Disimplicial arcs, transitive vertices, and disimplicial eliminations

Abstract : In this article we deal with the problems of finding the disimplicial arcs of a digraph and recognizing some interesting graph classes defined by their existence. A diclique of a digraph is a pair $V$ → $W$ of sets of vertices such that $v$ → $w$ is an arc for every $v$ ∈ $V$ and $w$ ∈ $W$. An arc $v$ → $w$ is disimplicial when it belongs to a unique maximal diclique. We show that the problem of finding the disimplicial arcs is equivalent, in terms of time and space complexity, to that of locating the transitive vertices. As a result, an efficient algorithm to find the bisimplicial edges of bipartite graphs is obtained. Then, we develop simple algorithms to build disimplicial elimination schemes, which can be used to generate bisimplicial elimination schemes for bipartite graphs. Finally, we study two classes related to perfect disimplicial elimination digraphs, namely weakly diclique irreducible digraphs and diclique irreducible digraphs. The former class is associated to finite posets, while the latter corresponds to dedekind complete finite posets.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2015, Vol. 17 no.2 (2), pp.101-118
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01349046
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 26 juillet 2016 - 17:44:18
Dernière modification le : mercredi 1 août 2018 - 15:02:03

Fichier

2687-9774-1-PB.pdf
Accord explicite pour ce dépôt

Identifiants

  • HAL Id : hal-01349046, version 1

Collections

Citation

Martiniano Eguia, Francisco Soulignac. Disimplicial arcs, transitive vertices, and disimplicial eliminations. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2015, Vol. 17 no.2 (2), pp.101-118. 〈hal-01349046〉

Partager

Métriques

Consultations de la notice

51

Téléchargements de fichiers

208