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Given a set P of n points in the plane, where n is even, we consider the following question: How many plane perfect
matchings can be packed into P ? For points in general position we prove the lower bound of blog2 nc − 1. For
some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this
problem.
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1 Introduction
Let P be a set of n points in general position in the plane (no three points on a line). A geometric graph
G = (P,E) is a graph whose vertex set is P and whose edge set E is a set of straight-line segments
with endpoints in P . We say that two edges of G cross each other if they have a point in common that is
interior to both edges. Two edges are disjoint if they have no point in common. A subgraph S of G is said
to be plane (non-crossing or crossing-free) if its edges do not cross. A plane matching is a plane graph
consisting of pairwise disjoint edges. Two subgraphs S1 and S2 are edge-disjoint if they do not share any
edge. A complete geometric graph K(P ) is a geometric graph on P which contains a straight-line edge
between every pair of points in P .

We say that a set of subgraphs of K(P ) is packed into K(P ), if the subgraphs in the set are pairwise
edge-disjoint. In a packing problem, we ask for the largest number of subgraphs of a given type that can
be packed into K(P ). Among all subgraphs of K(P ), plane perfect matchings, plane spanning trees, and
plane spanning paths are of interest [2, 3, 4, 5, 9, 12, 28, 34]. That is, one may look for the maximum
number of plane spanning trees, plane Hamiltonian paths, or plane perfect matchings that can be packed
into K(P ). Since K(P ) has n(n−1)

2 edges, at most n
2 spanning trees, at most n

2 spanning paths, and at
most n−1 perfect matchings can be packed into it. In this paper we consider perfect matchings. A perfect
matching in K(P ) is a set of edges that do not share any endpoint and cover all the points in P .

A long-standing open question is to determine if the edges ofK(P ) (where n is even) can be partitioned
into n

2 plane spanning trees. In other words, is it possible to pack n
2 plane spanning trees into K(P )? If

P is in convex position, the answer in the affirmative follows from the result of Bernhart and Kanien [11].
For P in general position, Aichholzer et al. [5] prove that Ω(

√
n) plane spanning trees can be packed into

K(P ). They also show the existence of at least 2 edge-disjoint plane spanning paths.
In this paper we consider a closely related question: How many plane perfect matchings can be packed

into K(P ), where P is a set of n points in general position in the plane, with n even?
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1.1 Previous Work

1.1.1 Existence of Plane Subgraphs
The existence of certain plane subgraphs in a geometric graph on a set P of n points is one of the classic
problems in combinatorial and computational geometry.

One of the extremal problems in geometric graphs which was first studied by Avital and Hanani [10],
Kuptiz [31], Erdős [19], and Perles (see reference [43]) is the following. What is the smallest number
ek(n) such that any geometric graph with n vertices and more than ek(n) edges contains k + 1 pairwise
disjoint edges, i.e., a plane matching of size at least k + 1. Note that k ≤ bn/2c − 1. By a result of Hopf
and Pannwitz [27], Sutherland [41], and Erdős [19], e1(n) = n, i.e., any geometric graph with n + 1
edges contains a pair of disjoint edges, and there are some geometric graphs with n edges which do not
contain any pair of disjoint edges.

Alon and Erdős [8] proved that e2(n) < 6n − 5, i.e., any geometric graph with n vertices and at least
6n−5 edges contains a plane matching of size three. This bound was improved to e2(n) ≤ 3n by Goddard
et al. [22]. Recently Černý [14] proved that e2(n) ≤ b2.5nc; while the lower bound of e2(n) ≥ d2.5ne−3
is due to Perles (see [14]). For e3(n), Goddard et al. [22] showed that 3.5n − 6 ≤ e3(n) ≤ 10n, which
was improved by Tóth and Valtr [43] to 4n− 9 ≤ e3(n) ≤ 8.5n.

For general values of k, Akiyama and Alon [7] gave the upper bound of ek(n) = O(n2−1/(k+1)).
Goddard et al. [22] improved the bound to ek(n) = O(n(log n)k−3). Pach and Törőcsik [36] obtained
the upper bound of ek(n) ≤ k4n; which is the first upper bound that is linear in n. The upper bound was
improved to k3(n+1) by Tóth and Valtr [43]; they also gave the lower bound of ek(n) ≥ 3

2 (k−1)n−2k2.
Tóth [42] improved the upper bound to ek(n) ≤ 29k2n, where the constant has been improved to 28 by
Felsner [20]. It is conjectured that ek(n) ≤ ckn for some constant c.

For the maximum value of k, i.e., k = n
2−1, with n even, Aichholzer et al. [4] showed that en/2−1(n) =(

n
2

)
− n

2 = n(n−2)
2 . That is, by removing n

2 − 1 edges from any complete geometric graph, the resulting
graph has k + 1 = n

2 disjoint edges, i.e., a plane perfect matching. This bound is tight; there exist
complete geometric graphs, such that by removing n

2 edges, the resulting graph does not have any plane
perfect matching. Similar bounds were obtained by Kupitz and Perles for complete convex graphs, i.e.,
complete graphs of point sets in convex position. Kupitz and Perles showed that any convex geometric
graph with n vertices and more than kn edges contains k + 1 pairwise disjoint edges; see [22] (see also
[7] and [8]). In particular, in the convex case, 2n + 1 edges guarantee a plane matching of size three. In
addition, Keller and Perles [29] gave a characterization of all sets of n

2 edges whose removal prevents the
resulting graph from having a plane perfect matching.

Černý et al. [15] considered the existence of Hamiltonian paths in geometric graphs. They showed that
after removing at most

√
n/(2
√

2) edges from any complete geometric graph of n vertices, the resulting
graph still contains a plane Hamiltonian path. Aichholzer et al. [4] obtained tight bounds on the maximum
number of edges that can be removed from a complete geometric graph, such that the resulting graph
contains a certain plane subgraph; they considered plane perfect matchings, plane subtrees of a given size,
and triangulations.

1.1.2 Counting Plane Graphs
The number of plane graphs of a given type in a set of n points is also of interest. In 1980, Newborn
and Moser [35] asked for the maximal number of plane Hamiltonian cycles; they give an upper bound
of 2 · 6n−2bn2 c!, but conjecture that it should be of the form cn, for some constant c. In 1982, Ajtai et
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al. [6] proved that the number of plane graphs is at most 1013n. Every plane graph is a subgraph of some
triangulation (with at most 3n − 6 edges). Since a triangulation has at most 23n−6 plane subgraphs, as
noted in [21], any bound of αn on the number of triangulations implies a bound of 23n−6αn < (8α)n on
the number of plane graphs. The best known upper bound of 30n, for the number of triangulations is due
to Sharir and Sheffer [37]. This implies the bound 240n for plane graphs. As for plane perfect matchings,
since a perfect matching has n

2 edges, Dumitrescu [18] obtained an upper bound of
(
3n−6
n/2

)
αn ≤ (3.87α)n,

where α = 30. Sharir and Welzl [38] improved this bound to O(10.05n). They also showed that the
number of all (not necessarily perfect) plane matchings is at most O(10.43n).

Garcı́a et al. [21] showed that the number of plane perfect matchings of a fixed size set of points
in the plane is minimum when the points are in convex position. Motzkin [33] showed that points in
convex position have Cn/2 many perfect matchings (classically referred to as non-crossing configurations
of chords on a circle), where Cn/2 is the (n/2)th Catalan number; Cn/2 = Θ(n−3/22n). Thus, the
number of plane perfect matchings of n points in the plane is at least Cn/2. Garcı́a et al. [21] presented a
configuration of n points in the plane which has Ω(n−43n) many plane perfect matchings. See Table 1.

