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Méthodes de validation de modèles de population pour les
dynamiques d'expression génique

Résumé : La di�usion des techniques expérimentales pour la mesure de l'expression génique
au cours du temps à niveau des cellules individuelles a ouvert la voie à l'étude par modèles de
la variabilité intra- et extracellulaire de l'expression génique. Plusieurs approches à l'inférence
de modèles de variabilité en populations cellulaires isogéniques ont étés développés et appliques
à des contextes réels. Toutefois, moins d'e�orts ont étés dédies au développement d'approches
systématique a la validation de ces modèles de population, et la qualité des modèles obtenus
est souvent évaluée par des critères semi-empiriques. Dans ce rapport on étudie le problème de
la validation de modèles des dynamiques des réseaux géniques pour populations cellulaires. On
propose des outils statistiques pour la validation et la comparaison qualitative et quantitative
de modèles, et on discute leur application et interprétation sur la base d'un problème biologique
réel.

Mots-clés : Méthodes statistiques, Biologie des Systèmes, Modélisation stochastique, Modéli-
sation à e�ets mixtes, Expression génique
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1 Introduction

Variability has been recognized to be a crucial aspect of gene expression and regulation [20].
Modern experimental techniques for the monitoring of gene expression at the individual cell level
provide both qualitative evidence and quantitative data that can be exploited to describe and
analyze gene expression variability from a mathematical standpoint [8, 18]. Various approaches
to the modelling of gene expression variability within and across cells have been developed, along
with methods for their inference from experimental data, and applied to the study of real bio-
logical systems [17, 25, 18, 15]. Yet, the quality of these models is often di�cult to assess, due to
the inherent complexity of the models as well as the challenges and costs involved in conducting
validation experiments. Indeed, model assessment is mostly performed on empirical bases, such
as qualitative response shape [17, 25], overexpression or knock-out experiments [2], and so on,
and it is often limited to considerations pertaining quality of �t, whereas quantitative predictive
capabilities are largely unexplored.
The aim of this work is to introduce systematic approaches for the validation of mathematical
models of cellular response variability. We are interested in particular in population modelling,
i.e. the ability to account for response variability across di�erent cells. Validation methods that
will be considered shall emphasize the predictive capabilities of the models, i.e. the ability to
correctly anticipate the true system response in new and possibly di�erent experimental condi-
tions. For parametric models, in particular, this rules out approaches based on the analysis of
estimated parameter, because parameter inaccuracies are hardly related with predictive capabil-
ities in the common scenario where practical identi�ability issues arise [11]. For practical utility,
methods should be applicable with no further e�ort by modellers. We will therefore restrict to
general validation tools, avoiding to leverage speci�cities of the di�erent modelling approaches.
We will start by reviewing Mixed-E�ects [13] and Chemical Master Equation [7] modelling, two
somewhat complementary approaches to population modelling that represent well the variety
of modelling approaches currently proposed in the literature. We will also summarize the more
traditional Mean-Cell modelling, for comparison purposes. Based on simulation of a biological
case study, we will infer these models fromin silico generated data and use them as a run-
ning example to introduce and discuss several validation methods derived from the statistical
literature. We will illustrate their application for the evaluation of individual models as well
as for model comparison, showing that reliable conclusions can be drawn from the ensemble of
validation results rather than from the application of a single tool.

2 Population models for gene expression dynamics

Gene expression dynamics are generally given in terms of a biochemical reaction network op-
erating in a uniform volume, a convenient abstraction of a cell (or a portion of it, e.g. the
nucleus). Such a network is then simply characterized byn species,m reaction channels, and a
stoichiometry matrix � with n rows and m columns, each column describing the net change in
copy number of the n molecular species over the whole reaction volume when the corresponding
reaction takes place. Let x = [ x1; : : : ; xn ]T denote the amount of molecules of every species.
Network dynamics are then �xed by the reaction rates v(x;  ), an m-dimensional column vector
whose entries quantify the velocity at which di�erent reactions take place. As apparent from the
notation, v(x;  ) generally depends on the amount of molecules present in the reaction volume,
and on kinetic rate parameters that are typically unknown or only partially known, and need to
be determined from experimental data. In more generality, reactions may depend on (possibly
time-varying) exogenous variablesu a�ecting rates (e.g. a control signal), in which case we write
v(x; u;  ).
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4 González-Vargas & Cinquemani & Ferrari-Trecate

Population models aim at applying this general paradigm to the description of multiple entities
(cells) that, despite identical in principle and hence obeying the same model structure, show
di�erent responses. Several approaches may be considered, further detailing the meaning ofx,
 and v, as reviewed below.

