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In this article, we introduce the notion of the double competition multigraph of a digraph. We give characterizations of
the double competition multigraphs of arbitrary digraphs, loopless digraphs, reflexive digraphs, and acyclic digraphs
in terms of edge clique partitions of the multigraphs.
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1 Introduction
The competition graph of a digraph is defined to be the intersection graph of the family of the out-
neighborhoods of the vertices of the digraph (see [6] for intersection graphs). A digraph D is a pair
(V (D), A(D)) of a set V (D) of vertices and a set A(D) of ordered pairs of vertices, called arcs. An arc
of the form (v, v) is called a loop. For a vertex x in a digraph D, we denote the out-neighborhood of x in
D byN+

D (x) and the in-neighborhood of x inD byN−D (x), i.e.,N+
D (x) := {v ∈ V (D) | (x, v) ∈ A(D)}

and N−D (x) := {v ∈ V (D) | (v, x) ∈ A(D)}. A graph G is a pair (V (G), E(G)) of a set V (G) of ver-
tices and a set E(G) of unordered pairs of vertices, called edges. The competition graph of a digraph D
is the graph which has the same vertex set as D and has an edge between two distinct vertices x and y if
and only if N+

D (x) ∩ N+
D (y) 6= ∅. R. D. Dutton and R. C. Brigham [3] and F. S. Roberts and J. E. Steif

[8] gave characterizations of competition graphs by using edge clique covers of graphs. The notion of
competition graphs was introduced by J. E. Cohen [2] in 1968 in connection with a problem in ecology,
and several variants and generalizations of competition graphs have been studied.

In 1987, D. D. Scott [11] introduced the notion of double competition graphs as a variant of the notion
of competition graphs. The double competition graph (or the competition-common enemy graph or the
CCE graph) of a digraph D is the graph which has the same vertex set as D and has an edge between two
distinct vertices x and y if and only if both N+

D (x) ∩ N+
D (y) 6= ∅ and N−D (x) ∩ N−D (y) 6= ∅ hold. See

[4, 5, 10, 12] for recent results on double competition graphs.
A multigraphM is a pair (V (M), E(M)) of a set V (M) of vertices and a multisetE(M) of unordered

pairs of vertices, called edges. Note that, in our definition, multigraphs have no loops. We may consider
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a multigraph M as the pair (V (M),mM ) of the vertex set V (M) and the nonnegative integer-valued
function mM :

(
V
2

)
→ Z≥0 on the set

(
V
2

)
of all unordered pairs of V where mM ({x, y}) is defined to be

the number of multiple edges between the vertices x and y in M . The notion of competition multigraphs
was introduced by C. A. Anderson, K. F. Jones, J. R. Lundgren, and T. A. McKee [1] in 1990 as a variant
of the notion of competition graphs. The competition multigraph of a digraph D is the multigraph which
has the same vertex set as D and has mxy multiple edges between two distinct vertices x and y, where
mxy is the nonnegative integer defined by mxy = |N+

D (x) ∩ N+
D (y)|. See [9, 13] for recent results on

competition multigraphs.
In this article, we introduce the notion of the double competition multigraph of a digraph, and we give

characterizations of the double competition multigraphs of arbitrary digraphs, loopless digraphs, reflexive
digraphs, and acyclic digraphs in terms of edge clique partitions of the multigraphs.

2 Main Results
We define the double competition multigraph of a digraph as follows.

Definition. Let D be a digraph. The double competition multigraph of D is the multigraph which has the
same vertex set as D and has mxy multiple edges between two distinct vertices x and y, where mxy is the
nonnegative integer defined by

mxy = |N+
D (x) ∩N+

D (y)| · |N−D (x) ∩N−D (y)|,

i.e., the multigraph M defined by V (M) = V (D) and mM ({x, y}) = mxy .