1.1.3 Counting Edge-Disjoint Plane Graphs
The number of edge-disjoint plane graphs of a given type in a point set P of n points is also of interest.
Nash-Williams [34] and Tutte [44] independently considered the number of (not necessarily plane) span-
ning trees. They obtained necessary and sufficient conditions for a graph to have k edge-disjoint spanning
trees. Kundu [30] showed that any k-edge-connected graph contains at least dk−12 e edge-disjoint spanning
trees.

As for the plane spanning trees a long-standing open question is to determine if the edges of K(P )
(where n is even) can be partitioned into n

2 plane spanning trees. In other words, is it possible to pack n
2

plane spanning trees into K(P )? If P is in convex position, the answer in the affirmative follows from
the result of Bernhart and Kanien [11]. In [12], the authors characterize the partitions of the complete
convex graph into plane spanning trees. They also describe a sufficient condition, which generalizes the
convex case, for points in general position. Aichholzer et al. [5] showed that if the convex hull of P
contains h vertices, then K(P ) contains at least bh2 c edge-disjoint plane spanning trees, and if P is in a
“regular wheel configuration”, K(P ) can be partitioned into n

2 spanning trees. For P in general position
they showed that K(P ) contains Ω(

√
n) edge-disjoint plane spanning trees. They obtained the following

trade-off between the number of edge-disjoint plane spanning trees and the maximum vertex degree in
each tree: For any k ≤

√
n/12, K(P ) has k edge-disjoint plane spanning trees with maximum vertex

degree O(k2) and diameter O(log(n/k2)). They also showed the existence of at least 2 edge-disjoint
plane Hamiltonian paths.

1.2 Our Results
Given a set P of n points in the plane, with n even, we consider the problem of packing plane perfect
matchings into K(P ). From now on, a matching will be a perfect matching.

In Section 3 we prove bounds on the number of plane matchings that can be packed into K(P ). In
Section 3.1 we show that if P is in convex position, then n

2 plane matchings can be packed into K(P );
this bound is tight.

The points in wheel configurations are considered in Section 3.2. We show that if P is in regular wheel
configuration, then n

2 − 1 edge-disjoint plane matchings can be packed into K(P ); this bound is tight as
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Tab. 1: Number of plane perfect matchings in a point set P of n points (n is even).
Matching ∀P :≥ ∃P :≤ ∃P :≥ ∀P :≤
total 2n[21, 33] 2n[33] 3n[21] O(10.05n)[38]
edge-disjoint blog2 nc − 1 dn3 e n

2 n− 1
non-crossing edge-disjoint 2 2 5 5

well. In addition, for a fixed size set of points, we give a wheel configuration of the points which contains
at most dn3 e edge-disjoint plane matchings.

Point sets in general position are considered in Section 3.3. We show how to find three edge-disjoint
plane matchings in any set of at least 8 points. If n is a power of two, we prove that K(P ) contains at
least log2 n many edge-disjoint plane matchings. For the general case, where n is an even number, we
prove that K(P ) contains at least dlog2 ne − 2 edge-disjoint plane matchings.

In Section 3.4 we count the number of pairwise non-crossing plane matchings. Two plane matchings
M1 and M2 are called non-crossing (or compatible) if the edges of M1 and M2 do not cross each other.
We show that K(P ) contains at least two and at most five non-crossing plane matchings; these bounds
are tight. Table 1 summarizes the results.

In Section 4 we study the concept of matching persistency in a graph. A graph G is called matching-
persistent, if by removing any perfect matching M from G, the resulting graph, G −M , still contains
a perfect matching. We define the plane matching persistency of a point set P , denoted by pmp(P ), to
be the smallest number of edge-disjoint plane matchings such that, if we remove them from K(P ) the
resulting graph does not have any plane perfect matching. In other words, pmp(P ) = |M|, whereM is
the smallest set of edge-disjoint plane matchings such that K(P ) −⋃M∈MM does not have any plane
perfect matching. Here, the challenge is to find point sets with high plane matching persistency. We show
that pmp(P ) ≥ 2 for all point sets P . We give a configuration of P with pmp(P ) ≥ 3. Concluding
remarks and open problems are presented in Section 5.

2 Preliminaries
2.1 Graph-Theoretical Background
Consider a graph G = (V,E) with vertex set V and edge set E. If G is a complete graph on a vertex set
V of size n, then G is denoted by Kn. A k-factor is a regular graph of degree k. If G is the union of
pairwise edge-disjoint k-factors, their union is called a k-factorization and G itself is k-factorable [24].
A matching in a graph G is a set of edges that do not share vertices. A perfect matching of G is a 1-factor
of G. In this paper only perfect matchings are considered and they are simply called matchings. Since a
perfect matching is a regular graph of degree one, it is a 1-factor. It is well-known that for n even, the
complete graph Kn is 1-factorable (See [24]). Note that Kn has n(n−1)

2 edges and every 1-factor has n
2

edges. Thus, Kn can be partitioned into at most n− 1 edge-disjoint perfect matchings.
On the other hand it is well-known that the edges of a complete graph Kn, where n is even, can be

colored by n− 1 colors such that any two adjacent edges have a different color. Each color is assigned to
n
2 edges, so that each color defines a 1-factor. The following geometric construction of a coloring, which
uses a “regular wheel configuration”, is provided in [40]. In a regular wheel configuration, n− 1 equally
spaced points are placed on a circle and one point is placed at the center of the circle. For each color class,
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include an edge e from the center to one of the boundary vertices, and all of the edges perpendicular to
the line through e, connecting pairs of boundary vertices.

The number of perfect matchings in a complete graph Kn (with n even), denoted by M(n), is given by
the double factorial; M(n) = (n− 1)!! [13], where (n− 1)!! = 1 · 3 · 5 · · · (n− 3) · (n− 1).

2.2 Plane Matchings in Colored Point Sets
Let P be a set of n colored points in general position in the plane with n even. A colored matching of
P , is a perfect matching such that every edge connects two points of distinct colors. A plane colored
matching is a colored matching which is non-crossing. A special case of a plane colored matching, where
P is partitioned into a set R of n

2 red points and a set B of n
2 blue points, is called plane bichromatic

matching, also known as red-blue matching (RB-matching). In other words, an RB-matching of P is a
non-crossing perfect matching such that every edge connects a red point to a blue point. It is well-known
that if no three points of P are collinear, then P has an RB-matching [1]. As shown in Figure 1(a),
some point sets have a unique RB-matching. Hershberger and Suri [26] construct an RB-matching in
O(n log n) time, which is optimal.

`

(a) (b)

Fig. 1: (a) A point set with a unique RB-matching, (b) Recursive ham sandwich cuts: first cut is in solid, second-level
cuts are in dashed, and third-level cuts are in dotted lines.

We review some proofs for the existence of a plane perfect matching between R and B:

• Min(R,B): Consider a matching M between R and B which minimizes the total Euclidean length
of the edges. The matching M is plane. To prove this, suppose that two line segments r1b1 and
r2b2 in M intersect. By the triangle inequality, |r1b2|+ |r2b1| < |r1b1|+ |r2b2|. This implies that
by replacing r1b1 and r2b2 in M by r1b2 and r2b1, the total length of the matching is decreased;
which is a contradiction.