2.1 Mean-Cell (MC) modelling.

This approach aims at describing some �typical� behavior of a cell. For a given species abundance
x0 at a time t0, a deterministic response model for the abundancesx(t) at all times t is sought.
Under appropriate assumptions on reaction volume and species abundance, allowing in partic-
ular to treat x(t) as species concentrations, the entries ofv(x; u;  ) admit the interpretation of
(deterministic) number of reaction occurrences per unit time, and are determined by the laws of
mass action [12, 9]. In addition,x(t) obeys

_x(t) = �v
�
x(t); u(t);  

�
(1)

with x(t0) = x0.
When confronted with population-average data,x is interpreted as a vector of average concentra-
tions across the cell population, and are considered as typical kinetic parameters. Population-
average measurementsy at time t are then described as a function ofx(t), i.e.

y(t) = f
�
t; u(�); x0;  

�
+ measurement noise

where f is determined by the solution of the above ODE for given parameters and initial
conditions x0, under u(�). In the context of population modelling, where single-cell pro�les are
generally di�erent from one another, the interpretation of this modelling approach needs to be re-
considered. The solution of (1) shall now represent �mean-cell� dynamics, an oversimpli�cation of
the ensemble of single-cell responses. If instead the intercellular variability of the responses gives
rise to a discrepancy (error) between this mean-cell response and the observationsyi pertaining
the i th of N cells, we have

yi (t) = f
�
t; u(�); x0;  

�
+ errori :

2.1.1 Inference.

Inference of a mean cell model can be addressed by a Maximum Likelihood (ML) approach.
Suppose that, for every celli = 1 ; : : : ; N , measurementsYi = f yi;j = yi (t j ) : j = 1 ; : : : ; Ti g are
collected at times Ti = f t i;j : j = 1 ; : : : ; Ti g, and denote with Y the complete dataset. Consider
a generic measurement model of the type

yi;j = f
�
t j ; u(�); x0;  

�
+ h

�
f

�
t j ; u(�); x0;  

�
; �

�
� i (t j ) (2)

where errors � i (t j ) � N (0; 1) are mutually independent acrossi and j , and � are parameters
of the noise distribution. Note that h plays the role of error standard deviation, which may be
a�ected in di�erent ways from the current system state. In particular, an expression of the form

h
�
f; �

�
= � a + � bf; (3)

with � = ( � a ; � b), accounts for a basal error intensity (� a) plus a contribution proportional to
the state (� bf ) and covers most cases of interest. Denoting� = (  ; � ) the set of unknown

Inria
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parameters (possibly including x0 as well), the ML estimate of � may be computed as�̂ =
argmin � � logL (� jY ), where (neglecting unnecessary constants)

� logL (� jY ) =
NX

i =1

TiX

j =1

(
1
2

 
yi;j � f

�
t j ; u(�); x0;  

�

h
�
f

�
t j ; u(�); x0;  

�
; �

�

! 2

+

logh
�
f

�
t j ; u(�); x0;  

�
; �

�
)

:

2.2 Mixed-E�ects (ME) modelling.

Mean-cell models capture response variability across cells purely in terms of residual modelling
error. This is due to the fact that the parametrization of the system dynamics is unique for the
whole population. An alternative approach is to assume that (1) models the individual cell, but
di�erent cells may be characterized by di�erent values of  . In biological terms, this is a basic
way to capture what is known as extrinsic noise, i.e. unmodelled sources of variability that alter
the kinetics of gene expression, be they environmental or physiological, resulting into similar but
non-identical cell responses. If i denotes the parameters of thei th cell, one then assumes that

yi (t) = f
�
t; u(�); x0;  i

�
+ error; (individuals model)

where f
�
t; u(�); x0;  i

�
is the solution of (1) with  =  i , and the error accounts for single-cell

model inaccuracy (and measurement noise). Herex is then thought of as concentrations in the
relevant cell, andv(x; u;  i ) the velocity of reactions in cell i for given intracellular concentrations.
It is still assumed that u is common across the population, re�ecting typical experiments where a
given stimulus is applied to a whole population at once. Variability across cells is thus accounted
for by the di�erent values of the  i , however, in some analogy with mean-cell models, ensemble
population properties of these parameters should still be speci�ed. Mixed-e�ects modelling
enforces the idea of a cell being a variant of a statistically homogeneous population by introducing
a common prior on parameters i ,

 i = d(ai ; �; b i ); bi � N (0; 
) ; (population model):