Recall that a clique of a multigraph M is a set of vertices of M which are pairwise adjacent. We
consider the empty set ∅ as a clique of any multigraph for convenience. A multiset is also called a family.
An edge clique partition of a multigraph M is a family F of cliques of M such that any two distinct
vertices x and y are contained in exactly mM ({x, y}) cliques in the family F . For a positive integer n, let
[n] denote the set {1, 2, . . . , n}.
Theorem 1. Let M be a multigraph with n vertices. Then, M is the double competition multigraph of
an arbitrary digraph if and only if there exist an ordering (v1, . . . , vn) of the vertices of M and a double
indexed edge clique partition {Sij | i, j ∈ [n]} of M such that the following condition holds:

(I) for any i, j ∈ [n], if |Ai ∩Bj | ≥ 2, then Ai ∩Bj = Sij ,

where Ai and Bj are the sets defined by

Ai = Si∗ ∪ T+
i , Si∗ :=

⋃
p∈[n]

Sip, T+
i := {vb | a, b ∈ [n], vi ∈ Sab}, (1)

Bj = S∗j ∪ T−j , S∗j :=
⋃

q∈[n]

Sqj , T−j := {va | a, b ∈ [n], vj ∈ Sab}. (2)

Proof: First, we show the only-if part. Let M be the double competition multigraph of an arbitrary
digraph D. Let (v1, . . . , vn) be an ordering of the vertices of D. For i, j ∈ [n], we define

Sij := {vk ∈ V (D) | (vi, vk), (vk, vj) ∈ A(D)}. (3)
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Then Sij is a clique of M . Let F be the family of Sij’s whose size is at least two, i.e.,

F := {Sij | i, j ∈ [n], |Sij | ≥ 2}. (4)

By the definition of a double competition multigraph, F is an edge clique partition of M .
We show that the condition (I) holds. Fix i and j in [n] and let Ai and Bj be sets as defined in (1) and

(2). Since Sij ⊆ Ai and Sij ⊆ Bj , it holds that Sij ⊆ Ai ∩ Bj . Now we assume that |Ai ∩ Bj | ≥ 2
and take any vertex vk ∈ Ai ∩ Bj . There are four cases for vk arising from the definitions of Ai and Bj

as follows: (i) vk ∈ Si∗ ∩ S∗j ; (ii) vk ∈ Si∗ ∩ T−j ; (iii) vk ∈ T+
i ∩ S∗j ; (iv) vk ∈ T+

i ∩ T
−
j . To show

Ai ∩Bj ⊆ Sij , we will check that vk ∈ Sij for each case.

case (i): Since vk ∈ Si∗, there exists p ∈ [n] such that vk ∈ Sip. Since vk ∈ S∗j , there exists q ∈ [n]
such that vk ∈ Sqj . By (3), vk ∈ Sip implies (vi, vk), (vk, vp) ∈ A(D), and vk ∈ Sqj implies
(vq, vk), (vk, vj) ∈ A(D). Therefore we have (vi, vk), (vk, vj) ∈ A(D), which implies vk ∈ Sij .

case (ii): Since vk ∈ Si∗, there exists p ∈ [n] such that vk ∈ Sip. Since vk ∈ T−j , there exists b ∈ [n]
such that vj ∈ Skb. By (3), vk ∈ Sip implies (vi, vk), (vk, vp) ∈ A(D), and vj ∈ Skb implies
(vk, vj), (vj , vb) ∈ A(D). Therefore we have (vi, vk), (vk, vj) ∈ A(D), which implies vk ∈ Sij .

case (iii): Since vk ∈ T+
i , there exists a ∈ [n] such that vi ∈ Sak. Since vk ∈ S∗j , there exists q ∈ [n]

such that vk ∈ Sqj . By (3), vi ∈ Sak implies (va, vi), (vi, vk) ∈ A(D), and vk ∈ Sqj implies
(vq, vk), (vk, vj) ∈ A(D). Therefore we have (vi, vk), (vk, vj) ∈ A(D), which implies vk ∈ Sij .

case (iv): Since vk ∈ T+
i , there exists a ∈ [n] such that vi ∈ Sak. Since vk ∈ T−j , there exists b ∈ [n]

such that vj ∈ Skb. By (3), vi ∈ Sak implies (va, vi), (vi, vk) ∈ A(D), and vj ∈ Skb implies
(vk, vj), (vj , vb) ∈ A(D). Therefore we have (vi, vk), (vk, vj) ∈ A(D), which implies vk ∈ Sij .