• Cut(R,B): The ham sandwich theorem implies that there is a line `, known as a ham sandwich
cut, that splits both R and B exactly in half; if the size of R and B is odd, the line passes through
one of each. Match the two points on ` (if there are any) and recursively solve the problem on each
side of `; the recursion stops when each subset has one red point and one blue point. By matching
these two points in all subsets, a plane perfect matching for P is obtained. See Figure 1(b). A ham
sandwich cut can be computed in O(n) time [32], and hence the running time can be expressed
as the recurrence T (n) = O(n) + 2 · T (bn2 c). Therefore, an RB-matching can be computed in
O(n log n) time.
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• Tangent(R,B): If R and B are separated by a line, we can compute an RB-matching in the
following way. W.l.o.g. assume that R and B are separated by a vertical line `. Let CH(R) and
CH(B) denote the convex hulls ofR andB. Compute the upper tangent rb ofCH(R) andCH(B)
where r ∈ R and b ∈ B. Match r and b, and recursively solve the problem forR−{r} andB−{b};
the recursion stops when the two subsets are empty. In each iteration, all the remaining points are
below the line passing through r and b, thus, the line segments representing a matched pair in the
successor iterations do not cross rb. Therefore, the resulting matching is plane.

Consider a set P of n points where n is even, and a partition {P1, . . . , Pk} of P into k color classes.
Sufficient and necessary conditions for the existence of a colored matching in P follows from the follow-
ing theorem by Sitton [39]:

Theorem 1 (Sitton [39]) Let Kn1,...,nk
be a complete multipartite graph with n vertices, where n1 ≤

· · · ≤ nk. If nk ≤ n1 + · · ·+ nk−1, then Kn1,...,nk
has a matching of size bn2 c.

Aichholzer et al. [4] showed that if Kn1,...,nk
is a geometric graph corresponding to a colored point set

P , then the minimum-weight colored matching of P is non-crossing. Specifically, they extend the proof
of 2-colored point sets to multi-colored point sets:

Theorem 2 (Aichholzer et al. [4]) Let P be a set of colored points in general position in the plane with
|P | even. Then P admits a non-crossing perfect matching such that every edge connects two points of
distinct colors if and only if at most half the points in P have the same color.

3 Packing Plane Matchings into Point Sets
Let P be a set of n points in the plane with n even. In this section we prove lower bounds on the number
of plane matchings that can be packed into K(P ). It is obvious that every point set has at least one plane
matching, because a minimum weight perfect matching in K(P ), denoted by Min(P ), is plane. A trivial
lower bound of 2 (for n ≥ 4) is obtained from a minimum weight Hamiltonian cycle in K(P ), because
this cycle is plane and consists of two edge-disjoint matchings. We consider points in convex position
(Section 3.1), wheel configuration (Section 3.2), and general position (Section 3.3).

3.1 Points in Convex Position
In this section we consider points in convex position. We show that if P is in convex position, n

2 plane
matchings can be packed into K(P ); this bound is tight.

Lemma 1 If P is in convex position, where |P | is even and |P | ≥ 4, then every plane matching in P
contains at least two edges of CH(P ).

Proof: Let M be a plane matching in P . We prove this lemma by induction on the size of P . If |P | = 4,
then |M | = 2. None of the diagonals of P can be in M , thus, the two edges in M belong to CH(P ).
If |P | > 4 then |M | ≥ 3. If all edges of M are edges of CH(P ), then the claim in the lemma holds.
Assume that M contains a diagonal edge pq, where pq is not an edge of CH(P ). Let P1 and P2 be the
sets of points of P on each side of `(p, q) (both including p and q). Let M1 and M2 be the edges of M
in P1 and P2, respectively. It is obvious that P1 (resp. P2) is in convex position and M1 (resp. M2) is
a plane matching in P1 (resp. P2). By the induction hypothesis M1 (resp. M2) contains two edges of
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CH(P1) (resp. CH(P2)). Since CH(P ) = CH(P1) ∪ CH(P2) and |M1 ∩M2| = 1, M contains at
least two edges of CH(P ). 2

Theorem 3 For any set P of n points in convex position in the plane, with n even, the maximum number
of plane matchings that can be packed into K(P ) is n

2 .

Proof: By Lemma 1, every plane matching in P contains at least two edges of CH(P ). On the other
hand, CH(P ) has n edges. Therefore, the number of plane matchings that can be packed into K(P ) is at
most n

2 .
Now we show how to pack n

2 plane matchings into K(P ). Let P = {p0, . . . , pn−1}, and w.l.o.g.
assume that p0, p1, . . . , pn−1 is the radial ordering of the points in P with respect to a fixed point in the
interior of CH(P ). For each pi in the radial ordering, where 0 ≤ i < n

2 , let Mi = {pi+j−1pn+i−j :
j = 1, . . . , n2 } (all indices are modulo n). Informally speaking, Mi is a plane perfect matching obtained
from edge pipi−1 and all edges parallel to pipi−1; see Figure 2. LetM = {Mi : i = 0, . . . , n2 − 1}. The
matchings inM are plane and pairwise edge-disjoint. Thus,M is a set of n

2 plane matchings that can be
packed into K(P ). 2

p0 p1

p2

p3

p4p5

p6

p7

Fig. 2: Points in convex position.

3.2 Points in Wheel Configurations

A point set P of n points is said to be in “regular wheel configuration” in the plane, if n− 1 points of P
are equally spaced on a circle C and one point of P is at the center of C. We introduce a variation of the
regular wheel configuration as follows. Let the point set P be partitioned into X and Y such that |X| ≥ 3
and |X| is an odd number. The points in X are equally spaced on a circle C. For any two distinct points
p, q ∈ X let `(p, q) be the line passing through p and q. Since X is equally spaced on C and |X| is an odd
number, `(p, q) does not contain the center of C. Let H(p, q) and H ′(p, q) be the two half planes defined
by `(p, q) such that H ′(p, q) contains the center of C. Let C ′ =

⋂
p,q∈X H ′(p, q). The points in Y are in

the interior of C ′; see Figure 3(a). For any two points p, q ∈ X , the line segment pq does not intersect the
interior of C ′. The special case when |Y | = 1 is the regular wheel configuration.
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C

C ′

p0

p1

p2

p3

p4
p5

p6

p7

p8

H ′(p3, p3)

H(p3, p8)
C

C ′

pi

pj

H(pi, pj)
H ′(pi, pj)

H(pk, pl)

pk

pl

(a) (b)

Fig. 3: (a) A variation of the regular wheel configuration. (b) Illustration of Lemma 2. The points of A and the edges
of M(A) are in blue, and the points of B and the edges of M(B) are in red.

Lemma 2 Let P be a set of points in the plane where |P | is an even number and |P | ≥ 6. Let {X,Y } be
a partition of the points in P such that |X| is an odd number and |Y | ≤ 2b |P |6 c − 1. If P is in the wheel
configuration described above, then any plane matching in P contains at least two edges of CH(P ).

