1);

tel

Let parallel be a node encoding a parallel composition of neurons and let the output variable of
such a node represent the global number of spikes emitted at each time unit by all the neurons in parallel.
The node prop4 checks whether the number of emitted spikes is always in between a lower bound and
an upper bound. As an example, we have found a parallel composition of 3 neurons where the number
of emitted spikes is always strictly lower than 3 (more precisely, it is always in between 0 and 2). This
is due to the fact that, for one of the parallel neurons, the synaptic weight of the corresponding input
edge is too low and it is never able to emit.

5.4 Negative Loop (see Fig. 1(d))
In this case the inhibited neuron is expected to oscillate. In Property 5 we express an oscillation with a
period of two time units.

Property 5. [Oscillation in a negative loop] Given a negative loop (where the two neurons do not
necessarily have the same parameters), the inhibited neuron oscillates with a pattern of the form false,
false, true, true.

Such an oscillation is modeled in the node prop5 (described in Program 9).

Program 9 Observer of Property 5
node prop5(X:bool) returns(S:bool);
var
S1,S2,Out:bool;

let
Out=retroaction(X);
S1=true->pre(Out);
S2=true->pre(S1);
S=if Out then not S2 else S2;

tel

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE15

Let retroaction be the Lustre node encoding the negative loop archetype and let his output Out be
the output of the inhibited neuron. In the node prop5 we check that (i) if Out is true, then it was false
two time units ago and (ii) if Out is false then it was true two time units ago. For several parameters, if
we inject only 1 as input of the archetype, such a property is satisfied. Observe that, to test the property
satisfaction under some specific conditions, e.g., when the input variable X is equal to true, it is sufficient
to introduce a new output variable SS defined as the disjunction of the current output variable S and
the negation of the condition. (e.g., SS=S or X=false).

5.5 Inhibition of a Behavior (see Fig. 1(e))
To validate this archetype we need to verify that, at a certain instant, the inhibited neuron stops emitting
spikes. In particular, the property we encoded is the following one:

Property 6. [Fixed point inhibition] Given an inhibition archetype (where the two neurons do not
necessarily have the same parameters), at a certain time the inhibited neuron can only emit false values.

The node prop6 encodes such a property (described in Program 10).

Program 10 Observer of Property 6
node prop6(X1,X2:bool) returns (OK:bool);
var
S,preS: bool;
Out:bool^2;

let
Out=inhib(X1,X2);
S=Out[1]; --output of the inhibited neuron
OK=true-> (not S or S and preS);
preS=false->pre(S);

tel

Let inhib be the node for the inhibition archetype. The output of the node prop6 is true if the
variable representing the output of the inhibited neuron of the archetype cannot pass from false to
true. For appropriate parameter values, if we inject only 1 values, such a property turns out to be true.

5.6 Contralateral Inhibition (see Fig. 1(f))
For such an archetype the expected behavior is of the kind "winner takes all", that is, at a certain point
only one neuron is activated and the other ones cannot emit spikes. Such a behavior is described by
Property 7 (node prop7 described in Program 11).

Property 7. [Winner takes all in a contralateral inhibition] Given a contralateral inhibition
archetype with two neurons (where the two neurons do not necessarily have the same parameters), at a
given time, one neuron is activated and the other one is inhibited.

5 ENCODING AND VERIFYING TEMPORAL PROPERTIES OF ARCHETYPES IN LUSTRE16

Program 11 Observer of Property 7
node prop7(X1,X2:bool) returns (OK:bool);
var
Out:bool ^2;
N0,N1:bool;

let
Out=contralateral(X1,X2);
N0=Out[0];
N1=Out[1];
OK=N0 and not N1 or N1 and not N0;

tel

Let contralateral be the Lustre node encoding a contralateral inhibition with two neurons. In the
node prop7 we test whether, at each time unit, one neuron is activated and the other one inhibited.
Such a property turns out to be true for several parameters (if only 1 values are injected). Let w2 (resp.
w4) be the synaptic weight of the inhibiting input edge of the first (resp. second) node. In Fig. 2, blue
points represent the pairs (w2; w4) for which the property is verified starting from a time unit lower than
or equal to 4 and red points are associated to the pairs for which the property is not verified within 10
time units (for some fixed parameter triplets).

0 -10 -20 -30 -40 -
0

-20

-30

-10

-40
8-

8

Figure 2: Verification of prop7 for the different values of (w2, w4).

6 DISCUSSION AND FUTURE WORK 17

5.7 Comparison of the Model Checkers
A synthesis of the outputs of the five model checkers is summarized for each property in Table 1:

lesar nbac luke rantanplan kind2
Simple series (prop1) No Yes very long time! Yes Yes
Simple series (prop2) No exit before! Yes very long time! Yes
Series with multiple outputs No exit before! Yes Yes Yes
Parallel composition No exit before! Yes Yes Yes
Negative loop No exit before! Yes Yes Yes
Inhibition of a behavior No Yes Yes Yes Yes
Contralateral inhibition No Yes Yes Yes Yes

Table 1: Comparison of the five model checkers

Notice that, when a model checker gives a negative answer, it does not necessarily mean that the
property is false; it can be an indication of the fact that the model checker is not able to conclude. In
this experiment, Lesar has difficulties to handle complex integer constraints. Nbac goes further but it
is quickly stopped by the polyhedra approach. Luke and its extension Rantanplan give similar results
with sometimes a very long computation time. kind2 works quickly and it is able to prove more general
properties than Luke and Rantanplan. For instance, Luke and Rantanplan allow for the identification
of the pair of weights which stabilize the “Contralateral inhibition” (see Fig. 2) while kind2 is able to
straightly give us an infinite set of pair solutions. For the sake of completeness, we also tested the
nuXmv model checker [2] but perhaps we could not find the good abstraction (neither too coarse, nor
too thorough), so we could not get satisfying results.