Thus we obtain Ai ∩Bj ⊆ Sij , and so Ai ∩Bj = Sij . Hence the condition (I) holds.
Next, we show the if part. Let M be a multigraph with n vertices, and suppose that there exist an

ordering (v1, . . . , vn) of the vertices of M and a double indexed edge clique partition F = {Sij | i, j ∈
[n]} of M such that the condition (I) holds.

We define a digraph D by V (D) := V (M) and

A(D) :=
⋃

i,j∈[n]

 ⋃
vk∈Sij

{(vi, vk), (vk, vj)}

 . (5)

LetM ′ denote the double competition multigraph ofD. We show thatM =M ′. Since V (M) = V (M ′),
it is enough to show mM = mM ′ . Take any two distinct vertices vk and vl and let t := mM ({vk, vl}).
Since F is an edge clique partition of M , the vertices vk and vl are contained in exactly t cliques
Sij ∈ F . So, for some nonnegative integers r and s with rs = t, there are r common in-neighbors
vi1 , . . . , vir and s common out-neighbors vj1 , . . . , vjs of the vertices vk and vl in D. Therefore it follows
that mM ′({vk, vl}) = |N−D (vk) ∩ N−D (vl)| · |N+

D (vk) ∩ N+
D (vl)| ≥ rs = t. Thus mM ({vk, vl}) ≤

mM ′({vk, vl}). Again, take any two distinct vertices vk and vl and let t′ := mM ′({vk, vl}). Then,
for some nonnegative integers r′ and s′ with r′s′ = t′, there are r′ common in-neighbors vi1 , . . . , vir′
and s′ common out-neighbors vj1 , . . . , vjs′ of the vertices vk and vl in D. For each i ∈ {i1, . . . , ir′},
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since (vi, vk), (vi, vl) ∈ A(D), it follows that {vk, vl} ⊆ Ai. Similarly, for each j ∈ {j1, . . . , js′},
since (vk, vj), (vl, vj) ∈ A(D), it follows that {vk, vl} ⊆ Bj . Therefore, {vk, vl} ⊆ Ai ∩ Bj for
any i ∈ {i1, . . . , ir′} and any j ∈ {j1, . . . , js′}. By the condition (I), we have Ai ∩ Bj = Sij .
Therefore {vk, vl} ⊆ Sij for any i ∈ {i1, . . . , ir′} and any j ∈ {j1, . . . , js′} and this implies that
mM ({vk, vl}) = |{Si,j ∈ F | {vk, vl} ⊆ Si,j}| ≥ r′s′ = t′. Thus mM ({vk, vl}) ≥ mM ′({vk, vl}).
Hence it holds that mM ({vk, vl}) = mM ′({vk, vl}) for any two distinct vertices vk and vl, that is,
mM = mM ′ , i.e., M =M ′. So M is the double competition multigraph of D.

A digraph D is said to be loopless if D has no loops, i.e., (v, v) 6∈ A(D) holds for any v ∈ V (D).

Theorem 2. Let M be a multigraph with n vertices. Then, M is the double competition multigraph of
a loopless digraph if and only if there exist an ordering (v1, . . . , vn) of the vertices of M and a double
indexed edge clique partition {Sij | i, j ∈ [n]} of M such that the following conditions hold:

(I) for any i, j ∈ [n], if |Ai ∩Bj | ≥ 2, then Ai ∩Bj = Sij;

(II) for any i, j ∈ [n], vi 6∈ Sij and vj 6∈ Sij ,

where Ai and Bj are the sets defined as (1) and (2).

Proof: First, we show the only-if part. Let M be the double competition multigraph of a loopless digraph
D. Let (v1, . . . , vn) be an ordering of the vertices of D. Let Sij (i, j ∈ [n]) be the sets defined as (3),
and let F be the family defined as (4). Then Sij is a clique of M , and F is an edge clique partition of M .
Moreover, we can show, as in the proof of Theorem 1, that the condition (I) holds. Now we show that the
condition (II) holds. Take any vertex vk ∈ Sij . Then (vi, vk), (vk, vj) ∈ A(D). Since D is loopless, we
have vi 6= vk and vi 6= vk. Therefore it follows that vi 6∈ Sij and vj 6∈ Sij . Thus the condition (II) holds.