Proof: Consider a plane matching M of P . It is obvious that CH(P ) = CH(X); we show that M
contains at least two edges of CH(X). Note that |X| = |P |−|Y |, and both |X| and |Y | are odd numbers.
Observe that |X| ≥ 4b |P |6 c+ 1 = 2|Y |+ 3 ≥ 5; which implies that |Y | ≤ |X|−12 − 1. Thus, |X| > |Y |,
and hence there is at least one edge in M with both endpoints in X . Let pipj be the longest such edge.
Recall that C ′ ⊂ H ′(pi, pj). Let A be the set of points of P in H(pi, pj) (including pi and pj), and let A′

be the set of points of P in H ′(pi, pj) (excluding pi and pj). By definition, H(pi, pj)∪ `(pi, pj) does not
contain any point of Y . Thus, A ⊂ X and A is in convex position with |A| ≤ |X|−12 (note that |X| is an
odd number). Let M(A) and M(A′) be the edges of M induced by the points in A and A′, respectively.
Clearly, {M(A),M(A′)} is a partition of the edges of M , and hence M(A) (resp. M(A′)) is a plane
perfect matching for A (resp. A′). We show that each of M(A) and M(A′) contains at least one edge of
CH(X). First we consider M(A). If |A| = 2, then pipj is the only edge in M(A) and it is an edge of
CH(X). Assume that |A| ≥ 4. By Lemma 1, M(A) contains at least two edges of CH(A). On the other
hand each edge of CH(A), except for pipj , is also an edge of CH(X); see Figure 3(b). This implies that
M(A) − {pipj} contains at least one edge of CH(X). Now we consider M(A′). Let X ′ = A′ ∩ X ,
that is, {A,X ′} is a partition of the points in X . Since |A| ≤ |X|−12 , we have |X ′| ≥ |X|+1

2 . Recall that
|Y | ≤ |X|−12 − 1. Thus, |Y | < |X ′|, and hence there is an edge pkpl ∈M(A′) with both pk and pl in X ′.
Let B be the set of points of P in H(pk, pl) (including pk and pl). By definition, H(pk, pl) ∪ `(pk, pl)
does not contain any point of Y . Thus, B ⊂ X and B is in convex position. On the other hand, by the
choice of pipj as the longest edge, A cannot be a subset of B and hence B ⊂ X ′. Let M(B) be the
edges of M(A′) induced by the points in B. We show that M(B) contains at least one edge of CH(X).
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If |B| = 2, then pkpl is the only edge in M(B) and it is an edge of CH(X). Assume that |B| ≥ 4. By
Lemma 1, M(B) contains at least two edges of CH(B). On the other hand, each edge of CH(B), except
for pkpl, is also an edge of CH(X); see Figure 3(b). This implies that M(B)− {pkpl} contains at least
one edge of CH(X). This completes the proof. 2

p0
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Fig. 4: Points in the regular configuration with (a) n = 4k and (b) n = 4k + 2; one of the edges in CH(P ) cannot
be matched.

Theorem 4 For a set P of n ≥ 6 points in the regular wheel configuration in the plane with n even, the
maximum number of plane matchings that can be packed into K(P ) is n

2 − 1.

Proof: In the regular wheel configuration, P is partitioned into a point set X of size n− 1 and a point set
Y of size 1. The points of X are equally spaced on a circle C and the (only) point of Y is the center of
C. By Lemma 2, every plane matching in P contains at least two edges of CH(P ). On the other hand,
CH(P ) has n − 1 edges. Therefore, the number of plane matchings that can be packed into K(P ) is at
most n−1

2 . Since n is an even number and the number of plane matchings is an integer, we can pack at
most n

2 − 1 plane matchings into K(P ).
Now we show how to pack n

2 − 1 plane matchings into K(P ). Let P = {p0, . . . , pn−1}, and w.l.o.g.
assume that pn−1 is the center of C. Let P ′ = P −{pn−1}, and let p0, p1, . . . , pn−2 be the radial ordering
of the points in P ′ with respect to pn−1. For each pi in the radial ordering, where 0 ≤ i ≤ n

2 − 2, let

Ri = {pi+jpi+2d(n−2)/4e−j+1 : j = 1, . . . , d(n− 2)/4e},

and
Li = {pi−jpi−2b(n−2)/4c+j−1 : j = 1, . . . , b(n− 2)/4c}

(all indices are modulo n− 1). Let Mi = Ri ∪Li ∪{pipn−1}; informally speaking, Mi is a plane perfect
matching obtained from edge pipn−1 and edges parallel to pipn−1. See Figure 4(a) for the case where
n = 4k and Figure 4(b) for the case where n = 4k + 2. Let M = {Mi : i = 0, . . . , n2 − 2}. The
matchings inM are plane and pairwise edge-disjoint. Thus,M is a set of n

2 − 1 plane matchings that can
be packed into K(P ). 2
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In the following theorem we use the wheel configuration to show that for any even integer n ≥ 6, there
exists a set P of n points in the plane, such that no more than dn3 e plane matchings can be packed into
K(P ).

Theorem 5 For any even number n ≥ 6, there exists a set P of n points in the plane such that no more
than dn3 e plane matchings can be packed into K(P ).

Proof: The set P of n points is partitioned into X and Y , where |Y | = 2bn6 c− 1 and |X| = n−|Y |. The
points in X are equally spaced on a circle C and the points in Y are in the interior

⋂
p,q∈X H ′(p, q). By

Lemma 2, any plane matching in P contains at least two edges of CH(P ). Since CH(P ) = CH(X),
any plane matching of P contains at least two edges of CH(X). Thus, if M denotes any set of plane
matchings which can be packed into K(P ), we have (note that |X| is odd)

|M| ≤ |X| − 1

2
=
n− 2bn/6c

2
=
n

2
− bn

6
c ≤ n

2
− n− 5

6
≤ dn

3
e.

2

3.3 Points in General Position
In this section we consider the problem of packing plane matchings for point sets in general position (no
three points on a line) in the plane. Let P be a set of n points in general position in the plane, with n even.
LetM(P ) denote the maximum number of plane matchings that can be packed intoK(P ). As mentioned
earlier, a trivial lower bound of 2 (when n ≥ 4) is obtained from a minimum weight Hamiltonian cycle,
which is plane and consists of two edge-disjoint perfect matchings.

In this section we show that at least blog2 nc − 1 plane matchings can be packed into K(P ). As a
warm-up, we first show that if n is a power of two, then log2 n plane matchings can be packed into K(P ).
Then we extend this result to get a lower bound of blog2 nc−1 for every point set with an even number of
points. We also show that if n ≥ 8, then at least three plane matchings can be packed into K(P ), which
improves the result for n = 10, 12, and 14. Note that, as a result of Theorem 5, there exists a set of n = 6
points such that no more than dn3 e = 2 plane matchings can be packed into K(P ). First consider the
following observation.

Observation 1 Let P = {P1, . . . , Pk} be a partition of the point set P , such that |Pi| is even and
CH(Pi) ∩ CH(Pj) = ∅ for all 1 ≤ i, j ≤ k where i 6= j. Let i be an index such that, M(Pi) =
min{M(Pj) : 1 ≤ j ≤ k}. Then, M(P ) ≥M(Pi).

Lemma 3 For a set P of n points in general position in the plane, where n is a power of 2, at least log2 n
plane matchings can be packed into K(P ).