In particular, it is often assumed that  i = � + bi . The entries of the parameter vector� , common
to the whole population, are called �xed-e�ects. Vectors bi are mutually independent and contain
the random e�ects, i.e. individual cell discrepancies from the population average. Finallyai are
covariates representing cell-speci�c known features, if present. Individual cell parameter vectors
 i are thus mixed e�ects, containing both �xed and random components. Especially for the case
 i = � + bi , one may think of � as the representation of the �mean-cell�. Note however, that
such cell may well not exist, i.e. no observed pro�le corresponding to i = � .

2.2.1 Inference.

Both � and the random-e�ects covariance matrix 
 are population properties, and are generally
unknown a priori as are the  i . Inference of mixed-e�ects models from individual data has
the primary aim of reconstructing these population properties from the whole data setY of all
measurements from all individuals. This is in agreement with the fact that population parameters
constitute the information that can be carried over to new cells or experiments, whereas individual
cell parameters have their validity limited to the lifespan of a cell. Consider again a generic
measurement model of the form (2), where� is �xed across individuals and  is replaced by i .
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6 González-Vargas & Cinquemani & Ferrari-Trecate

In a naive, so calledtwo-stage approach, one may think of �nding, for every i , individual-cell
estimates�̂ i = (  ̂ i ; �̂ i ) of � i = (  i ; � ) from the corresponding pro�le Yi by minimizing the negative
log-likelihood

� logL (� i jY i ) =
TiX

j =1

(
1
2

 
yi;j � f

�
t j ; u(�); x0;  i

�

h
�
f

�
t j ; u(�); x0;  i

�
; �

�

! 2

+

logh
�
f

�
t j ; u(�); x0;  i

�
; �

�
)

;

and then computing estimates for� and 
 as the empirical mean and covariance of the estimates
 ̂ 1; : : : ;  ̂ N . This is an unsatisfactory approach, though, since the information provided by the
Yi 0, with i 0 6= i , on  i via the common prior �xed by � and 
 is not exploited in the estimation of
 i . In addition, it is unclear how to relate the various estimates � i with the population parameter
vector � . A better approach, resulting in statistically more accurate estimates of the population
parameters� = ( �; 
 ; � ), is the Population Likelihood Maximization (PLM) approach. The idea
is to leverage all dataY at once by maximizing with respect to � the marginal likelihood

L (� jY ) = p(Yj�) =
NY

i =1

Z
d i p(Yi j i )p( i j�)

(or equivalently minimizing the negative of its logarithm) where factorization occurs thanks to
the mutual independence of thebi and of the � i . Note that, by this approach, a single estimate is
obtained for all population parameters, including � . From the resulting estimates �̂ and 
̂ , if of
interest, one may then derive single-cell parameter empirical Bayes estimates via e.g. Maximum-
A-Posteriori (MAP),

 ̂ i = argmaxp( i j �̂; 
̂) ; i = 1 ; : : : ; N:

In practice, while all integrands can be written explicitly, no closed form expression exists
in general for L (� jY ). Numerical methods for approximate optimization of L (� jY ) have been
proposed (notably NONMEM [1] and the randomized method SAEM [6, 1]) and are contained
in dedicated software packages such as Monolix [14], which also provide computation of thê i

via MAP and other approaches.

2.3 Chemical Master Equation (CME) modelling.

Models above rely on deterministic dynamics for single cells. Therefore, once the individual
parameters are �xed, the future evolution of the system becomes fully predictable. This is inad-
equate when randomness inherent in the biochemical processes of gene expression and regulation
is prominent, or simply the main object of study. At the single-cell level, the intrinsic noise in
gene expression is captured by modelling the process as a (stochastic) Markov Chain. This ap-
proach is more commonly referred to as CME modelling. A CME model is obtained by lettingx
be a count of molecules of the di�erent species, and interpretingv(x;  ) as reaction propensities
(or intensities), that is, the in�nitesimal probabilities that the di�erent reactions may occur in
an in�nitesimal period of time. If � r and vr are the r th column of � and the r th row of v, in the
same order,

Prob(x(t + dt) � x(t) = � r j ) = vr
�
x(t);  

�
dt + o(dt):