Next, we show the if part. Let M be a multigraph with n vertices, and suppose that there exists an
ordering (v1, . . . , vn) of the vertices of M and a double indexed edge clique partition {Sij | i, j ∈ [n]}
of M such that the conditions (I) and (II) hold. We define a digraph D by V (D) := V (M) and A(D)
given in (5). By the condition (II), it follows from the definition ofD that (vi, vi) 6∈ A(D) for any i ∈ [n].
Therefore D is a loopless digraph. Moreover we can show, as in the proof of Theorem 1, that M is the
double competition multigraph of D.

A digraph D is said to be reflexive if all the vertices of D have loops, i.e., (v, v) ∈ A(D) holds for any
v ∈ V (D).

Theorem 3. Let M be a multigraph with n vertices. Then, M is the double competition multigraph of
a reflexive digraph if and only if there exist an ordering (v1, . . . , vn) of the vertices of M and a double
indexed edge clique partition {Sij | i, j ∈ [n]} of M such that the following conditions hold:

(I) for any i, j ∈ [n], if |Ai ∩Bj | ≥ 2, then Ai ∩Bj = Sij;

(III) for any i ∈ [n], vi ∈ Si∗ ∪ S∗i,

where Ai, Bj , Si∗, and S∗i are the sets defined as (1) and (2).

Proof: First, we show the only-if part. LetM be the double competition multigraph of a reflexive digraph
D. Let (v1, . . . , vn) be an ordering of the vertices of D. Let Sij (i, j ∈ [n]) be the sets defined as (3),
and let F be the family defined as (4). Then Sij is a clique of M , and F is an edge clique partition of M .
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Moreover, we can show, as in the proof of Theorem 1, that the condition (I) holds. Now we show that the
condition (III) holds. Since D is reflexive, we have (vi, vi) ∈ A(D) for any i ∈ [n]. Then it follows that
there exists p ∈ [n] such that vi ∈ Sip or vi ∈ Spi. Therefore vi ∈ Si∗ ∪ S∗i. Thus the condition (III)
holds.

Next, we show the if part. Let M be a multigraph with n vertices, and suppose that there exist an
ordering (v1, . . . , vn) of the vertices of M and a double indexed edge clique partition F = {Sij | i, j ∈
[n]} ofM such that the conditions (I) and (III) hold. We define a digraphD by V (D) := V (M) andA(D)
given in (5). Fix any i ∈ [n]. By the condition (III), there exists p ∈ [n] such that vi ∈ Sip or vi ∈ Spi.
Then it follows from the definition of D that (vi, vi) ∈ A(D). Therefore D is a reflexive digraph.
Moreover we can show, as in the proof of Theorem 1, that M is the double competition multigraph of
D.

A digraphD is said to be acyclic ifD has no directed cycles. An ordering (v1, . . . , vn) of the vertices of
a digraphD, where n is the number of vertices ofD, is called an acyclic ordering ofD if (vi, vj) ∈ A(D)
implies i < j. It is well known that a digraph D is acyclic if and only if D has an acyclic ordering.

Theorem 4. Let M be a multigraph with n vertices. Then, M is the double competition multigraph of
an acyclic digraph if and only if there exist an ordering (v1, . . . , vn) of the vertices of M and a double
indexed edge clique partition {Sij | i, j ∈ [n]} of M such that the following conditions hold:

(I) for any i, j ∈ [n], if |Ai ∩Bj | ≥ 2, then Ai ∩Bj = Sij;

(IV) for any i, j, k ∈ [n], vk ∈ Sij implies i < k < j,

where Ai and Bj are the sets defined as (1) and (2).