Proof: We prove this lemma by induction. The statement of the lemma holds for the base case, where
n = 2. Assume that n ≥ 4. Recall that M(P ) denotes the maximum number of plane matchings
that can be packed into K(P ). W.l.o.g. assume that a vertical line ` partitions P into sets R and B,
each of size n

2 . By the induction hypothesis, M(R),M(B) ≥ log2 (n
2 ). By Observation 1, M(P ) ≥

min{M(R),M(B)} ≥ log2 (n
2 ). That is, by pairing a matching MR in R with a matching MB in B we

get a plane matching MP in K(P ), such that each edge in MP has both endpoints in R or in B. If we
consider the points in R as red and the points in B as blue, Cut(R,B) (see Section 2.2) gives us a plane
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perfect matching M ′P in K(P ), such that each edge in M ′P has one endpoint in R and one endpoint in
B. That is M ′P ∩MP = ∅. Therefore, we obtain one more plane matching in K(P ), which implies that
M(P ) ≥ log2 (n

2 ) + 1 = log2 n. 2

Let R and B be two point sets which are separated by a line. A crossing tangent between R and B is a
line l touching CH(R) and CH(B) such that R and B lie on different sides of l. Note that l contains a
point r ∈ R, a point b ∈ B, and consequently the line segment rb; we say that l is subtended from rb. It
is obvious that there are two (intersecting) crossing tangents between R and B; see Figure 5.

`

rm

bm

b1

c

r1

ll′

` bm

b1

r

ll′

(a) (b)

Fig. 5: (a) The crossing tangents intersect at a point c /∈ P : R and B are sorted clockwise around c, (b) The crossing
tangents intersect at a point r ∈ R: B is sorted clockwise around r. M1 and M2 are shown by green and gray line
segments.

Lemma 4 For a set P of n ≥ 8 points in general position in the plane with n even, at least three plane
matchings can be packed into K(P ).

Proof: We describe how to extract three edge-disjoint plane matchings, M1,M2,M3, from K(P ). Let `
be a vertical line which splits P into sets R and B, each of size n

2 . Consider the points in R as red and the
points in B as blue. We differentiate between two cases: (a) n = 4k and (b) n = 4k+ 2, for some integer
k > 1.

In case (a), both R and B have an even number of points. Let M1(R) and M2(R) (resp. M1(B) and
M2(B)) be two edge-disjoint plane matchings in R (resp. B) obtained by a minimum length Hamiltonian
cycle in R (resp. B). Let M1 = M1(R) ∪M1(B) and M2 = M2(R) ∪M2(B). Clearly M1 and M2 are
edge-disjoint plane matchings for P . Let M3 = Cut(R,B). It is obvious that M3 is edge-disjoint from
M1 and M2, which completes the proof in the first case.

In case (b), bothR andB have an odd number of points and we cannot get a perfect matching in each of
them. Let l and l′ be the two crossing tangents betweenR andB, subtended from rb and r′b′, respectively.
We differentiate between two cases: (i) l and l′ intersect in the interior of rb and r′b′, (ii) l and l′ intersect
at an endpoint of both rb and r′b′; see Figure 5.

• In case (i), let c be the intersection point; see Figure 5(a). Let r1, r2, . . . , rm and b1, b2, . . . , bm
be the points of R and B, respectively, sorted clockwise around c, where m = n

2 , r1 = r, rm =
r′, b1 = b, bm = b′. Consider the Hamiltonian cycle H = {riri+1 : 1 ≤ i < m} ∪ {bibi+1 :
1 ≤ i < m} ∪ {r1b1, rmbm}. Let M1 and M2 be the two edge-disjoint matchings obtained from
H . Note that r1b1 and rmbm cannot be in the same matching, thus, M1 and M2 are plane. Let
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M3 = Tangent(R,B). As described in Section 2.2, M3 is a plane matching for P . In order to
prove that M3 ∩ (M1 ∪M2) = ∅, we show that rb and r′b′—which are the only edges in M1 ∪M2

that connect a point inR to a point inB—do not belong toM3. Note that Tangent(R,B) iteratively
selects an edge which has the same number of red and blue points below its supporting line, whereas
the supporting lines of rb and r′b′ have different numbers of red and blue points below them. Thus
rb and r′b′ are not considered by Tangent(R,B). Therefore M3 is edge-disjoint from M1 and M2.

• In case (ii), w.l.o.g. assume that l and l′ intersect at the red endpoint of rb and r′b′, i.e., r = r′;
See Figure 5(b). Let R′ = R \ {r} and B′ = B ∪ {r}. Note that both R′ and B′ have an
even number of points and |R′|, |B′| ≥ 4. Let M1(R′) and M2(R′) be two edge-disjoint plane
matchings in R′ obtained by a minimum length Hamiltonian cycle in R′. Let b1, b2, . . . , bm be the
points of B sorted clockwise around r, where m = n

2 , b1 = b, bm = b′. Consider the Hamiltonian
cycle H(R′) = {bibi+1 : 1 ≤ i < m} ∪ {rb1, rbm}. Let M1(B′) and M2(B′) be the two
edge-disjoint plane matchings in B′ obtained from H(B′). Let M1 = M1(R′) ∪ M1(B′) and
M2 = M2(R′) ∪M2(B′). Clearly M1 and M2 are edge-disjoint plane matchings in P . Let M3 =
Tangent(R,B). As described in case (i), M3 is a plane matching in P and M3 ∩ (M1 ∪M2) = ∅.
Therefore, M3 is edge-disjoint from M1 and M2.

2

As a direct consequence of Lemma 3 and Lemma 4 we have the following theorem.

Theorem 6 For a set P of n = 2i ·m points in general position in the plane with n even, m ≥ 4, i ≥ 0 ,
at least i+ 2 plane matchings can be packed into K(P ).

Proof: If i = 0, then a minimum weight Hamiltonian cycle in K(P ) consists of two plane matchings.
Assume i ≥ 1. Partition P by vertical lines, into 2i−1 point sets, each of size 2m. By Lemma 4, at least
three plane matchings can be packed into each set. Considering these sets as the base cases in Lemma 3,
we obtain i− 1 plane matchings between these sets. Thus, in total, i+ 2 plane matchings can be packed
into K(P ). 2

Theorem 7 For a set P of n points in general position in the plane, with n even, at least blog2 nc − 1
plane matchings can be packed into K(P ).

Proof: If n is a power of two, then by Lemma 3 at least log2 n ≥ blog2 nc − 1 matchings can be packed
into K(P ). Assume n is not a power of two. We describe how to pack a setM of blog2 nc − 1 plane
perfect matchings into K(P ). The construction consists of the following three main steps which we will
describe in detail.

1. Building a binary tree T .

2. Assigning the points of P to the leaves of T .

3. ExtractingM from P using internal nodes of T .
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1. Building the tree T. In this step we build a binary tree T such that each node of T stores an even
number, and each internal node of T has a left and a right child. For an internal node u, let left(u) and
right(u) denote the left child and the right child of u, respectively. Given an even number n, we build T
in the following way:

• The root of T stores n.

• If a node of T stores 2, then that node is a leaf.

• For a node u storing m, with m even and m ≥ 4, we store the following even numbers into left(u)
and right(u):

– If m is divisible by 4, we store m
2 in both left(u) and right(u); see Figure 6(a).

– If m is not divisible by 4 and u is the root or the left child of its parent then we store 2bm4 c in
left(u) and m− 2bm4 c in right(u); see Figure 6(b).

– If m is not divisible by 4 and u is the right child of its parent then we store m − 2bm4 c in
left(u) and 2bm4 c in right(u); see Figure 6(c).