In turn, rates v(x; t ) are again determined by mass-action laws, and are the corresponding
kinetic constants [12]. Together with the assumption that the probability of simultaneous events

Inria
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is of higher in�nitesimal order, it follows that x(t) obeys the laws of a Markov chain, and for
all possible valuesz of x(t), the probabilities p (z; t) = Prob

�
x(t) = z

�
� ) evolve over time in

accordance with the CME

_p (z; t) =
mX

r =1

vr (z � � r ;  )p (z � � r ; t) � vr (z;  )p (z; t); (4)

for a given initial probability distribution p0(�) = p (�; t0) at some time t0. The simplicity of
this equation is deceptive: For an in�nite space of possible valuesz, this results in an in�nite-
dimensional system of coupled linear ODEs, which is analytically intractable except for very few
special cases or under nontrivial approximations. Note also that rates may themselves depend
on a control input u.

2.3.1 Inference.

In the current literature, CME models are mostly inferred from population snapshot data, that
is, from empirical statistics of z(t) computed from independent cell samples at di�erent time
points t [17, 25]. In sharp contrast with ME modeling, the underlying assumption is that the
same model with identical parameters applies to all cells, so that di�erent cell pro�les are
di�erent outcomes of the same stochastic process. Mixtures of ME and CME models have also
been proposed [24], but we will not address them here. In the present case, measurements
~y(t j ) at a sequence of time pointsT = f t j : j = 1 ; : : : ; Tg can be seen as a noisy readout of
p (�; t j ), and the task is to estimate  from ~Y = f ~yj : t j 2 T g (� � � is used here to distinguish
measurements of statistics ofx from measurements ofx itself). For simple enough systems, one
approach is to �t approximate solutions of (4)[17, 7], to the sequence of empirical probabilities
~Y, in the sense of some convenient distance between probability distributions. If the space
explored by x(t) with nonzero probability is large, however, this approach is hardly viable. A
competing approach of more general applicability is Moment Matching (MM). The idea is to
derive from (4) (approximate) dynamical equations for the state moments up to some �nite
order (typically mean, variance and covariances), and to �t the model-predicted moments to
their experimental counterpart. Let M  (t) be the vector containing the moments ofx(t) up to
order L . It can be shown [21] that

_M  (t) = A( )M  (t) + B ( ) �M  (t) (5)

for some matricesA and B depending on the network reaction rates (and� ), where �M  (t)
denotes moments of order higher thanL . Matrix B is nonzero except for very few special
cases, whence the equation is �open�, in the sense that solution depends on the unknown and
unmodelled moments �M  (t). However, several so-called moment closure methods have been
proposed to approximate (5) with the �closed� system of equations [21]

_~M  (t) = A( ) ~M  (t) + �
� ~M  (t)

�
; (6)

where the various methods di�er in the de�nition of � , with an accuracy that is problem-
dependent [21, 25]. Let us now model measurements as

~yj = cT ~M  (t j ) + h
� ~M  (t j ); �

�
� (t j );

with usual assumptions on� , and vector c accounting for partial observation of ~M  . In particular,
if L = 2 , then (6) involves mean, variance and covariance terms, whereas only mean and variance
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8 González-Vargas & Cinquemani & Ferrari-Trecate

Figure 1: Hyperosmotic gene expression in yeast. Hyperosmotic stress triggers phosphorylation and nuclear
import of the protein Hog1, which thereupon activates osmo-stress responsive genes. In [23, 15], a �uorescent
reporter gene sequence (yECitrine) is engineered in the cells under the control of osmosensitive promoter pSTL1,
which results in the synthesis of �uorescent reporter molecules upon cell sensing of osmotic shocks. In addition
Hog1 stimulates enzymes involved in the glycerol production pathway, while closure of the membrane glycerol
transporter Fps1 prevents glycerol from leaking out. Increasing the intracellular glycerol concentration is the main
adaptation mechanism to hyperosmotic stress. Adaptation is prevented by the experimental setup in [15, 23],
which we take as a reference here, thus Fps1 and GPD1 mechanisms (shaded in light gray) will not be considered.

for a single species are provided by most common experimental setups, such as the one illustrated
in this paper. Inference of then becomes the problem of �tting ~M  , the solution of (6), to the
sequence~Y. Assuming (6) exact, an a priori characterization ofh

� ~M  (t j ); �
�
� (t j ) may be given

based on the number of cells from which empirical moments are computed from the data [25],
and an ML approach can be followed. Otherwise, modelling errors can be implicitly accounted
for by including the estimation of � in the identi�cation process. A method of this type based
on the Kullback-Leibler (KL) distance has been proposed in [10] forh in the form (3). We will
use this method in the sequel without further noti�cation. When discussing validation methods
involving single-cell pro�les, we will refer back to the single-cell measurementsyi;j from which
empirical moments ~yj are computed. Application of moment-based inference to real biological
case studies is reported e.g. in [25, 10].