Proof: First, we show the only-if part. Let M be the double competition multigraph of an acyclic digraph
D. Let (v1, . . . , vn) be an acyclic ordering of the vertices of D. Let Sij (i, j ∈ [n]) be the sets defined as
(3), and let F be the family defined as (4). Then Sij is a clique of M , and F is an edge clique partition of
M . Moreover, we can show, as in the proof of Theorem 1, that the condition (I) holds. Now we show that
the condition (IV) holds. Suppose that vk ∈ Sij . Then (vi, vk), (vk, vj) ∈ A(D). Since (v1, . . . , vn) is
an acyclic ordering of D, (vi, vk) ∈ A(D) implies i < k and (vk, vj) ∈ A(D) implies k < j Therefore
i < k < j. Thus the condition (IV) holds.

Next, we show the if part. Let M be a multigraph with n vertices, and suppose that there exist an
ordering (v1, . . . , vn) of the vertices of M and a double indexed edge clique partition {Sij | i, j ∈ [n]} of
M such that the conditions (I) and (IV) hold. We define a digraph D by V (D) := V (M) and A(D) given
in (5). By the condition (IV), it follows from the definition of D that (v1, . . . , vn) is an acyclic ordering
of D. Therefore D is an acyclic digraph. Moreover we can show, as in the proof of Theorem 1, that M is
the double competition multigraph of D.

Remark 5. The condition (I) in Theorems 1, 2, 3, and 4 may be replaced by the following condition:

(I)′ for any i, j ∈ [n], Ai ∩Bj = Sij .

Proof: If the condition (I)′ is satisfied, then so is the condition (I). Suppose that the condition (I) is
satisfied. If |Ai ∩ Bj | ≥ 2, then it follows from the condition (I) that Ai ∩ Bj = Sij . If |Ai ∩ Bj | = 0,
then Ai ∩Bj = ∅. Since Sij ⊆ Ai ∩Bj , we have Sij = ∅. Therefore, Ai ∩Bj = Sij . If |Ai ∩Bj | = 1,
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then Ai ∩ Bj = {vk} for some k ∈ [n]. Since Sij ⊆ Ai ∩ Bj , we have Sij = ∅ or Sij = {vk}. If
Sij = {vk}, then Ai ∩ Bj = Sij . If Sij = ∅, then we replace Sij = ∅ by Sij = {vk}. Then F is
still an edge clique partition of M , and Ai ∩ Bj = Sij . Thus the condition (I)′ holds. Hence the remark
holds.

At the end of this paper, we mention two corollaries related to the edge clique partition number of a
multigraph. Recall that the edge clique partition number of a multigraph M is the minimum size of an
edge clique partition of M and is denoted by θ∗(M). As a corollary of Theorem 1, we obtain a necessary
condition for multigraphs being the double competition multigraph of a digraph.

Corollary 6. If a multigraph M with n vertices is the double competition multigraph of a digraph, then
θ∗(M) ≤ n2.

For the double competition multigraphs of acyclic digraphs, we can improve the above upper bound for
the edge clique partition numbers of multigraphs.

Corollary 7. If a multigraph M with n vertices is the double competition multigraph of an acyclic di-
graph, then θ∗(M) ≤ 1

2 (n− 2)(n− 3).

Proof: Suppoe that a multigraph M with n vertices is the double competition multigraph of an acyclic
digraph. Then, by Theorem 4, there exist an ordering (v1, . . . , vn) of the vertices of M and a double
indexed edge clique partition {Sij | i, j ∈ [n]} of M satisfying the conditions (I) and (IV). It follows
from the condition (IV) that, if j ≤ i + 1, then Sij = ∅. If j = i + 2, then Sij = ∅ or Sij = {vi+1},
which does not cover an edge of M . Therefore, the family {Sij | i, j ∈ [n], i+ 3 ≤ j} is an edge clique
partition of M . Thus the corollary holds.

Remark 8. In [7], the authors defined the double multicompetition number dk∗(M) of a multigraph M
to be the minimum nonnegative integer k such that M together with k new isolated vertices is the double
competition multigraph of some acyclic digraph. In this context, Theorem 4 gives a characterization of
multigraphs whose double multicompetition number is equal to 0.
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