Note that in the last two cases—where m is not divisible by four—the absolute difference between
the values stored in left(u) and right(u) is exactly 2. See Figure 7.

m
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2bm
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c m-2bm
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2bm
4
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4
c

m

u

(a) (b) (c)

Fig. 6: (a) m is divisible by four, (b) m is not divisible by four and u is a left child, and (c) m is not divisible by four
and u is a right child.

2. Assigning the points to the leaves of the tree. In this step we describe how to assign the points of P , in
pairs, to the leaves of T . We may assume without loss of generality that no two points of P have the same
x-coordinate. Sort the points of P in a increasing order of their x-coordinate. Assign the first two points
to the leftmost leaf, the next two points to the second leftmost leaf, and so on. Note that T has n

2 leaves,
and hence all the points of P are assigned to the leaves of T . See Figure 7.

3. Extracting the matchings. Let L be the number of edges in a shortest path from the root to any leaf in
T ; in Figure 7, L = 3. For an internal node u ∈ T , let Tu be the subtree rooted at u. Let Lu andRu be the
set of points assigned to the left and right subtrees of Tu, respectively, and let Pu = Lu ∪ Ru. Consider
the points in Lu as red and the points in Ru as blue. Since the points in Lu have smaller x-coordinates
than the points in Ru, we say that Lu and Ru are separated by a vertical line `(u). For each internal node
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u where u is in level 0 ≤ i < L in T—assuming the root is in level 0—we construct a plane perfect
matching Mu in Pu in the following way. Let m be the even number stored at u.

• If m is divisible by 4 (Figure 6(a)), then let Mu = Min(Lu, Ru); see Section 2.2. Since |Lu| =
|Ru|, Mu is a plane perfect matching for Pu. See vertices u2, u3 in Figure 7.

• Ifm is not divisible by 4 and u is the root or a left child (Figure 6(b)), then |Ru|−|Lu| = 2. Let a, b
be the two points assigned to the rightmost leaf in Tu, and let Mu = {ab}∪Min(Lu, Ru − {a, b}).
Since |Lu| = |Ru − {a, b}|, Mu is a perfect matching in Pu. In addition, a and b are the two
rightmost points in Pu, thus, ab does not intersect any edge in Min(Lu, Ru − {a, b}), and hence
Mu is plane. See vertices u0, u1, u5 in Figure 7.

• If m is not divisible by 4 and u is a right child (Figure 6(c)), then |Lu| − |Ru| = 2. Let a, b be the
two points assigned to the leftmost leaf in Tu and let Mu = {ab} ∪Min(Lu − {a, b}, Ru). Since
|Lu − {a, b}| = |Ru|, Mu is a perfect matching in Pu. In addition, a and b are the two leftmost
points in Pu, thus, ab does not intersect any edge in Min(Lu − {a, b}, Ru), and hence Mu is plane.
See vertices u4, u6 in Figure 7.

For each i, where 0 ≤ i < L, let S(i) be the set of vertices of T in level i; see Figure 7. For each level
i let Mi =

⋃
u∈S(i)Mu. LetM = {Mi : 0 ≤ i < L}. In the rest of the proof, we show thatM contains

blog2 nc − 1 edge-disjoint plane matchings in P .

Claim 1: For each i, where 0 ≤ i < L,Mi is a plane perfect matching in P . Note that if u is the root of
the tree, then Pu = P . In addition, for each internal node u (including the root), {Lu, Ru} is a partition of
the point set Pu. This implies that in each level i of the tree, where 0 ≤ i < L, we have P =

⋃
u∈S(i) Pu.

Moreover, the points in P are assigned to the leaves of T in non-decreasing order of their x-coordinate.
Thus, Pi = {Pu : u ∈ S(i)} is a partition of the point set P ; the sets Pu with u ∈ S(i) are separated by
vertical lines; see Figure 7. Therefore, Mi is a perfect plane matching in P ; which proves the claim.

Claim 2: For all Mi,Mj ∈ M, where 0 ≤ i, j < L and i 6= j, Mi ∩Mj = ∅. In order to prove that
Mi andMj are edge-disjoint, we show that for each pair of distinct internal nodes u and v, Mu∩Mv = ∅.
If u and v are in the same level, then Pu and Pv are separated by `(u), thus, Mu and Mv do not share any
edge. Thus, assume that u ∈ S(i) and v ∈ S(j) such that 0 ≤ i, j < L, i 6= j, and w.l.o.g. assume that
i < j. If v /∈ Tu, then Pu and Pv are separated by line `(w), where w is the lowest common ancestor
of u and v; this implies that Mu and Mv do not share any edge. Therefore, assume that v ∈ Tu, and
w.l.o.g. assume that v is in the left subtree of Tu. Thus, Pv—and consequently Mv—is to the left of `(u).
The case where v is in the right subtree of Tu is symmetric. Let m ≥ 4 be the number stored at u. We
differentiate between three cases:

• If m is divisible by 4, then all the edges in Mu cross `(u), while the edges in Mv are to the left of
`(u). This implies that Mu and Mv are disjoint.

• If m is not divisible by 4 and u is the root or a left child, then all the edges of Mu cross `(u), except
the rightmost edge ab which is to the right of `(u). Since Mv is to the left of `(u), it follows that
Mu and Mv are disjoint.
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Fig. 7: The points in P are assigned, in pairs, to the leaves of T , from left to right. The point set P with the edge-
disjoint plane matchings is shown as well. M0 contains the bold red edge and the red edges crossing `(u0). M1

contains the bold green edge and the green edges crossing `(u1), `(u2). M2 contains the bold blue edges and the blue
edges crossing `(u3), `(u4), `(u5), `(u6).

• If m is not divisible by 4 and u is a right child, then all the edges of Mu cross `(u), except the
leftmost edge ab. If a, b /∈ Pv , then ab /∈Mv , and hence Mu and Mv are disjoint. If a, b ∈ Pv then
v is the left child of its parent and all the edges in Mv cross `(v) (possibly except one edge which
is to the right of `(v)), while ab is to the left of `(v). Therefore Mu and Mv do not share any edge.
This completes the proof of the claim.

Claim 3: For every two nodes u and v in the same level of T which store m and m′, respectively,
|m−m′| ≤ 2.

We prove the claim inductively for each level i of T . For the base case, where i = 1: (a) if n is divisible
by four, then both u and v store n

2 and the claim holds, (b) if n is not divisible by four then u stores 2bn4 c
and v stores n− 2bn4 c; as 0 ≤ n− 2bn4 c − 2bn4 c ≤ 2, the claim holds for i = 1. Now we show that if the
claim is true for the ith level of T , then the claim is true for the (i+ 1)th level of T . Let u and v, storing
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m and m′, respectively, be in the ith level of T . By the induction hypothesis, the claim holds for the ith
level, i.e., |m−m′| ≤ 2. We prove that the claim holds for the (i + 1)th level of T , i.e., for the children
of u and v. Since m and m′ are even numbers, |m −m′| ∈ {0, 2}. If |m −m′| = 0, then m = m′, and
by a similar argument as in the base case, the claim holds for the children of u and v. If |m −m′| = 2,
then w.l.o.g. assume that m′ = m+ 2. Let α be the smallest number and β be the largest number stored
at the children of u and v (which are at the (i + 1)th level). We show that β − α ≤ 2. It is obvious that
α = 2bm4 c and β = m′ − 2bm′

4 c. Thus,

β − α = m′ − 2bm
′

4
c − 2bm

4
c

= m+ 2− 2bm+ 2

4
c − 2bm

4
c (1)

Now, we differentiate between two cases, where m = 4k or m = 4k+ 2. If m = 4k, then by Equation 1,

β − α = 4k + 2− 2b4k + 2

4
c − 2b4k

4
c

= 4k + 2− 2k − 2k

= 2.