2.4 Example: Yeast osmotic shock response

In order to discuss validation methods for population models inferred from biological data, we
will consider the case study of osmotic shock response in yeastSaccharomices cerevisiaecells [15].
The biological system is illustrated in Fig. 1. We will only be concerned with the modelling of
the expression of the reporter gene as a function of the osmolarity shocks delivered to yeast cells
by means of a computer-controlled micro�uidics system (see details in [23]). Perception of an
osmotic shock (uh ) leads to the activation of the osmosensitive genes, resulting in particular in
the transcription of �uorescent reporter mRNA molecules (mRNA), subsequently translated into
immature protein molecules (Proteino� ). A subsequent maturation step takes proteins in their
mature, �uorescent form (Protein on ). All species are also subject to degradation and dilution
due to cell growth. In accordance with [10], the system is then represented by the following
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reactions:

;
k5 u h��� *) ���

k6

mRNA (7)

mRNA
k7�! mRNA + Proteino� (8)

Proteino� k9�! Proteinon (9)

Proteino� k8�! ; (10)

Proteinon k8�! ; (11)

where the indexing of reaction rate constants is chosen for consistency with the same work. In
turn, the shock perceived by cellsuh is related with the concentration uc of a chemical inducer
in the micro�uidics chambers where the cells reside via the equation

_uh (t) = kh uc(t) �  h uh (t): (12)

Quantity uc represents the concentration manipulated by the experimenter, i.e. the system input
previously called u. Via an automatic microscopy image acquisition and processing system,
measurements of cell �uorescence, i.e. the concentration of Proteinon , are collected over time.
A full characterization of the experimental platform is provided in [23]. For mean-cell and
ME modelling, denoting with x = [ x1; x2; x3]T the concentrations of mRNA, Proteino� and
Proteinon , in the same order, after solving for the system stoichiometry and the mass-action
reaction velocities we get that

_x1(t) = k5uh (t) � k6x1(t); (13)

_x2(t) = k7x1(t) � (k8 + k9)x2(t); (14)

_x3(t) = k9x2(t) � k8x3(t): (15)

For ME models, parameters i = ( k5; k6; k7; k8; k9) are cell-dependent. For thei th cell, �uores-
cence measurements are considered to be of the form

yi (t) = x3(t) +
�
� a + � bx3(t)

�
� i (t): (16)

We will use this model to generate datain silico and discuss validation of the various models
described above.

3 Validation methods for cell population models

In this section we present various validation criteria that can be used for assessing the quality of
cell population models. Moreover, their application will be discussed using the biological example
in Section 2.4. To this purpose, we simulate 100 cells using an ME model based on (12)�(16).
The osmotic stress pro�le is shown in Figure 2 (bottom), and it is common to all cells. Outputs
are single-cell pro�les yi (t) (Figure 2, top).

Parameters (k5; k6; k7; k8; k9) are sampled from a multivariate lognormal distribution, whose
mean and covariance matrix, in log-scale, are:

� =
�
3:40 � 1:22 � 0:05 � 5:52 � 4:04

�
; 
 = 0 :1I 5:

In particular, the values in � have been adapted from those available in the literature to the
particular system described in [10, 15].
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10 González-Vargas & Cinquemani & Ferrari-Trecate

Figure 2: Reference data. Red areas in the bottom plot show the time intervals at which a osmotic shock is
exerted. The single-cell (folded) protein levels are shown in the upper plot.

We will infer three models (MC, CME and ME): the predictions of each model will be com-
pared against the reference dataset, and we will show how validation methods can be useful to
ascertain the model accuracy. Then, in Section 3.2 we will describe how the validation criteria
can be jointly used for assessing whether a model is acceptable or not.

3.1 Validation criteria for models of gene expression variability

Quality assessment of inferred population models is often non-trivial and it can be easily over-
looked if relying only on simple procedures such as visual checks or comparisons of mean and
variance of prediction errors. Below, we discuss advanced validation tests capturing the accuracy
of population models according to di�erent criteria. In particular, several approaches have been
taken from the literature on ME models [19, 4]. While common in classic application �elds of
ME model (e.g. pharmacometrics), to the authors' knowledge their use in cell-population models
is substantially new.