6 Discussion and Future Work
In this work, we show how the synchronous language Lustre can be an effective tool to model, specify,
and verify neuronal networks. More precisely, we illustrate how some basic neuronal archetypes and their
expected properties can be encoded as Lustre nodes and verified thanks to the use of model checkers.
For each archetype, we propose one or two representative properties that have been identified after deep
discussions with neurophysiologists and, in particular, with the last author of this paper. As a first
future work, we intend to propose a more general version of some properties (e.g., expressing oscillation
without exactly knowing its period).

We choose to use Lustre because its declarative syntax is more adapted to our class of problems than
an imperative language such as Esterel and because several model checkers integrating the symbolic
manipulation of integer constraints are at Lustre user’s disposition. However, these motivations do
not prevent us from considering to use Light-Esterel in the future; the third and fourth author of this
work are actually working on extending the expressivity of the declarative part of this language and
developing a dedicated model checker. Particularly, this new model checker should integrate a new
way to characterize and verify properties based on Linear Decision Diagram (LDD). This representation
would allow to identify input parameter intervals of values for which a property holds.

As far as we know, this work constitutes the first attempt to automatically verify the temporal
properties of fundamental neuronal archetypes in terms of neuronal information processing (e.g. a
negative loop with certain parameters presents a certain oscillating behavior). From there, we will
now be able to apply this new approach to all the possible archetypes of 2, 3 or more neurons, up to
falling on archetypes of archetypes. One of the questions to ask then will be: are the properties of
these archetypes of archetypes simply an addition of the individual constituting archetypes properties
or something more? Another one will be: can we understand the computational properties of large

REFERENCES 18

ensembles of neurons simply as the coupling of the properties of individual archetypes, as it is for the
alphabet and words, or is there something more again?

Acknowledgements
The authors would like to thank Gérard Berry for an inspiring talk at the Collège de France (concern-
ing the checking of temporal properties of neuronal structures) as well as for having indicated us the
researchers competent at the use of synchronous programming language libraries (in Sophia Antipolis).

References
[1] Luke webpage. http://www.it.uu.se/edu/course/homepage/pins/vt11/lustre.

[2] Nuxmv webpage. https://nuxmv.fbk.eu/.

[3] Gérard Berry and Laurent Cosserat. The esterel synchronous programming language and its math-
ematical semantics. In Seminar on Concurrency, Carnegie-Mellon University, pages 389–448, Lon-
don, UK, 1985. Springer-Verlag.

[4] S. Das. Elements of artificial neural networks [book reviews]. IEEE Transactions on Neural Net-
works, 9(1):234–235, 1998.

[5] Anders Franzén. Using satisfiability modulo theories for inductive verification of lustre programs.
Electr. Notes Theor. Comput. Sci., 144(1):19–33, 2006.

[6] Wulfram Gerstner and Werner Kistler. Spiking Neuron Models: An Introduction. Cambridge Uni-
versity Press, New York, NY, USA, 2002.

[7] George Hagen and Cesare Tinelli. Scaling up the formal verification of lustre programs with smt-
based techniques. In Formal Methods in Computer-Aided Design, FMCAD 2008, Portland, Oregon,
USA, 17-20 November 2008, pages 1–9, 2008.

[8] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic, 1993.

[9] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and the verification of reactive
systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, editors, Third Int. Conf. on Algebraic
Methodology and Software Technology, AMAST’93, Twente, June 1993. Workshops in Computing,
Springer Verlag.

[10] N. Halbwachs and P. Raymond. Validation of synchronous reactive systems: from formal verification
to automatic testing. In ASIAN’99, Asian Computing Science Conference, Phuket (Thailand),
December 1999. LNCS 1742, Springer Verlag.

[11] B. Jeannet. Dynamic partitioning in linear relation analysis. application to the verification of
reactive systems. Formal Methods in System Design, 23(1):5–37, 2003.

[12] Wolfgang Maass and Technische Universitaet Graz. Lower bounds for the computational power of
networks of spiking neurons. Neural Computation, 8:1–40, 1995.

[13] Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michaël Périn. Polyhedral
Approximation of Multivariate Polynomials using Handelman’s Theorem. In International Con-
ference on Verification, Model Checking, and Abstract Interpretation 2016, St. Petersburg, United
States, January 2016. Barbara Jobstmann and Rustan Leino.

[14] Henry Markram. The blue brain project. Nat Rev Neurosci, 7(2):153–160, 2006.

[15] Kiyotoshi Matsuoka. Mechanisms of frequency and pattern control in the neural rhythm generators.
Biological cybernetics, 56(5-6):345–353, 1987.

[16] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

RESEARCH CENTRE
SOPHIA ANTIPOLIS – MÉDITERRANÉE

2004 route des Lucioles - BP 93
06902 Sophia Antipolis Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