If m = 4k + 2, then by Equation 1,

β − α = 4k + 4− 2b4k + 4

4
c − 2b4k + 2

4
c

= 4k + 4− 2(k + 1)− 2k

= 2

which completes the proof of the claim.

Claim 4: L ≥ blog2 nc − 1.
It follows from Claim 3 that all the leaves of T are in the last two levels. Since T has n

2 leaves, T has
n− 1 nodes. Recall that L is the number of edges in a shortest path from the root to any leaf in T . Thus,
L ≥ h− 1, where h is the height of T . To give a lower bound on h, one may assume that the last level of
T is also full, thus,

n− 1 ≤ 20 + 21 + 22 + · · ·+ 2h ≤ 2h+1 − 1

and hence, h ≥ log2 n−1. Therefore, L ≥ h−1 ≥ log2 n−2. Since L is an integer and n is not a power
of two, L ≥ dlog2 ne − 2 = blog2 nc − 1; which proves the claim.

Claim 1 and Claim 2 imply thatM contains L edge-disjoint plane perfect matchings. Claim 4 implies
that L ≥ blog2 nc − 1, which proves the statement of the theorem. 2



Packing Plane Matchings 135

3.4 Non-crossing Plane Matchings
In this section we consider the problem of packing plane matchings intoK(P ) such that any two different
matchings in the packing are non-crossing. Two edge-disjoint plane matchings M1 and M2 are non-
crossing (or compatible), if no edge in M1 crosses any edge in M2. For a set P of n points in general
position in the plane, with n even, we give tight lower and upper bounds on the number of pairwise
non-crossing plane perfect matchings that can be packed into K(P ).

Lemma 5 For a set P of n points in general position in the plane, with n even, at most five pairwise
non-crossing plane matchings can be packed into K(P ).

Proof: Let {M1,M2, . . . ,Mm} be any maximal set of non-crossing edge-disjoint plane matchings in
K(P ). Let M = M1 ∪M2 · · · ∪Mm, and let G be the induced subgraph of K(P ) by M . It is obvious
that G is an m-regular graph. Since M1, . . . ,Mm are plane and pairwise non-crossing, G is an m-regular
plane graph. It is well known that every plane graph has a vertex of degree at most 5. Thus, G has a
vertex of degree at most five and hence m ≤ 5; which implies at most five pairwise non-crossing plane
matchings can be packed into K(P ). 2

Fig. 8: A point set with five non-crossing edge-disjoint plane perfect matchings.

Figure 8 shows a 5-regular geometric graph on a set of 12 points in the plane which contains five non-
crossing edge-disjoint plane matchings. In [25], the authors showed how to generate an infinite family
of 5-regular planar graphs using the graph in Figure 8. By an extension of the five matchings shown in
Figure 8, five non-crossing matchings for this family of graphs is obtained. Thus, the bound provided by
Lemma 5 is tight.

It is obvious that if P contains at least four points, the minimum length Hamiltonian cycle in K(P )
contains two non-crossing edge-disjoint plane matchings. In the following lemma we show that there
exist point sets which contain at most two non-crossing edge-disjoint plane matchings.

Lemma 6 For a set P of n ≥ 4 points in convex position in the plane, with n even, at most two pairwise
non-crossing plane matchings can be packed into K(P ).
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Proof: The proof is by contradiction. Consider three pairwise non-crossing plane matchings M1, M2,
M3 in K(P ). Let G be the induced subgraph of K(P ) by M1 ∪M2 ∪M3. Note that G is a 3-regular
plane graph. Moreover, G is an outerplanar graph. It is well known that every outerplanar graph has a
vertex of degree at most 2. This contradicts that every vertex in G has degree 3. 2

We conclude this section with the following theorem.

Theorem 8 For a set P of n ≥ 4 points in general position in the plane, with n even, at least two and at
most five pairwise non-crossing plane matchings can be packed into K(P ). These bounds are tight.

4 Matching Removal Persistency
In this section we define the matching persistency of a graph. A graph G is matching persistent if by
removing any perfect matching M from G, the resulting graph, G − M , has a perfect matching. We
define the matching persistency of G, denoted by mp(G), as the size of the smallest set M of edge-
disjoint perfect matchings that can be removed from G such that G − M does not have any perfect
matching. In other words, if mp(G) = k, then

1. by removing an arbitrary set of k − 1 edge-disjoint perfect matchings from G, the resulting graph
still contains a perfect matching, and

2. there exists a set of k edge-disjoint perfect matchings such that by removing these matchings from
G, the resulting graph does not have any perfect matching.

In particular, G is matching persistent iff mp(G) ≥ 2.

u v

x H

(a) (b)

Fig. 9: (a) By removing any matching (red, green, or blue) from Kn, at most two paths between u and v disappear.
(b) The edges of H are partitioned to n

2
perfect matchings, thus, Kn −H does not have any perfect matching.

Lemma 7 Let Kn be a complete graph with n vertices, where n is even, and letM be a set of k edge-
disjoint perfect matchings in Kn. Then, Kn−M is an (n− 1− k)-regular graph which is (n− 1− 2k)-
connected.

Proof: The regularity is trivial, because Kn is (n− 1)-regular and every vertex has degree k inM, thus,
Kn −M is an (n− 1− k)-regular graph. Now we prove the connectivity. Consider two vertices u and v
in V (Kn). There are n− 1 many edge-disjoint paths between u and v in Kn: n− 2 many paths of length
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two of the form (u, x, v), where x ∈ V (Kn)−{u, v} and a path (u, v) of length one; see Figure 9(a). By
removing any matching inM from Kn, at most two paths disappear, because u and v have degree one in
each matching. Thus in G−M, there are (n− 1− 2k) many edge-disjoint paths between u and v, which
implies that Kn −M is (n− 1− 2k)-connected. 2

Lemma 8 Let n to be an even number. Then, mp(Kn) ≥ n
2 .

Proof: We show that by removing any set M of k edge-disjoint perfect matchings from Kn, where
0 ≤ k < n

2 , the resulting graph still has a perfect matching. By Lemma 7, the graph Kn −M is an
(n− 1− k)-regular graph which is (n− 1− 2k)-connected. Since k < n

2 , Kn−M is a connected graph
and the degree of each vertex is at least n

2 . Thus, by a result of Dirac [17], Kn −M has a Hamiltonian
cycle and consequently a perfect matching. Therefore, by removing k arbitrary perfect matchings from
Kn, where k < n

2 , the resulting graph still has a perfect matching, which proves the claim.
2

Lemma 9 If n ≡ 0 mod 4, then mp(Kn) ≥ n
2 + 1.

Proof: By Lemma 8, mp(Kn) ≥ n
2 . LetM be any set of n

2 edge-disjoint perfect matchings in Kn. We
will show that Kn−M contains a perfect matching. If Kn−M contains a Hamiltonian cycle then it has
a perfect matching and we are done. Assume Kn −M does not contain any Hamiltonian cycle, while
it is a (n

2 − 1)-regular graph. A result of Cranston and O [16] implies that Kn −M is disconnected. In
order for Kn −M to be (n

2 − 1)-regular each component has to have at least n
2 vertices. Thus, Kn −M

consists of two disjoint copies of Kn
2

. Each of these components has a Hamiltonian cycle, and hence a
perfect matching. Therefore, the union of these two components has a perfect matching. 2

Theorem 9 If n ≡ 2 mod 4, then mp(Kn) = n
2 .