3.1.1 NRMSE and relative error.

These two indicators are frequently used as a quantitative aid for the validation methods known
as population plots (see later). The Root Mean Squared Error (RMSE) captures discrepancies
between model predictions and the actual observed values. It represents the sample standard
deviation of the prediction error, i.e. the di�erence between predicted and observed values.
As RMSE is scale-dependent, it is often common tonormalize it in order to provide a scale-
independent measure. The Normalized Root Mean Squared Error (NRMSE) is de�ned as

NRMSE(�; �̂ ) =

s
1
T

TP

j =1
( � j � �̂ j )2

� max � � min
(17)
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Validation methods for population models of gene expression dynamics 11

where, for an experiment spanningT time samples,� j is the j -th sample of the variable under
analysis, e.g. a single-cell trajectory, the mean trajectory of the cell population, or the moments
of the distribution of trajectories. The predicted values of the variable under study are �̂ j , and
� max , � min are the maximum and minimum values in the full set of data. Furthermore, � and
�̂ in (17) denote the set of observed and predicted values, respectively.

3.1.2 Population plots.

A simple way to compare the predicted and observed cell populations is to observe how much the
mean and standard deviation of both datasets overlap during the whole experiment duration.
To this e�ect, we compute at every time instant j the empirical mean and standard deviation

m̂Y ;j = 1
N j

P
i 2 N j

Yij (18)

�̂ Y ;j =
q

1
N j � 1

P
i 2 N j

(Yij � m̂Y ;j )2 (19)

A dataset of simulated cells is then created using the identi�ed model. Formulae (18) and (19) are
then used to calculate the predicted mean (my;j ) and standard deviation (� y;j ) of the population
by replacing observed dataY with simulated data y. The observed and predicted statistics
(m̂Y ;j ; �̂ Y ;j ), (my;j ; � y;j ) will then be used for plotting the mean together with a standard-
deviation band in a single picture, calledstandard plot. Figure 3 shows standard plots for the
models of interest.

Figure 3: Standard plots: mean +/- standard deviation of reference (blue) and predicted (red) datasets.

The standard plot provides information about the location and dispersion of the population,
but its main drawbacks are that it implicitly assumes normality in the distribution of the output
across the population (it only accounts for mean and variance). In addition, it does not take into
account single-cell �ts.

3.1.3 Visual Predictive Check (VPC).

VPC is a popular method for evaluating nonlinear ME models in population pharmacometrics [4,
13]. The idea behind the VPC is to assess graphically whether simulations from a proposed model
are able to reproduce the central trend and variability in the measured data. The VPC does not
make any assumption on the form of the distributions and also takes into account the uncertainty
generated by calculating population statistics on small samples. Indeed, it is important to

RR n ° 8938



12 González-Vargas & Cinquemani & Ferrari-Trecate

remember that, due to the technical complexity of experiments, the number of observed cells is
often small (<1000), which a�ects the accuracy of empirical moments or estimated quantiles.
The procedure uses the estimated model parameters and the design structure of the observed
data, (input, time, and number of samples) to generateK datasets, each ofN simulated cells.
Then, in each dataset we compute the 0.5, 0.025 and 0.975 quantiles. HavingK estimates of each
quantile we can compute and plot a con�dence interval for them, which makes the interpretation
of VPCs less subjective. Finally, one can overlap �prediction bands� with estimated quantiles
from the observed data. In this general form, the VPC provides a visual comparison of the
overlap between the simulated distribution with the observations. Several extensions have been
proposed, but in this paper we will use only the simplest version of the VPC. Figure 4 shows the
classic VPC for the models of interest.

Figure 4: VPC: shaded areas denote 99% con�dence intervals on the calculated quantiles for the predicted
dataset. The selected quantiles are 0.025 (blue), 0.5 (red) and 0.0975 (blue) which comprise 95% of the population.
The green lines show the same quantiles for the reference dataset. A large deviation of the reference quantiles
from the predicted quantiles' area suggests misspeci�cation in the model.

3.1.4 Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov Two-Sample Test (KS2) is used to assess, without assumptions of the
underlying probability distributions, the similarity between two sample distributions [22].