Proof: By Lemma 8, mp(Kn) ≥ n
2 . In order to complete the proof, we show that mp(Kn) ≤ n

2 . Let
H = Kn

2 ,n2
be a complete bipartite subgraph of Kn. Note that n

2 is an odd number and H is an n
2 -regular

graph. According to Hall’s marriage theorem [23], for k ≥ 1, every k-regular bipartite graph contains a
perfect matching [24]. Since by the iterative removal of perfect matchings from H the resulting graph is
still regular, the edges of H can be partitioned into n

2 perfect matchings; see Figure 9(a). It is obvious that
Kn − H consists of two connected components of odd size. Thus, by removing the n

2 matchings in H ,
the resulting graph, Kn −H , does not have any perfect matching. This proves the claim. 2

Theorem 10 If n ≡ 0 mod 4, then mp(Kn) = n
2 + 1.

Proof: By Lemma 9, mp(Kn) ≥ n
2 + 1. In order to complete the proof, we show that mp(Kn) ≤ n

2 + 1.
Assume n = 4k. Let A = {a1, . . . , a2k−1} and B = {b1, . . . , b2k+1} be a partition of vertices of Kn.
Let Mi be a matching consisting of the edges bibi+1 and ajbj+i+1, where + is modulo 2k+ 1 and j runs
from 1 to 2k− 1. It is easy to see that M1, . . . ,M2k+1 are disjoint perfect matchings, and after removing
them we have a complete graph on A and a graph on B, which are disjoint. Since each of A and B has an
odd number of points, there is no more perfect matching. This proves the claim. 2

In the rest of this section we consider plane matching removal from geometric graphs.
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Let P be a set of n points in general position in the plane, with n even. Given a geometric graph G on
P , we say that G is plane matching persistent if by removing any plane perfect matching M from G, the
resulting graph, G −M , has a plane perfect matching. We define the plane matching persistency of G,
denoted by pmp(G) as the size of the smallest setM of edge-disjoint plane perfect matchings that can
be removed from G such that G−M does not have any plane perfect matching. In particular, G is plane
matching persistent iff pmp(G) ≥ 2.

Aichholzer et al. [4] and Perles (see [29]) showed that by removing any set of at most n
2 − 1 edges

from K(P ), the resulting graph has a plane perfect matching. This bound is tight [4]; that is, there exists
a point set P such that by removing a set H of n

2 edges from K(P ) the resulting graph does not have any
plane perfect matching. In the examples provided by [4], the n

2 edges in H form a connected component
which has n

2 + 1 vertices.
Thus, one may think if the removed edges are disjoint, it may be possible to remove more than n

2 − 1
edges while the resulting graph has a plane perfect matching. In the following lemma we show that by
removing any plane perfect matching, i.e., a set of n

2 disjoint edges, from K(P ), the resulting graph still
has a perfect matching.

Lemma 10 Let P be a set of n points in general position in the plane with n even, then pmp(K(P )) ≥ 2.

Proof: Let M be any plane perfect matching in K(P ). Assign n
2 distinct colors to the points in P such

that both endpoints of every edge in M have the same color. By Theorem 2, P has a plane colored
matching, say M ′. Since both endpoints of every edge in M have the same color while the endpoints of
every edge in M ′ have distinct colors, M and M ′ are edge-disjoint. Therefore, by removing any plane
perfect matching from K(P ), the resulting graph still has a plane perfect matching, which implies that
pmp(K(P )) ≥ 2. 2

Theorem 11 For a set P of n ≥ 4 points in convex position in the plane with n even, pmp(K(P )) = 2.

Proof: By Lemma 10, pmp(K(P )) ≥ 2. In order to prove the theorem, we need to show that pmp(K(P )) ≤
2. Let M1 and M2 be two edge-disjoint plane matchings obtained from CH(P ). By Lemma 1, any plane
perfect matching inK(P ) contains at least two edges ofCH(P ), whileK(P )−{M1∪M2} does not have
convex hull edges, and hence does not have any plane perfect matching. Therefore, pmp(K(P )) ≤ 2. 2

Observation 2 The union of two edge-disjoint perfect matchings in any graph is a set of even cycles.

Lemma 11 There exists a point set P in general position such that pmp(K(P )) ≥ 3.

Proof: We prove this lemma by providing an example. Figure 10(a) shows a set P = {a1, . . . , an,
b1, . . . , bn, c1, . . . , cn} of 3n points in general position, where n is an even number. In order to prove
that pmp(K(P )) ≥ 3, we show that by removing any two edge-disjoint plane matchings from K(P ), the
resulting graph still has a plane perfect matching. Let M1 and M2 be any two plane perfect matchings in
K(P ). LetG be the subgraph ofK(P ) induced by the edges inM1∪M2. Note thatG is a 2-regular graph
and by Observation 2 does not contain any odd cycle. For each 1 ≤ i ≤ n, let ti be the triangle which is
defined by the three points ai, bi, and ci. Let T be the set of these n (nested) triangles. Since G does not
have any odd cycle, for each ti ∈ T , at least one edge of ti is not inG. LetM3 be the matching containing
an edge ei from each ti ∈ T such that ei /∈ G. See Figure 10(b). Now we describe how to complete M3,
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i.e., complete it to a perfect matching. Partition the triangles in T into n
2 pairs of consecutive triangles. For

each pair (ti, ti+1) of consecutive triangles we complete M3 locally—on ai, bi, ci, ai+1, bi+1, ci+1—in
the following way. Let ti = (ai, bi, ci) and ti+1 = (ai+1, bi+1, ci+1). See Figure 10(c). W.l.o.g. assume
that M3 contains aibi and ai+1ci+1, that is aibi /∈ G and ai+1ci+1 /∈ G. If cibi+1 /∈ G, then we complete
M3 by adding cibi+1. If cibi+1 ∈ G, then ai+1bi+1 /∈ G or ci+1bi+1 /∈ G because bi+1 has degree two in
G. W.l.o.g. assume that ai+1bi+1 /∈ G. Then we modify M3 by removing ai+1ci+1 and adding ai+1bi+1.
Now, if cici+1 /∈ G, then we complete M3 by adding cici+1. If cici+1 ∈ G, then by Observation 2,
bi+1ci+1 /∈ G. We modify M3 by removing ai+1bi+1 and adding bi+1ci+1. At this point, since cibi+1

and cici+1 are in G, ciai+1 /∈ G and we complete M3 by adding ciai+1. 2

a1

b1 c1

an

bn cn

a1

b1 c1

an

bn cn

ai

ai+1

bi

bi+1

ci

ci+1

(a) (b) (c)

Fig. 10: (a) Set P of 3n points in general position. (b) M3 contains one edge from each triangle. (c) Locally
converting M3 to a perfect matching, for ti and ti+1.

5 Conclusion
We considered the problem of packing edge-disjoint plane perfect matchings into a set P of n points in
the plane. If P is in general position, we showed how to pack blog2 nc − 1 matchings. We also looked at
some special cases and variants of this problem. We believe that the number of such matchings is linear.
A natural open problem is to improve either the provided lower bound or the trivial upper bound of n− 1,
where n > 6. Another problem is to provide point sets with large plane matching persistency.
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