The KS test is based on the Empirical Cumulative Distribution Function (ECDF). Let X be
a scalar random variable andX 1; : : : ; X N be a sample ofX . The ECDF is de�ned as:

FN (x) = 1
N

P N
i =1 � x (X i ) (20)

where x 2 R is typically in the interval [min(X i ); max(X i )], and � x (X i ) is 1 if X i � x, and 0
otherwise. In order to compute the KS statistic we generate a set ofN 0 (typically N 0 � 10000)
simulated cells using the identi�ed model. We compute, at each time instant, F1;N (x) and
F2;N 0(x), which are, respectively, the ECDFs of the observed and simulated datasets. Then we
compute

Do� p = supx jF1;N (x) � F2;N 0(x)j (21)

where sup is the supremum function, and Do� p is the distance between the two distributions.
The test's null hypothesis is that both samples are drawn from the same distribution and this is
rejected at signi�cance level 1 � � if

DN;N 0 > c(� )
q

N + N 0

NN 0 : (22)
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If we choose a signi�cance level of 95% then� = 0 :05 and c(� ) = 1 :36 [16]. The result is given
by a Boolean value hK equal to 1 if the null hypothesis is rejected and 0 otherwise. Based on
this indicator, we can calculate a success rateSks for the time interval of the experiment, by
computing hK j at each time instant j and then taking the mean over all time instants:

Sks = 1 � 1
T

P T
j =1 hK j (23)

We can also compute the average p-value ofSks . A higher p-value will indicate that the two
distributions are more similar. Figure 5 gives a graphical representation of the KS2 statistic.

Figure 5: KS2 test. The blue line represents the p-value obtained from the test at each time instant (the
higher the better). The 95% threshold p-value (black-dashed line) separates unsuccessful time points (red points,
indicating the distributions are statistically di�erent) from successful time points (green).

3.1.5 Prediction distribution errors

The Prediction Distribution Errors (PDE) are proposed in [4] as a metric to evaluate the perfor-
mance of a ME model, based on Monte Carlo simulations of the population. Normalized PDE
(NPDE), a variant of PDE, is widely used in pharmacokinetics, and is implemented in statistical
software such as R and Monolix.
We start by constructing a simulated dataset of K repetitions (i.e. cells simulated with the
identi�ed model) for each of the N observed cells. Ideally the number of repetitions should be as
high as possible (usuallyK � 1000). Observations produced by the same individual at di�erent
time instants are correlated and the �rst step for deriving PDEs is to decorrelate them. This
requires to derive an approximated variance-covariance matrix for single-cell data. Decorrelation
can then be performed using several methods, such as Cholesky decomposition, inverse decorre-
lation through eigenfunctions, or singular value decomposition [3]. Let us denote withysim (k ) �

i
the decorrelated vector of simulated observations for thei th cell in the kth simulation and with
Y �

i the decorrelated vector of real observations for thei th subject. Then, we can calculate the
PDE (prediction distribution error) as:

PDE ij = 1
K

KP

k=1
� �

ijk ; (24)
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14 González-Vargas & Cinquemani & Ferrari-Trecate

where � �
ijk = 1 if ysim (k ) �

ij < Y �
ij and 0 otherwise. PDE values are (theoretically) decorrelated

over time for the same individual and they follow a uniform distribution U(0; 1) even when there
are several observations per cell. A normalized version of PDE can be obtained by using the
inverse function of the normal cumulative density function F : NPDE ij = F � 1(PDE ij ):
Results of the NPDE can be seen in Figure 6. In the top row, quantile-quantile plots give us a
visual indication of how close the quantiles of NPDE overlap with those of a standard normal
distribution. They should be as aligned as possible. The Bonferroni p-value included in the plot
integrates the result of the combination of three di�erent normality tests: Wilcoxon, Chi-square
and Lilliefors [5]. Together, they give us a numerical indication of how close the distribution of
the NPDE resembles a standard Gaussian distribution. The same comparison can be done using
the plot in the bottom row in Figure 6.

Figure 6: Normalized prediction distribution errors (NPDE). Quantile-Quantile plots (top) compare the NPDE
distribution (blue circles) to a normal standard distribution (red line). The Bonferroni-corrected p-value quanti�es
the closeness of both distributions. The bottom plots show the same comparisons, but from the perspective of
probability density functions.

3.1.6 A posteriori best �ts (APBFs).

Using the simulated datasets introduced for discussing PDEs, we can compute, for observed cell
i ,

APBF i = arg min k (NRMSE( ysim (k )
i ; Yi )) (25)

In other words, APBF i denotes the indexk that minimizes the NRMSE between ysim (k )
i and Yi .

Then, we can obtain a visual indication of the goodness of �t, by plotting best �ts vs observations,
and computing a numerical indicator of the total goodness of �t (i.e., for all cells):

NRMSEAPBF = 1
N

P N
i =1 NRMSE(ysim (APBF i )

i ; Yi ) (26)

When two models perform equally well at the population level, one can use APBF to choose
which one performs better at the single-cell level. The lower theNRMSEAPBF , the better the
model is able to represent individual cells. Fig. 7 shows APBF plots for the models of interest.
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Figure 7: APBF plots. Points (ysim ( APBF i )
ij ; yij ) for i = 1 ; : : : ; N , j = 1 ; : : : ; T i are represented, i.e. individual

best predictions against observed values of the reference data. A lower spread of the points in the anti-diagonal
direction indicates better agreement between observations and predictions; this can be quanti�ed by calculating
NRMSE APBF as in (26).

3.2 Joint use of validation criteria

Since di�erent validation criteria are available for cell population models, in this section we
provide guidelines for combining them so as to compare di�erent models and, if possible, to
isolate the best one, still with reference to thein silico results reported above.

As discussed in Section 3.1, several validation approaches require to simulate data using the
identi�ed models. To this purpose, we created datasets of 10000 cells each. Validation results are
shown in Figures 3-7. For an easier visual comparison between models, we display in all �gures
colored circles indicating good (green), moderate (yellow) and bad (red) results.
The �rst evaluation (Figure 3) is a comparison of standard plots. Based on this criterion, all
models seem to perform equally well. The mean is followed more closely by the ME model and
the variance seems to be overestimated in ME, and slightly o� in the last part of MC and CME,
but it is di�cult to provide any strong evidence in favor of a model.
The second test is yet another visual evaluation based on VPC (Figure 4). The green lines
representing the empirical quantiles of the reference data fall always inside the limits of the
quantiles predicted with the ME and CME models, but tend to fall outside of the MC predicted
quantiles. This gives us some preliminar evidence of model misspeci�cation in the MC case.
The third test is a Kolmogorov-Smirnov 2-sample test (Figure 5). Here, we see that the KS2
success rate for the ME model is 93.5%, while those of CME and MC are 71% and 48.4%
respectively. This gives us strong evidence to discard the MC model, and suggests that the CME
model is also not valid with high signi�cance.
The previous tests all evaluated the capacity of the identi�ed model to reproduce apopulation of
cells that behaves similarly to the reference dataset. However, the true model should also be able
to reproduce an individual cell with good quality. This aspect is covered by the next two tests.
The fourth test (Figure 7) compares each of the reference cells to their correspondent best-�tting
cell from the predicted dataset. A visual analysis of this test tells us that if the predicted model
is able to �t su�ciently well the individual cells, all the blue crosses in Fig. 7 should be very
close to the diagonal. A larger dispersion in the anti-diagonal direction means that residuals will
be larger. The best model should show little dispersion and the NRMSE should be as low as
possible. The NRMSE indicates that ME is better than the two competing models.
The last test is the NPDE, and, in some sense, it evaluates simultaneously the individual and
population performance of the model. The Q-Q and PDF plots in Figure 6 show that the NPDE
of the ME model follow very closely a standard normal distribution, while the CME and MC
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deviate from it noticeably. In summary, based on the last two tests we have a strong evidence
in favor of the ME model, which corresponds to the actual model used to generate the reference
dataset.
This example shows that simple visual checks of mean and standard deviation can give an
erroneous idea of goodness of �t, which can be partially solved by using more complete indicators
such as VPC. If the evidence is not conclusive, numerical indicators such as KS2 can help to
assess the performance of the identi�ed models at the population level. However, performance
at the single-cell level is equally important and it must be con�rmed by analyzing the best-�t
residuals.

4 Conclusions

In this paper, we have compared and contrasted methods for validating models of cell populations.
Overall, our analysis shows that tests based on the capability of reproducing only population-
level behaviors might be insu�cient for model discrimination. To this purpose, it is bene�cial to
consider also validation methods based on the comparison of single-cell data. Existing validation
approaches are still generic, in the sense that they can be applied to population of systems,
even outside the context of Biology. As validation approaches can be useful for discriminating
the relative importance of di�erent sources of biological noise, we expect they will be further
developed in the future, so as to incorporate genuine biological aspects in their formulation.
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